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Chapter 5. Mean-variance frontier and

beta representations

Much empirical work in asset pricing is couched in terms of expected return - beta represen-

tations and mean-variance frontiers. This chapter introduces expected return - beta represen-

tations and mean-variance frontiers.

I discuss here the beta representation, most commonly applied to factor pricing models.

Chapter 6 shows how an expected return/beta model is equivalent to a linear model for the

discount factor, i.e. m = b0f where f are the right hand variables in the time-series regres-

sions that deÞne betas. Chapter 9 then discusses the derivation of popular factor models such

as the CAPM, ICAPM and APT, i.e. under what assumptions the discount factor is a linear

function of other variables f such as the market return.

I summarize the classic Lagrangian approach to the mean-variance frontier. I then intro-

duce a powerful and useful representation of the mean-variance frontier due to Hansen and

Richard (1987). This representation uses the state-space geometry familiar from the existence

theorems. It is also useful because it is valid and useful in inÞnite-dimensional payoff spaces,

which we shall soon encounter when we add conditioning information, dynamic trading or

options.

5.1 Expected return - Beta representations

The expected return-beta expression of a factor pricing model is

E(Ri) = + i,a a + i,b b + . . .

The model is equivalent to a restriction that the intercept is the same for all assets in

time-series regressions.

When the factors are returns excess returns, then a = E(fa). If the test assets are also

excess returns, then the intercept should be zero, = 0.

Much empirical work in Þnance is cast in terms of expected return - beta representations

of linear factor pricing models, of the form

E(Ri) = + i,a a + i,b b + . . . , i = 1, 2, ...N. (55)

77



CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

The terms are deÞned as the coefÞcients in a multiple regression of returns on factors,

Rit = ai + i,af
a
t + i,bf

b
t + . . .+

i
t; t = 1, 2, ...T. (56)

This is often called a time-series regression, since one runs a regression across time for each

security i. The “factors” f are proxies for marginal utility growth. I discuss the stories used

to select factors at some length in chapter 9. For the moment keep in mind the canonical ex-

amples, f = consumption growth, or f = the return on the market portfolio (CAPM). Notice

that we run returns Rit on contemporaneous factors f jt . This regression is not about predict-

ing returns from variables seen ahead of time. Its objective is to measure contemporaneous

relations or risk exposure; whether returns are typically high in “good times” or “bad times”

as measured by the factors.

The point of the beta model(5.55) is to explain the variation in average returns across

assets. I write i = 1, 2, ...N in (5.55) to emphasize this fact. The model says that assets with

higher betas should get higher average returns. Thus the betas in (5.55) are the explanatory (x)

variables, which vary asset by asset. The and – common for all assets – are the intercept

and slope in this cross-sectional relation. For example, equation (5.55) says that if we plot

expected returns versus betas in a one-factor model, we should expect all (E(Ri), i,a) pairs

to line up on a straight line with slope a and intercept .

i,a is interpreted as the amount of exposure of asset i to factor a risks, and a is inter-

preted as the price of such risk-exposure. Read the beta pricing model to say: “for each unit

of exposure to risk factor a, you must provide investors with an expected return premium

a.” Assets must give investors higher average returns (low prices) if they pay off well in

times that are already good, and pay off poorly in times that are already bad, as measured by

the factors.

One way to estimate the free parameters ( , ) and to test the model (5.55) is to run a

cross sectional regression of average returns on betas,

E(Ri) = + i,a a + i,b b + . . .+ i, i = 1, 2, ...N. (57)

Again, the i are the right hand variables, and the and are the intercept and slope coef-

Þcients that we estimate in this cross-sectional regression. The errors i are pricing errors.

The model predicts i = 0, and they should be statistically insigniÞcant in a test. (I intention-

ally use the same symbol for the intercept, or mean of the pricing errors, and the individual

pricing errors i.) In the chapters on empirical technique, we will see test statistics based on

the sum of squared pricing errors.

The fact that the betas are regression coefÞcients is crucially important. If the betas are

also free parameters then there is no content to the equation. More importantly (and this is

an easier mistake to make), the betas cannot be asset-speciÞc or Þrm-speciÞc characteristics,

such as the size of the Þrm, book to market ratio, or (to take an extreme example) the letter of

the alphabet of its ticker symbol. It is true that expected returns are associated with or corre-

lated with many such characteristics. Stocks of small companies or of companies with high
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SECTION 5.1 EXPECTED RETURN - BETA REPRESENTATIONS

book/market ratios do have higher average returns. But this correlation must be explained by

some beta. The proper betas should drive out any characteristics in cross-sectional regres-

sions. If, for example, expected returns were truly related to size, one could buy many small

companies to form a large holding company. It would be a “large” company, and hence pay

low average returns to the shareholders, while earning a large average return on its holdings.

