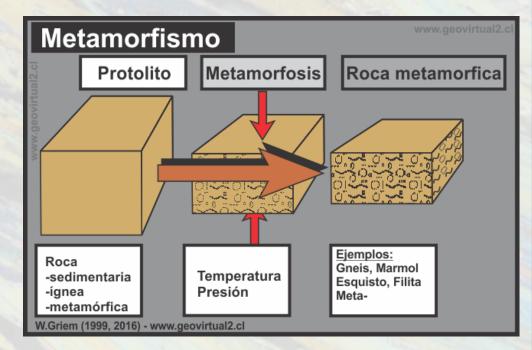


Introducción al metamorfismo y Metapelitas

Petrología Ígnea y Metamórfica GL5103-3, Primavera 2022


Profesor: Diego Morata

Auxiliar: Matías Poblete

Ayudante: Valentina Villanueva

Metamorfismo

- Roca originalmente ígnea, sedimentaria o metamórfica.
- Cambios mineralógicos y/o texturales que ocurren predominantemente en estado solido.
- Ajuste de la roca a nuevas condiciones termodinámicas (P-T) diferentes a las cuales se originó y, que además, difieren de las condiciones físicas que ocurren normalmente en la superficie de la tierra y en la zona de Diagénesis.

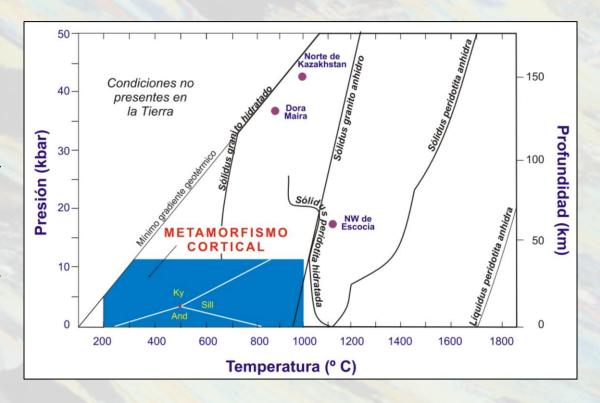
Metamorfismo

Agentes

Temperatura

Presión (esfuerzos diferenciales)

Fluidos químicamente activos sólo en el caso de alteración hidrotermal (metasomatismo)


Cambios

Mineralógicos (recristalización y neomineralización).

Texturales (1

(reordenamiento y deformación)

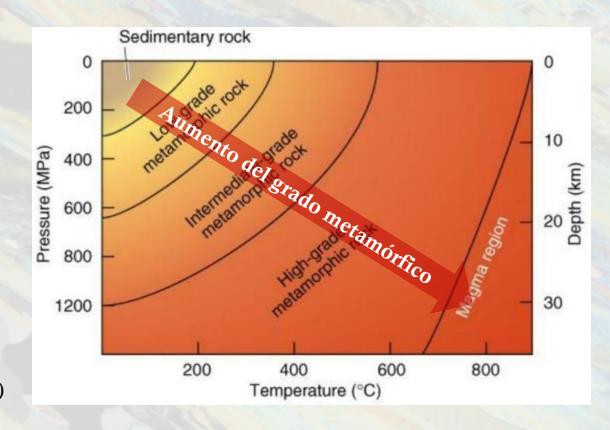
- Temperatura: reflejo del calor que impulsa las reacciones químicas para que recristalicen nuevos minerales (ΔH>0).
- Presión de confinamiento: compacta la roca y disminuye la porosidad junto a la deshidratación.
- Presión dirigida (esfuerzo diferencial): fuerzas en desbalance que "acortan" o "alargan" la roca. Esta P produce el plegamiento.
- F.Q.A en alteración hidrotermal: catalizadores de recristalización (fomenta la migración iónica por metasomatismo).

Grado metamórfico

El grado metamórfico estará siempre caracterizado por una asociación mineral.

Grado creciente de metamorfismo

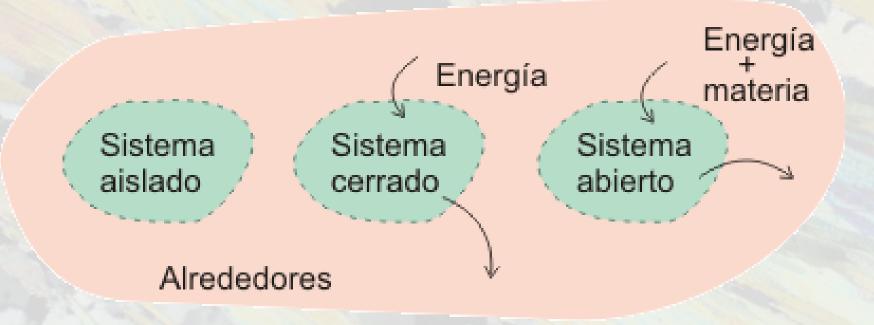
Gradiente geotérmico cortical: Incremento de la T con la profundidad ~ 25 – 30°C/km