The managers could enjoy the difference. What ruins this promising idea? . The “large”

holding company will still behave like a portfolio of small stocks. Thus, only if asset returns

depend on how you behave, not who you are – on betas rather than characteristics – can a

market equilibrium survive such simple repackaging schemes.

Some common special cases

If there is a risk free rate, its betas in (5.55) are all zero,2 so the intercept is equal to the

risk free rate,

Rf = .

We can impose this condition rather than estimate in the cross-sectional regression (5.57).

If there is no risk-free rate, then must be estimated in the cross-sectional regression. Since

it is the expected return of a portfolio with zero betas on all factors, is called the (expected)

zero-beta rate in this circumstance.

We often examine factor pricing models using excess returns directly. (There is an im-

plicit, though not necessarily justiÞed, division of labor between models of interest rates and

models of equity risk premia.) Differencing (5.55) between any two returns Rei = Ri Rj

(Rj does not have to be risk free), we obtain

E(Rei) = i,a a + i,b b + . . . , i = 1, 2, ...N. (58)

Here, ia represents the regression coefÞcient of the excess return Rei on the factors.

It is often the case that the factors are also returns or excess returns. For example, the

CAPM uses the return on the market portfolio as the single factor. In this case, the model

should apply to the factors as well, and this fact allows us to directly measure the coef-

Þcients. Each factor has beta of one on itself and zero on all the other factors, of course.

Therefore, if the factors are excess returns, we have E(fa) = a, and so forth. We can then

write the factor model as

E(Rei) = i,aE(f
a) + i,bE(f

b) + . . . , i = 1, 2, ...N.

The cross-sectional beta pricing model (5.55)-(5.58) and the time-series regression def-

inition of the betas in (5.56) look very similar. It seems that one can take expectations of

2 The betas are zero because the risk free rate is known ahead of time. When we consider the effects of

conditioning information, i.e. that the interest rate could vary over time, we have to interpret the means and betas as

conditional moments. Thus, if you are worried about time-varying risk free rates, betas, and so forth, either assume

all variables are i.i.d. (and thus that the risk free rate is constant), or interpret all moments as conditional on time

t information.
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

the time-series regression (5.56) and arrive at the beta model (5.55), in which case the latter

would be vacuous since one can always run a regression of anything on anything. The differ-

ence is subtle but crucial: the time-series regressions (5.56) will in general have a different

intercept ai for each return i, while the intercept is the same for all assets in the beta pric-

ing equation (5.55). The beta pricing equation is a restriction on expected returns, and thus

imposes a restriction on intercepts in the time-series regression.

In the special case that the factors are themselves excess returns, the restriction is partic-

ularly simple: the time-series regression intercepts should all be zero. In this case, we can

avoid the cross-sectional regression entirely, since there are no free parameters left.

5.2 Mean-variance frontier: Intuition and Lagrangian

characterization

The mean-variance frontier of a given set of assets is the boundary of the set of means and

variances of the returns on all portfolios of the given assets. One can Þnd or deÞne this bound-

ary by minimizing return variance for a given mean return. Many asset pricing propositions

and test statistics have interpretations in terms of the mean-variance frontier.

Figure 13 displays a typical mean-variance frontier. As displayed in Figure 13, it is com-

mon to distinguish the mean-variance frontier of all risky assets, graphed as the hyperbolic

region, and the mean-variance frontier of all assets, i.e. including a risk free rate if there is

one, which is the larger wedge-shaped region. Some authors reserve the terminology “mean-

variance frontier” for the upper portion, calling the whole thing the minimum variance fron-

tier. The risky asset frontier is a hyperbola, which means it lies between two asymptotes,

shown as dotted lines. The risk free rate is typically drawn below the intersection of the

asymptotes and the vertical axis, or the point of minimum variance on the risky frontier. If it

were above this point, investors with a mean-variance objective would try to short the risky

assets, which cannot represent an equilibrium.

In general, portfolios of two assets or portfolios Þll out a hyperbolic curve through the

two assets. The curve is sharper the less correlated are the two assets, because the portfolio

variance beneÞts from increasing diversiÞcation. Portfolios of a risky asset and risk free rate

give rise to straight lines in mean-standard deviation space.

In Chapter 1, we derived a similar wedge-shaped region as the set of means and variances

of all assets that are priced by a given discount factor. This chapter is about incomplete

markets, so we think of a mean-variance frontier generated by a given set of assets, typically

less than complete.