Grado metamórfico Temperatura

Bajo grado metamórfico: 200 – 320°C **Medio grado metamórfico**: 320 – 550°C

Alto grado metamórfico: > 550°C

°Metamorfismo — Deshidratación progresiva


°Metamorfismo — Aumento tamaño exs

Tipos de metamorfismo: Según el ambiente geológico

- Regional Orogénico: Ocurre en un área de gran extensión, i.e., afecta un gran volumen de roca. Se relaciona con procesos tectónicos a gran escala.
- Contacto Metamorfismo de extensión local. Afecta a la roca caja alrededor de cuerpos de magma emplazados en una variedad de ambiente. Causado principalmente por la transferencia de calor.
- Cataclástico: Metamorfismo de extensión local, asociado a zonas de <u>fallas o</u> zonas de cizallamiento.
- Hidrotermal: Metasomatismo. Causado por la circulación de fluidos intersticiales. A escala local o regional.
- **De choque** Generalmente de extensión local. Causado por el paso de una onda de choque de material a otro, e.g., debido al <u>impacto de un cuerpo</u> (meteorito) sobre una superficie (planeta).

Metamorfismo vs Metasomatismo

Metamorfismo vs Metasomatismo

Tanto el metamorfismo como el metasomatismo implican el reequilibrio de los minerales debido a cambios de presión, temperatura y/o entorno químico.

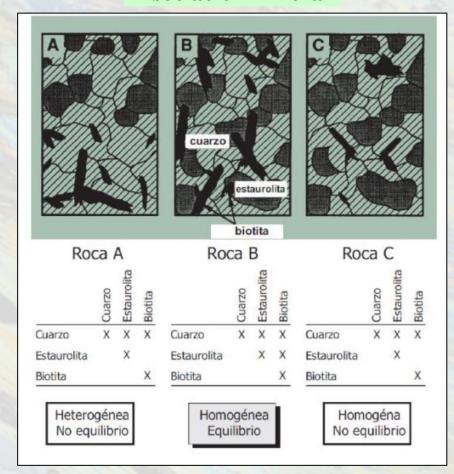
Metasomatismo

- Sistema abierto. La composición de la roca cambia debido a la adición/remoción de cationes.
- Resultado de la interacción de la roca con fluidos hidrotermales*.
- La roca se mantiene en estado sólido.

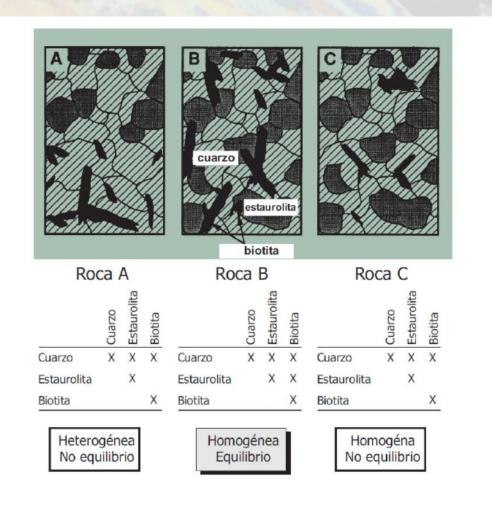
Metamorfismo

- Sistema cerrado e isoquímico. La composición de la roca no cambia sustancialmente, con la única excepción de la pérdida/ingreso de volátiles (e.g., H₂O).
- La roca se mantiene en estado sólido.

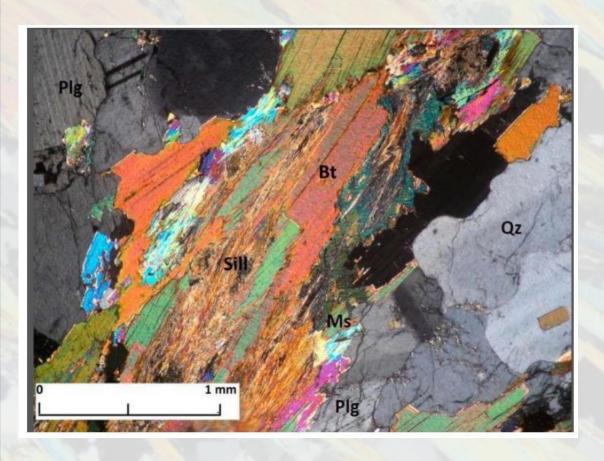
Definiciones importantes

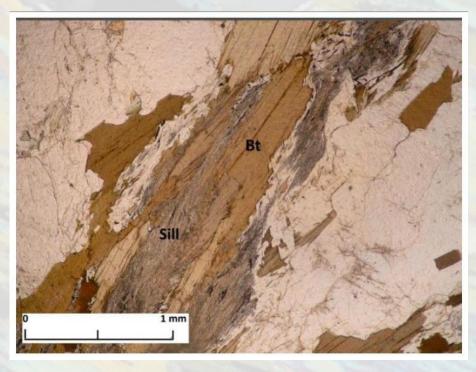

Asociación mineral en equilibrio

- Forupo de minerales presentes en la roca que se encuentran en equilibrio.
- En la práctica, una asociación mineral corresponde a aquellos minerales que se encuentran en contacto sin reaccionar.
- Debería comprobarse con otros estudios, como filtros químicos

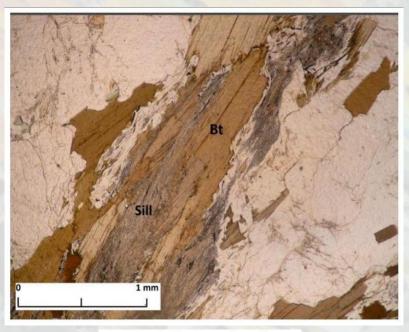

Paragénesis mineral

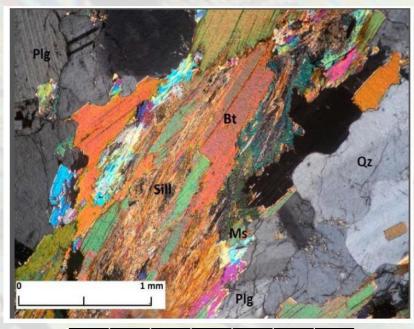
- Sucesión de asociaciones minerales que se reemplazan unas otras.
- Una paragénesis representa un evento metamórfico.


Asociación mineral



Paragénesis mineral y Asociación Mineral


Paragénesis mineral

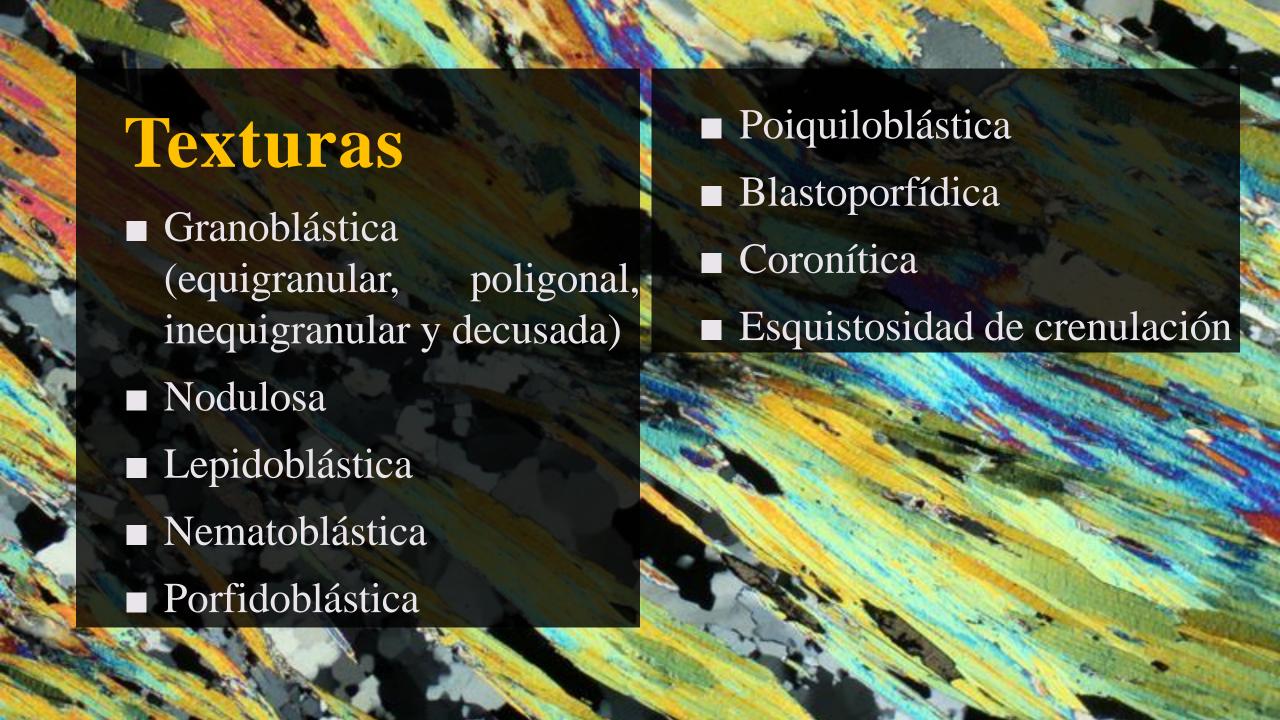


	Sill	Bt	Ms	Qz	Plg	
Sill	x	x	x	x		
Bt		X	x	X	x	
Ms			x	x	x	
Qz				x	x	
Plg					х	

Paragénesis mineral

- · Asociaciones minerales:
 - Sill + Bt
 - Sill + Ms
 - Sill + Qz
 - Bt + Ms
 - Bt + Qz
 - Bt + Plg
 - Ms + Plg
 - Ms + Qz
 - Qz+ Plg