When does the mean-variance frontier exist? I.e., when is the set of portfolio means and

variances less than the whole {E, } space? We basically have to rule out a special case: two

returns are perfectly correlated but yield different means. In that case one could short one,

long the other, and achieve inÞnite expected returns with no risk. More formally, eliminate

purely redundant securities from consideration, then
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SECTION 5.2 MEAN-VARIANCE FRONTIER: INTUITION AND LAGRANGIAN CHARACTERIZATION

Theorem: So long as the variance-covariance matrix of returns is non-singular, there

is a mean-variance frontier.

To prove this theorem, just follow the construction below. This theorem should sound

very familiar: Two perfectly correlated returns with different mean are a violation of the law

of one price. Thus, the law of one price implies that there is a mean variance frontier as well

as a discount factor.

E(R)

σ(R)

Mean-variance frontier

Rf

Original assets

Risky asset frontier

Tangency portfolio

of risky assets

Figure 13. Mean-variance frontier

5.2.1 Lagrangian approach to mean-variance frontier

The standard deÞnition and the computation of the mean-variance frontier follows a brute

force approach.

Problem: Start with a vector of asset returns R. Denote by E the vector of mean returns,

E E(R), and denote by the variance-covariance matrix = E
£
(R E)(R E)0

¤
.

A portfolio is deÞned by its weights w on the initial securities. The portfolio return is w0R
where the weights sum to one, w01 =1. The problem “choose a portfolio to minimize vari-

ance for a given mean” is then

min{w} w
0 w s.t. w0E = µ; w01 = 1. (59)

Solution: Let

A = E0 1E; B = E0 11; C = 10 11.
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

Then, for a given mean portfolio return µ, the minimum variance portfolio has variance

var (Rp) =
Cµ2 2Bµ+A

AC B2
(60)

and is formed by portfolio weights

w = 1
E (Cµ B) + 1 (A Bµ)

(AC B2)
.

Equation (5.60) shows that the variance is a quadratic function of the mean. The square

root of a parabola is a hyperbola, which is why we draw hyperbolic regions in mean-standard

deviation space.

The minimum-variance portfolio is interesting in its own right. It appears as a special case

in many theorems and it appears in several test statistics. We can Þnd it by minimizing (5.60)

over µ, giving µmin var = B/C. The weights of the minimum variance portfolio are thus

w = 11/(10 11).

We can get to any point on the mean-variance frontier by starting with two returns on

the frontier and forming portfolios. The frontier is spanned by any two frontier returns.

To see this fact, notice that w is a linear function of µ. Thus, if you take the portfolios

corresponding to any two distinct mean returns µ
1

and µ
2
, the weights on a third portfolio

with mean µ3 = µ1 + (1 )µ2 are given by w3 = w1 + (1 )w2.

Derivation: To derive the solution, introduce Lagrange multipliers 2 and 2 on the con-

straints. The Þrst order conditions to (5.59) are then

w E 1 = 0

w = 1( E + 1). (61)

We Þnd the Lagrange multipliers from the constraints,

E0w = E0 1( E + 1) = µ

10w = 10 1( E + 1) = 1

or
·
E0 1E E0 11
10 1E 10 11

¸ · ¸
=

·
µ
1

¸

·
A B
B C

¸ · ¸
=

·
µ
1

¸
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SECTION 5.3 AN ORTHOGONAL CHARACTERIZATION OF THE MEAN-VARIANCE FRONTIER

Hence,

=
Cµ B

AC B2

=
A Bµ

AC B2

Plugging in to (5.61), we get the portfolio weights and variance.

5.3 An orthogonal characterization of the mean-variance frontier

Every return can be expressed as Ri = R +wiRe + ni.

The mean-variance frontier is Rmv = R +wRe

Re is deÞned asRe = proj(1|Re). It represents mean excess returns,E(Re) =E(Re Re)
Re Re

The Lagrangian approach to the mean-variance frontier is straightforward but cumber-

some. Our further manipulations will be easier if we follow an alternative approach due to

Hansen and Richard (1987). Technically, Hansen and Richard’s approach is also valid when

we can’t generate the payoff space by portfolios of a Þnite set of basis payoffs c0x. This hap-

pens, for example, when we think about conditioning information in Chapter 8. Also, it is the

natural geometric way to think about the mean-variance frontier given that we have started

to think of payoffs, discount factors and other random variables as vectors in the space of

payoffs. Rather than write portfolios as combinations of basis assets, and pose and solve a

minimization problem, we Þrst describe any return by a three-way orthogonal decomposition.

The mean-variance frontier then pops out easily without any algebra.