- Paragénesis:
 - Sill + Bt + Qz + Ms
 - Bt+ Ms + Qz + Plg


	Sill	Bt	Ms	Qz	Plg	
Sill	x	x	x	x		
Bt		X	X	x	x	
Ms			x	x	x	
Qz				x	x	
Plg					х	

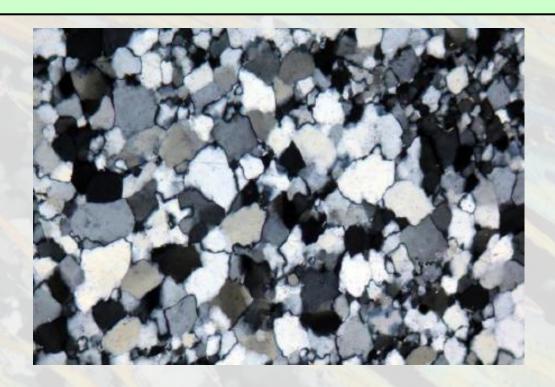
Nomenclatura

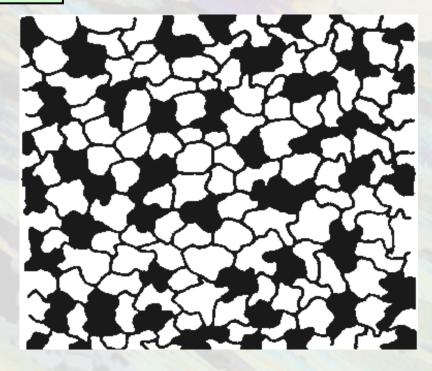
La terminología utilizada para hacer alusión al protolito consiste en el uso del prefijo "meta" que se antepone al nombre de la roca parental o protolito. Ej: metagranito, metapelita, metabasalto.

Otros prefijos comúnmente utilizados son "orto" y "para", que se anteponen al nombre específico cuando el protolito se presume de origen ígneo o sedimentario, respectivamente. Ej: Ortogneis si corresponde a un gneis de origen ígneo y paragneis si es de origen pelítico.

Granoblástica

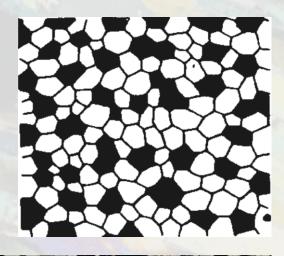
Mosaico equi o inequigranular de cristales equidimensionales o inequidimensionales con orientación aleatoria. Ocurre debido a que los granos ajustan sus limites entre si, en estado solido, para lograr el equilibrio textural. Común en rocas metamórficas no foliadas. Ej: Corneanas, Granulitas, Mármoles y cuarcitas. Se subdivide en cuatro tipos:


- ✓ Equigranular
- ✓ Poligonal
- ✓ Inequigranular
- ✓ Decusada


Metamorfismo térmico sin orientación

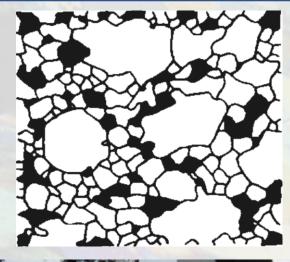
Minerales orientados al azar

Granoblástica-Equigranular


Mosaico equigranular de cristales equidimensionales.

Granoblástica-Poligonal

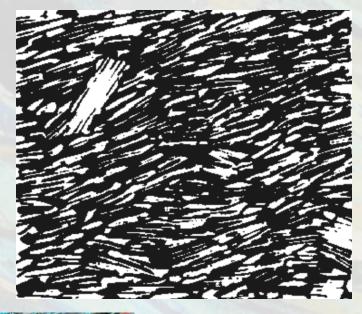
Caso particular de la equigranular , los contactos entre los cristales son planos, predominan uniones triples y en general las caras del cristal están bien desarrolladas.

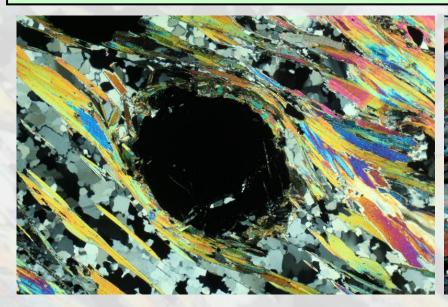


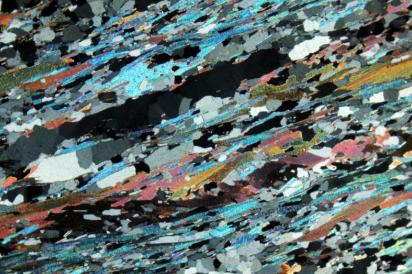
Granoblástica-Inequigranular

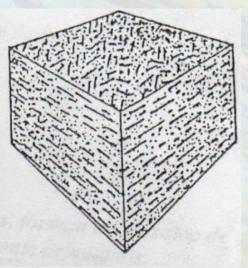
Mosaico inequigranular de cristales equidimensionales.

Granoblástica-Decusada

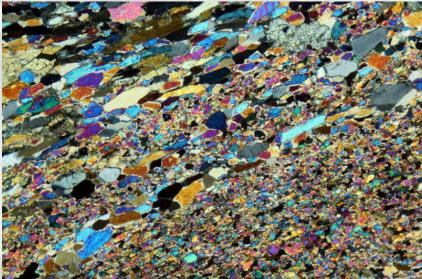

Textura donde los cristales entrelazados y orientados al azar son algo alargados y/o prismáticos. Suele aplicarse a rocas con una o dos fases minerales distintas. Las uniones triples son comunes. **Mosaico hipidiomórfico:** cristales subhedrales.

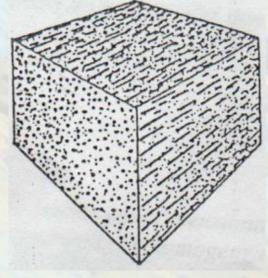




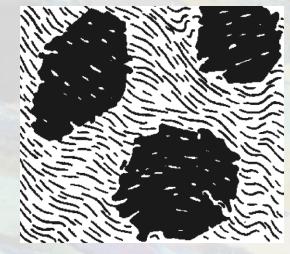

Lepidoblástica

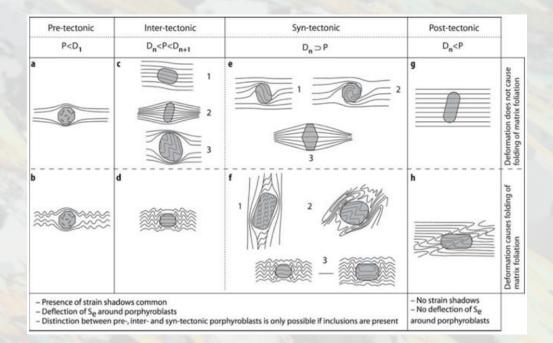
Orientación preferente subparalela de minerales planares (filosilicatos normalmente), los que se alinean para producir una fabrica planar. Visible en pizarras, filitas y esquistos. Se genera debido a la orientación paralela de los cxs durante la recristalización de mxs con hábito micáceo.



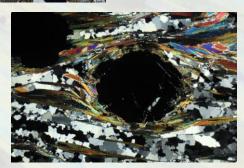

Nematoblástica

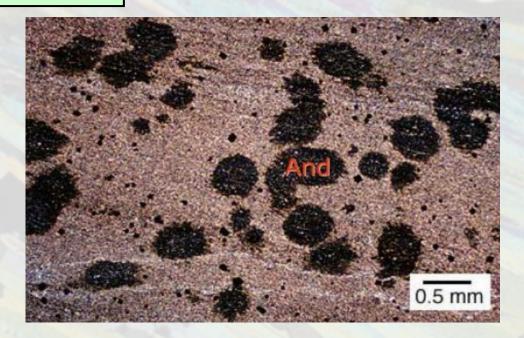
Orientación preferente subparalela de minerales prismáticos (normalmente inosilicatos: Sill, Anf o Px). Fabrica linear. Típica en anfibolitas pobres en micas.



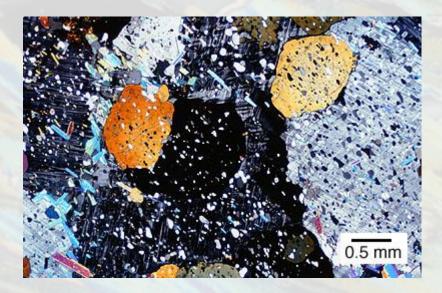


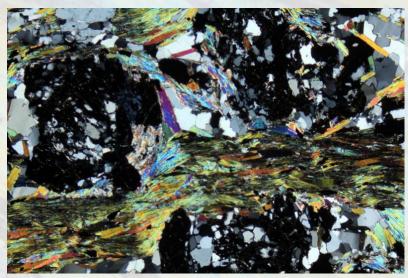
Porfidoblástica


Textura formada por cristales relativamente grandes que han crecido durante el metamorfismo (origen metamorfico) inmersos en una matriz de tamaño de grano más fino. Estos cristales se denominan Porfidoblastos.