5.3.1 DeÞnitions of R ,Re

I start by deÞning two special returns. R is the return corresponding to the payoff x that

can act as the discount factor. The price of x , is, like any other price, p(x ) = E(x x ).
Thus,

The deÞnition of R is

R
x

p(x )
=

x

E(x 2)
(62)
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

The deÞnition of Re is

Re proj(1 | Re) (63)

Re space of excess returns = {x X s.t. p(x) = 0}

Why Re ? We are heading towards a mean-variance frontier, so it is natural to seek a

special return that changes means. Re is an excess return that represents means on Re with

an inner product in the same way that x is a payoff inX that represents prices with an inner

product. As

p(x) = E(mx) = E[proj(m|X)x] = E(x x),

so

E(Re) = E(1×Re) = E [proj(1 | Re)×Re] = E(Re Re).

IfR andRe are still a bit mysterious at this point, they will make more sense as we use

them, and discover their many interesting properties.

Now we can state a beautiful orthogonal decomposition.

Theorem: Every return Ri can be expressed as

Ri = R +wiRe + ni

where wi is a number, and ni is an excess return with the property

E(ni) = 0.

The three components are orthogonal,

E(R Re ) = E(R ni) = E(Re ni) = 0.

This theorem quickly implies the characterization of the mean variance frontier which we

are after:

Theorem: Rmv is on the mean-variance frontier if and only if

Rmv = R + wRe (64)

for some real number w.

As you vary the number w, you sweep out the mean-variance frontier. E(Re ) 6= 0, so

adding more w changes the mean and variance of Rmv . You can interpret (5.64) as a “two-
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SECTION 5.3 AN ORTHOGONAL CHARACTERIZATION OF THE MEAN-VARIANCE FRONTIER

fund” theorem for the mean-variance frontier. It expresses every frontier return as a portfolio

of R and Re , with varying weights on the latter.

As usual, Þrst I’ll argue why the theorems are sensible, then I’ll offer a simple algebraic

proof. Hansen and Richard (1987) give a much more careful algebraic proof.

5.3.2 Graphical construction

Figure 14 illustrates the decomposition. Start at the origin (0). Recall that the x vector is

perpendicular to planes of constant price; thus the R vector lies perpendicular to the plane

of returns as shown. Go to R .

Re is the excess return that is closest to the vector 1; it lies at right angles to planes (in

Re) of constant mean return, shown in the E = 1, E = 2 lines, just as the return R lies at

right angles to planes of constant price. Since Re is an excess return, it is orthogonal to R .

Proceed an amount wi in the direction of Re , getting as close to Ri as possible.

Now move, again in an orthogonal direction, by an amount ni to get to the return Ri. We

have thus expressedRi = R +wiRe +ni in a way that all three components are orthogonal.

Returns with n = 0, R + wRe , are the mean-variance frontier. Here’s why. Since

E(R2) = 2(R) + E(R)2, we can deÞne the mean-variance frontier by minimizing second

moment for a given mean. The length of each vector in Figure 14 is its second moment, so

we want the shortest vector that is on the return plane for a given mean. The shortest vectors

in the return plane with given mean are on the R +wRe line.

The graph also shows how Re represents means in the space of excess returns. Ex-

pectation is the inner product with 1. Planes of constant expected value in Figure 14 are

perpendicular to the 1 vector, just as planes of constant price are perpendicular to the x or

R vectors. I don’t show the full extent of the constant expected payoff planes for clarity; I

do show lines of constant expected excess return inRe, which are the intersection of constant

expected payoff planes with the Re plane. Therefore, just as we found an x in X to repre-

sent prices inX by projectingm ontoX, we Þnd Re in Re by projecting of 1 ontoRe. Yes,

a regression with one on the left hand side. Planes perpendicular to Re in Re are payoffs

with constant mean, just as planes perpendicular to x in X are payoffs with the same price.

5.3.3 Algebraic argument

Now, an algebraic proof of the decomposition and characterization of mean variance frontier.

The algebra just represents statements about what is at right angles to what with second

moments.

Proof: Straight from their deÞnitions, (5.62) and (5.63) we know that Re is an
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

R*

Re*

1

ni

Ri=R*+wiRe*+ni

0

E=0
E=1

R*+wiRe*

Re = space of excess returns (p=0)

R=space of returns (p=1)

Figure 14. Orthogonal decomposition and mean-variance frontier.

excess return (price zero), and hence that R and Re are orthogonal,

E(R Re ) =
E(x Re )

E(x 2)
= 0.