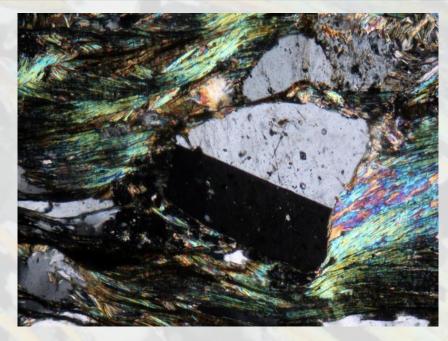


Nodulosa


Porfídoblastos (fenocristales metamórficos) relativamente equidimensionales (generalmente de forma ovalada), en asociación con otros minerales orientados al azar. Típica de corneanas pelíticas de bajo grado donde los poiquiloblastos son de andalucita o cordierita.

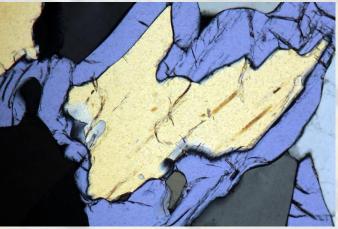


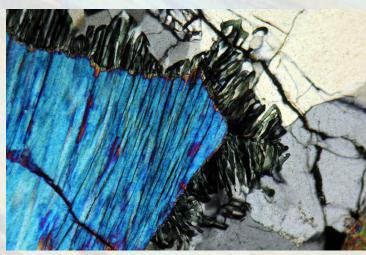
Poiquiloblástica


Caracterizada por minerales metamórficos (poiquiloblastos), que incluyen numerosos minerales más pequeños o relictos minerales. Se debe al crecimiento nuevo de minerales metamórficos alrededor de numerosos relictos de minerales originarios, por ej. ortoclasas, que incluyen minerales diminutos de plagioclasa, cuarzo y biotita de un gneis (i.e., poiquiloblastos con textura poiquilítica).

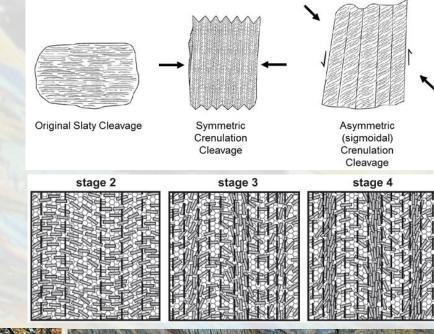
Blastoporfídica

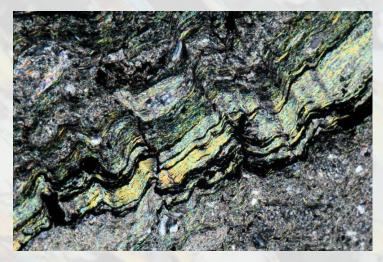
Textura porfídica heredada, se observan fenocristales relictos de rocas ígneas, aunque pueden estar reemplazados por agregados de minerales metamórficos, todavía muestras hábitos característicos

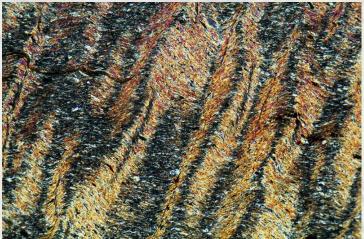



Coronítica

Capas concéntricas de uno o más mxs rodeando completamente a una fase **mineral más antigua (relicta).** Las capas representan una secuencia de **rx incompleta** que ha ocurrido para sustituir al mineral del núcleo. Común en metabasitas con metamorfismo de alto grado.

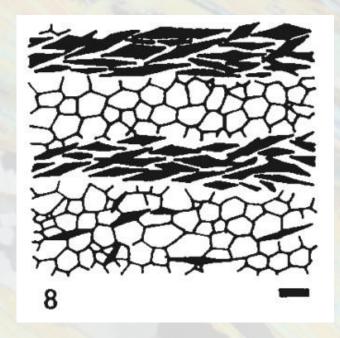


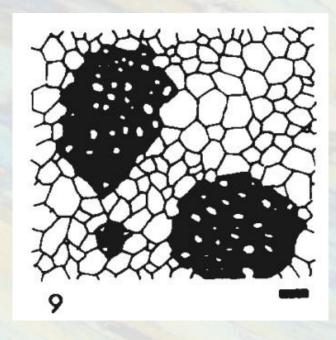




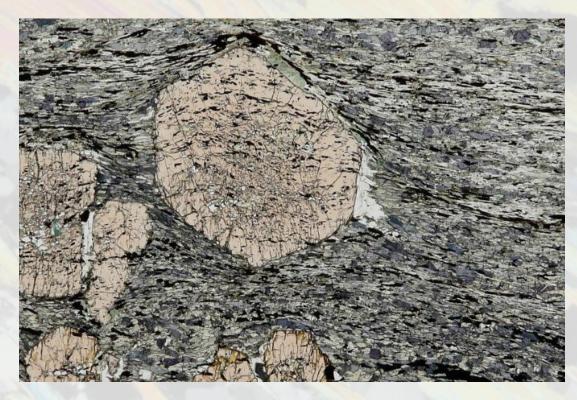
Esquistosidad de crenulación

Uno de los tipos de foliación más comunes en *metapelitas* de grado intermedio a alto de metamorfismo. **Dominios** ricos en filosilicatos definiendo el clivaje general, separados por dominios ricos en Qz y Fsp.

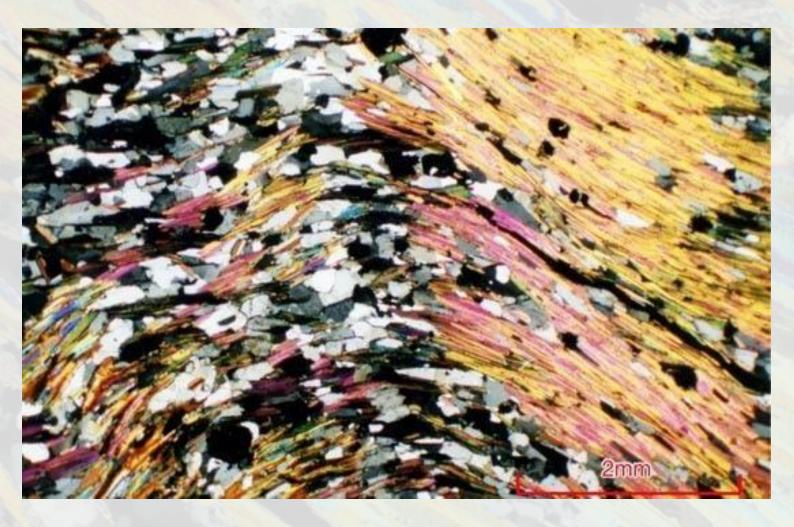



Texturas compuestas

Granolepidoblástica


Granonematoblástica

Granoporfidoblástica


• El nombre de las texturas se pone en orden de predominancia

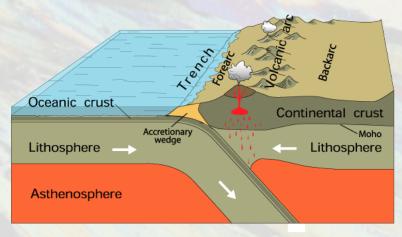
Lepidoporfidoblástica

Lepidogranoblástica

Metapelitas

Protolito pelítico: Cuarzo ± Albita ± Feldespato alcalino ± Clorita, Muscovita, Granate, Pirofilita.

Protolito sedimentario (rocas pelíticas) de grano fino


- Ricos en K, Al, Fe y H₂O
- Pobres en Ca y Mg
- $SiO_2 + Al_2O_3 + K_2O + (MgO + FeO)$

Las rocas pelíticas pueden dividirse en:

- Lutitas pobres en Al (no desarrollan cloritoide)
- Lutitas ricas en Al (desarrollan cloritoide)

El considerable contenido de agua del protolito es importante para la ocurrencia de reacciones minerales

Se relacionan a los prismas de acreción \rightarrow ya que hay acumulación de sedimentos pelíticos que vienen desde el continente.

Metapelitas

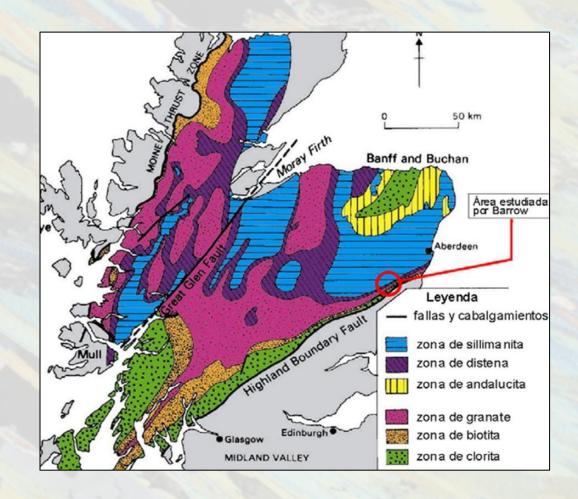
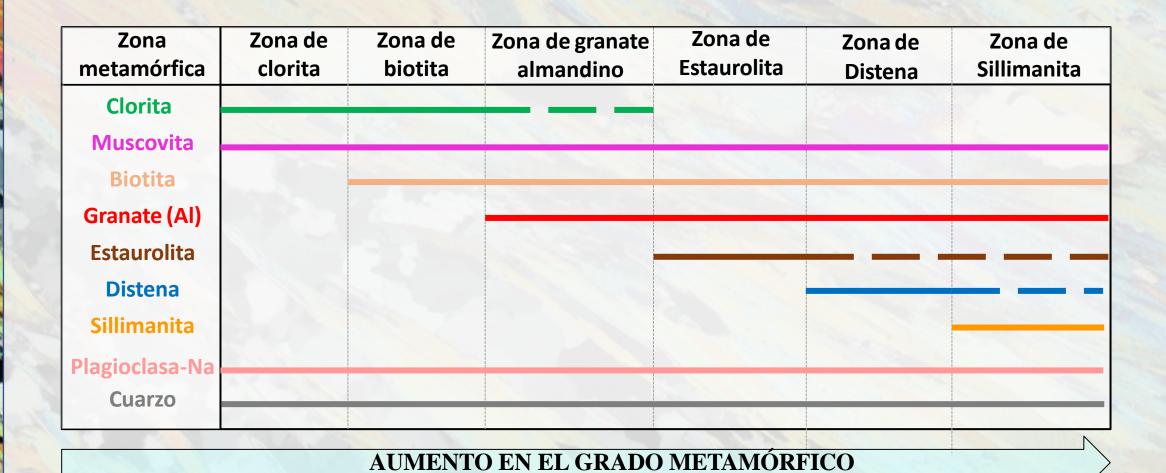