We deÞne ni so that the decomposition adds up to Ri as claimed, and we deÞne

wi to make sure that ni is orthogonal to the other two components. Then we prove

that E(ni) = 0. Pick any wi and then deÞne

ni Ri R wiRe .

ni is an excess return so already orthogonal to R ,

E(R ni) = 0.

To show E(ni) = 0 and ni orthogonal to Re , we exploit the fact that since ni is an

excess return,

E(ni) = E(Re ni).

Therefore, Re is orthogonal to ni if and only if we pick wi so that E(ni) = 0. We
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SECTION 5.4 SPANNING THE MEAN-VARIANCE FRONTIER

don’t have to explicitly calculate wi for the proof.3

Once we have constructed the decomposition, the frontier drops out. SinceE(ni) =
0 and the three components are orthogonal,

E(Ri) = E(R ) +wiE(Re )

2(Ri) = 2(R +wiRe ) + 2(ni).

Thus, for each desired value of the mean return, there is a unique wi. Returns with

ni = 0 minimize variance for each mean. ¥

5.3.4 Decomposition in mean-variance space

Figure 15 illustrates the decomposition in mean-variance space rather than in state-space.

First, let’s locate R . R is the minimum second moment return. One can see this fact

from the geometry of Figure 14: R is the return closest to the origin, and thus the return

with the smallest “length” which is second moment. As with OLS regression, minimizing

the length of R and creating an R orthogonal to all excess returns is the same thing. One

can also verify this property algebraically. Since any return can be expressed as R = R +
wRe + n, E(R2) = E(R 2) + w2E(Re 2) + E(n2). n = 0 and w = 0 thus give the

minimum second moment return.

In mean-standard deviation space, lines of constant second moment are circles. Thus,

the minimum second-moment return R is on the smallest circle that intersects the set of all

assets, which lie in the mean-variance frontier in the right hand panel of Figure 19. Notice

that R is on the lower, or “inefÞcient” segment of the mean-variance frontier. It is initially

surprising that this is the location of the most interesting return on the frontier! R is not

the “market portfolio” or “wealth portfolio,” which typically lie on the upper portion of the

frontier.

Adding moreRe moves one along the frontier. Adding n does not change mean but does

change variance, so it is an idiosyncratic return that just moves an asset off the frontier as

graphed. is the “zero-beta rate” corresponding toR . It is the expected return of any return

that is uncorrelated with R . I demonstrate these properties in section 6.5.

3 Its value

w
i =

E(Ri) E(R )

E(Re )

is not particularly enlightening.

87
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σ(R)

E(R)

R*

Ri
R* + wiRe*

ni

Figure 15. Orthogonal decomposition of a return Ri in mean-standard deviation space.

5.4 Spanning the mean-variance frontier

The characterization of the mean-variance frontier in terms of R and Re is most natural

in our setup. However, you can equivalently span the mean-variance frontier with any two

portfolios that are on the frontier – any two distinct linear combinations of R and Re . In

particular, take any return

R = R + Re , 6= 0. (65)

Using this return in place of Re ,

Re =
R R

you can express the mean variance frontier in terms of R and R :

R +wRe = R + y (R R ) (5.66)

= (1 y)R + yR

where I have deÞned a new weight y = w/ .
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The most common alternative approach is to use a risk free rate or a risky rate that some-

how behaves like the risk free rate in place of Re to span the frontier. When there is a risk

free rate, it is on the frontier with representation

Rf = R +RfRe

I derive this expression in equation (5.72) below. Therefore, we can use (5.66) withRa = Rf .

When there is no risk free rate, several risky returns that retain some properties of the risk free

rate are often used. In section 5.3 below I present a “zero beta” return, which is uncorrelated

with R , a “constant-mimicking portfolio” return, which is the return on the traded payoff

closest to unity, R̂ = proj(1|X)/p[proj(1|X)] and the minimum variance return. Each of

these returns is on the mean-variance frontier, with form 5.65, though different values of .

Therefore, we can span the mean-variance frontier with R and any of these risk-free rate

proxies.

5.5 A compilation of properties of R ,Re and x

The special returns R , Re that generate the mean variance frontier have lots of interesting

and useful properties. Some I derived above, some I will derive and discuss below in more

detail, and some will be useful tricks later on. Most properties and derivations are extremely

obscure if you don’t look at the picture!

1)

E(R 2) =
1

E(x 2)
. (67)

To derive this fact, multiply both sides of (5.62) by R , take expectations, and remember

R is a return so 1 = E(x R ).

2) We can reverse the deÞnition and recover x from R via

x =
R

E(R 2)
. (68)

To derive this formula, start with the deÞnition R = x /E(x 2) and substitute from (5.67)

for E(x 2)

3) R can be used to represent prices just like x . This is not surprising, since they both

point in the same direction, orthogonal to planes of constant price. Most obviously, from 5.68

p(x) = E(x x) =
E (R x)

E(R 2)
x X

For returns, we can nicely express this result as

E(R 2) = E(R R) R R. (69)
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CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

This fact can also serve as an alternative deÞning property of R .

4) Re represents means on Re via an inner product in the same way that x represents

prices onX via an inner product. Re is orthogonal to planes of constant mean inRe as x is

orthogonal to planes of constant price. Algebraically, in analogy to p(x) = E(x x) we have

E(Re) = E(Re Re) Re Re. (70)

This fact can serve as an alternative deÞning property of Re .

5) Re and R are orthogonal,

E(R Re ) = 0.

More generally, R is orthogonal to any excess return.

6) The mean variance frontier is given by

Rmv = R +wRe .

To prove this, E(R2) = E
£
(R +wRe + n)2

¤
= E(R 2) + w2E(Re2) + E(n2), and

E(n) = 0, so set n to zero. The conditional mean-variance frontier allows w in the con-

ditioning information set. The unconditional mean variance frontier requires w to equal a

constant.

7) R is the minimum second moment return. Graphically, R is the return closest to

the origin. To see this, using the decomposition in #6, and set w2 and n to zero to minimize

second moment.

8) Re has the same Þrst and second moment,

E(Re ) = E(Re 2).

Just apply fact (5.70) to Re itself. Therefore

var(Re ) = E(Re 2) E(Re )2 = E(Re ) [1 E(Re )] .

9) If there is a riskfree rate, then Re can also be deÞned as the residual in the projection

of 1 on R :

Re = 1 proj(1|R ) = 1
E(R )

E(R 2)
R = 1

1

Rf
R (71)

You’d never have thought of this without looking at Figure 14! Since R andRe are orthog-

onal and together spanX, 1 = proj(1|Re)+ proj(1|R ). You can also verify this statement

analytically. Check that Re so deÞned is an excess return in X – its price is zero–, and

E(Re Re) = E(Re); E(R Re ) = 0.
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As a result, Rf has the decomposition

Rf = R +RfRe . (72)

SinceRf > 1 typically, this means thatR +Re is located on the lower portion of the mean-

variance frontier in mean-variance space, just a bit to the right ofRf . If the risk free rate were

one, then the unit vector would lie in the return space, and Rf = R + Re . Typically, the

space of returns is a little bit above the unit vector. As you stretch the unit vector by the

amount Rf to arrive at the return Rf , so you stretch the amount Re that you add to R to

get to Rf .

If there is no riskfree rate, then we can use

proj(1|X) = proj(proj (1|X) |Re) + proj(proj (1|X) |R )

= proj(1|Re) + proj(1|R )

to deduce an analogue to equation (5.71),

Re = proj(1|X) proj(1|R ) = proj(1|X)
E(R )

E(R 2)
R (73)

10) If a riskfree rate is traded, we can construct Rf from R via

Rf =
1

E(x )
=
E(R 2)

E(R )
. (74)

If not, this gives a “zero beta rate” interpretation of the right hand expression.

11) Since we have a formula x = p0E(xx0) 1x for constructing x from basis assets

(see section 4.1), we can construct R in this case from

R =
x

p(x )
=
p0E(xx0) 1x

p0E(xx0) 1p
.

(p(x ) = E(x x ) leading to the denominator.)

12) We can construct Re from a set of basis assets as well. Following the deÞnition to

project one on the space of excess returns,

Re = E(Re)0E(ReRe0) 1Re

where Re is the basis set of excess returns. (You can always use Re = R R if you want).

This construction obviously mirrors the way we constructed x in section 4.1, and you can

see the similarity in the result, with E in place of p, since Re represents means rather than

prices. .

91



CHAPTER 5 MEAN-VARIANCE FRONTIER AND BETA REPRESENTATIONS

If there is a riskfree rate, we can also use (5.71),

Re = 1
1

Rf
R = 1

1

Rf
p0E(xx0) 1x

p0E(xx0) 1p
. (75)

If there is no riskfree rate, we can use (5.73) to construct Re . The central ingredient is

proj(1|X) = E(x)0E(xx0) 1x.

5.6 Mean-variance frontiers form: the Hansen-Jagannathan

bounds

The mean-variance frontier of all discount factors that price a given set of assets is related

to the mean-variance frontier of asset returns by

(m)

E(m)

|E(Re)|

(Re)
.

and hence

min
{allm that price x X}

(m)

E(m)
= max
{all excess returnsRe inX}

E(Re)

(Re)

The discount factors on the frontier can be characterized analogously to the mean-variance

frontier of asset returns,

m = x +we

e 1 proj(1|X) = proj(1|E) = 1 E(x)
0
E(xx0) 1x

E = {m x } .

We derived in Chapter 1 a relation between the Sharpe ratio of an excess return and the

volatility of discount factors necessary to price that return,

(m)

E(m)

|E(Re)|

(Re)
.

Quickly,

0 = E(mRe) = E(m)E(Re) + m,Re (m) (Re),
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SECTION 5.6 MEAN-VARIANCE FRONTIERS FORm: THE HANSEN-JAGANNATHAN BOUNDS

and | | 1. If we had a riskfree rate, then we know in addition

E(m) = 1/Rf .

Hansen and Jagannathan (1991) had the brilliant insight to read this equation as a restriction

on the set of discount factors that can price a given set of returns, as well as a restriction on

the set of returns we will see given a speciÞc discount factor. This calculation teaches us

that we need very volatile discount factors with a mean near one to understand stock returns.

This and more general related calculations turn out to be a central tool in understanding and

surmounting the equity premium puzzle, surveyed in Chapter 21.

We would like to derive a bound that uses a large number of assets, and that is valid if

there is no riskfree rate. What is the set of {E(m), (m)} consistent with a given set of asset

prices and payoffs? What is the mean-variance frontier for discount factors?

Obviously, the higher the Sharpe ratio, the tighter the bound. This suggests a way to

construct the frontier we’re after. For any hypothetical risk-free rate, Þnd the highest Sharpe

ratio. That is, of course the tangency portfolio. Then the slope to the tangency portfolio gives

the ratio (m)/E(m). Figure 16 illustrates.

E(R)

σ(R)

1/E(m) E(Re)/σ(Re)

E(m)

σ(m) = 

Ε(Re)/σ(Re)

Figure 16. Graphical construction of the Hansen-Jagannathan bound.

As we sweep through values of E(m), the slope to the tangency becomes lower, and

the Hansen-Jagannathan bound declines. At the mean return corresponding to the minimum

variance point, the HJ bound attains its minimum. Continuing, the Sharpe ratio rises again

and so does the bound. If there were a riskfree rate, then we know E(m), the return frontier

is a V shape, and the HJ bound is purely a bound on variance.

This discussion implies a beautiful duality between discount factor volatility and Sharpe

ratios.

min
{allm that price x X}

(m)

E(m)
= max
{all excess returnsRe inX}

E(Re)

(Re)
. (76)
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We need formulas for an explicit calculation. In equation (), we found a representation

for the set of discount factors that price a given set of asset returns – that satisfy p = E(mx) :

m = E(m) + [p E(m)E(x)] 1 [x E(x)] + (77)

where cov(x, x0) and E( ) = 0, E( x) = 0. You can think of this as a regression or

projection of any discount factor on the space of payoffs, plus an error. Since 2( ) > 0,

this representation leads immediately to an explicit expression for the Hansen-Jagannathan

bound,

2(m) (p E(m)E(x))0 1 (p E(m)E(x)) . (78)

As all asset returns must lie in a cup-shaped region in {E(R), (R)} space, all discount

factors must lie in a parabolic region in
©
E(m), 2(m)

ª
space, as illustrated in the right

hand panel of Figure 16.

We would like an expression for the discount factors on the bound, as we wanted an

expression for the returns on the mean variance frontier instead of just a formula for the

means and variances. As we found a three way decomposition of all returns, two of which

generated the mean-variance frontier of returns, so we can Þnd a three way decomposition of

discount factors, two of which generate the mean-variance frontier of discount factors (5.78).

I illustrate the construction in Figure 17.

Any m must line in the plane marked M , perpendicular to X through x . Any m must

be of the form

m = x +we + n.

Here, I have just broken up the residual in the familiar representationm = x + into two

components. e is deÞned as the residual from the projection of 1 ontoX or, equivalently the

projection of 1 on the space E of “excessm’s,” random variables of the formm x .

e 1 proj(1|X) = proj(1|E).

e generates means ofm just as Re did for returns:

E(m x ) = E[1× (m x )] = E[proj(1|E)(m x )].

Finally n, deÞned as the leftovers, has mean zero since it’s orthogonal to 1 and is orthogonal

toX.

As with returns, then, the mean-variance frontier ofm0s is given by

m = x +we . (79)

If the unit payoff is in the payoff space, then we know E(m), and the frontier and bound

are just m = x , 2(m) 2(x ). This is exactly like the case of risk-neutrality for return

mean-variance frontiers.
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SECTION 5.6 MEAN-VARIANCE FRONTIERS FORm: THE HANSEN-JAGANNATHAN BOUNDS

x*

e*

1

n

m = x*+we*+n

0

E(.)=0
E(.)=1

x*+we*

E = space of m-x*

M = space of discount factors

X = payoff space

proj(1| X)

Figure 17. Decomposition of any discount factorm = x +we+ n.
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The construction (5.79) can be used to derive the formula (5.78) for the Hansen-Jagannathan

bound for the Þnite-dimensional cases discussed above. It’s more general, since it can be used

in inÞnite-dimensional payoff spaces as well. Along with the corresponding return formula

Rmv = R + wRe , we see in Chapter 8 that it extends more easily to the calculation of

conditional vs. unconditional mean-variance frontiers (Gallant, Hansen and Tauchen 1995).

It will make construction (5.79) come alive if we Þnd equations for its components. We

Þnd x as before, it is the portfolio c0x inX that prices x:

x = p0E(xx0) 1x.

Similarly, let’s Þnd e . The projection of 1 on X is

proj(1|X) = E(x)0E(xx0) 1x.

(After a while you get used to the idea of running regressions with 1 on the left hand side and

random variables on the right hand side!) Thus,

e = 1 E(x)0E(xx0) 1x.

Again, you can construct time-series of x and e from these deÞnitions.

Finally, we now can construct the variance-minimizing discount factors

m = x +we = p0E(xx0) 1x+w
£
1 E(x)0E(xx0) 1x

¤

or

m = w + [p wE(x)]0E(xx0) 1x (80)

As w varies, we trace out discount factors m on the frontier with varying means and vari-

ances. It’s easiest to Þnd mean and second moment:

E(m ) = w + [p wE(x)]
0
E(xx0) 1E(x)

E(m 2) = [p wE(x)]0E(xx0) 1 [p wE(x)] ;

variance follows from 2(m) = E(m2) E(m)2. With a little algebra one can also show

that these formulas are equivalent to equation (5.78).

As you can see, Hansen-Jagannathan frontiers are equivalent to mean-variance frontiers.

For example, an obvious exercise is to see how much the addition of assets raises the Hansen-

Jagannathan bound. This is exactly the same as asking how much those assets expand

the mean-variance frontier. It was, in fact, this link between Hansen-Jagannathan bounds

and mean-variance frontiers rather than the logic I described that inspired Knez and Chen

(1996) and DeSantis (1994) to test for mean-variance efÞciency using, essentially, Hansen-

Jagannathan bounds.
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Hansen-Jagannathan bounds have the potential to do more than mean-variance frontiers.

Hansen and Jagannathan show how to solve the problem

min 2(m) s.t. p = E(mx),m > 0.

This is the “Hansen-Jagannathan bound with positivity,” and is strictly tighter than the Hansen-

Jagannathan bound. It allows you to impose no-arbitrage conditions. In stock applications,

this extra bound ended up not being that informative. However, in the option application of

this idea of Chapter (18), positivity is really important. That chapter shows how to solve for

a bound with positivity.

Hansen, Heaton and Luttmer (1995) develop a distribution theory for the bounds. Luttmer

(1996) develops bounds with market frictions such as short-sales constraints and bid-ask

spreads, to account for ludicrously high apparent Sharpe ratios and bounds in short term

bond data. Cochrane and Hansen (1992) survey a variety of bounds, including bounds that

incorporate information that discount factors are poorly correlated with stock returns (the

HJ bounds use the extreme = 1), bounds on conditional moments that illustrate how many

models imply excessive interest rate variation, bounds with short-sales constraints and market

frictions, etc.

Chapter 21 discusses what the results of Hansen Jagannathan bound calculations and what

they mean for discount factors that can price stock and bond return data.

5.7 Problems

1. Prove that Re lies at right angles to planes (in Re) of constant mean return, as shown in

Þgure 14.

2. Should we typically draw x above, below or on the plane of returns? Must x always lie

in this position?

3. Can you construct Re from knowledge ofm, x , or R ?

4. What happens to R ,Re and the mean-variance frontier if investors are risk neutral?

(a) If a riskfree rate is traded.

(b) If no riskfree rate is traded?

(Hint: make a drawing or think about the case that payoffs are generated by an N
dimensional vector of basis assets x)

5. x = proj(m|X). Is R = proj(m|R)?

6. We showed that allm are of the form x + . What about R 1R?

7. Show that if there is a risk-free rate—if the unit payoff is in the payoff space X—then

Re = (Rf R )/Rf .
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