- Rocas metamórficas derivadas se sedimentos ricos en arcilla y cuarzo (lutitas 60% de rxs sedimentarias).
- El metamorfismo débil transforma las lutitas en pizarras.
- Minerales de arcilla: illita, clorita, caolinita, esmectita.
- Filosilicatos: 50% de la roca.
- Cuarzo: hasta 30% en volumen.
- Otros: feldespatos, óxidos e hidróxidos de Fe (hematita, limonita, goethita), carbonatos, sulfuros.
- Mineralogía resultante: illita (moscovita), clorita, cuarzo, hematita.
- Composición química se mantiene, disminuye agua.

Tabla 6.I. Composición química promedio de una lutita pelágica.


Óxido	Porcentaje (en peso)			
SiO ₂	54.9			
TiO ₂	0.78			
Al ₂ O ₃	16.6			
Fe ₂ O ₃	7.7			
FeO	2.0			
MgO	3.4			
CaO	0.72			
Na ₂ O	1.3			
K ₂ O	2.7			
H ₂ O	9.2			
CO_2	-			
C	-			

Zonas de Barrow

- Definidas por George Barrow en las metapelitas ubicada en los Highlands (Escocia)
- Corresponden a asociaciones minerales resultantes de un metamorfismo progresivo.
- La construcción de estas zonas se basa en la aparición de un mineral índice, el cual le asigna el nombre a la zona metamórfica.
- La aparición progresiva de estos minerales implica un **aumento en el grado metamórfico.**
- Zona mineral → unir puntos de minerales índice → límite de zona mineral o isógrada.
- Permite definir condiciones de P-T del metamorfismo.

Zonas de Barrow

Zonas de Barrow

Zona	Zona de	Zona de	Zona de grt	Zona de	Zona de	Zona de	2da zona de	Zona
metamórfica	clorita	biotita	almandino	Estaurolita	Distena	Sillimanita	Sillimanita	Opx
Clorita Muscovita Biotita Granate (Al) Estaurolita Distena Sillimanita Plagioclasa-Na Cuarzo Fsp - K Opx	Chl Micas blancas Qz Ab	C L Bt O Chl R Micas I blancasT Qz O Ab I D E	Gt Bt Chl MB Qz Ab Olg	Est Bt MB Qz Gt Pl	Ky Bt MB Pl (Est) (Gt)	Sill Bt MB Qz Pl Gt (Est)	Fsp –K Sill Bt MB Qz Pl Gt (Est)	

Zonas de Barrow

Zona de clorita

Chl + Ms + Qz + Ab (Pizarra o Filita)

Zona de biotita

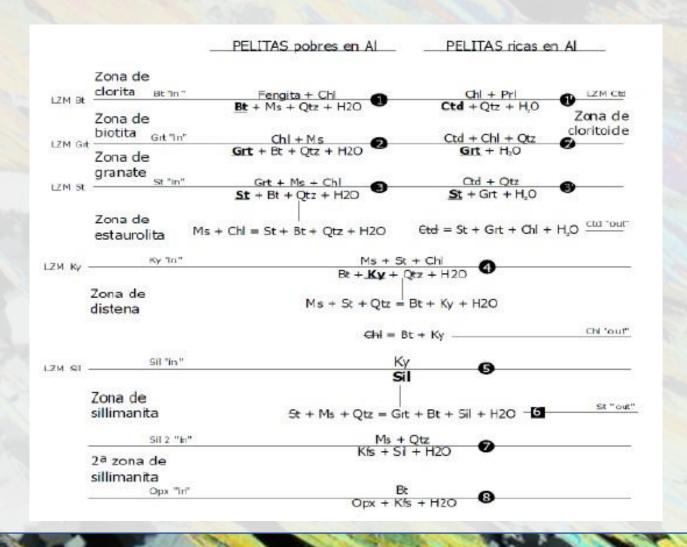
Bt + Chl + Ms + Qz + Ab (Pizarra→ Filita, Esquisto)

Zona de granate

Gt (**Al**) + Bt + Chl + Ms + Qz + Alb/Pl (**Esquistos con porfidoblastos de** granate)

Zona de estaurolita

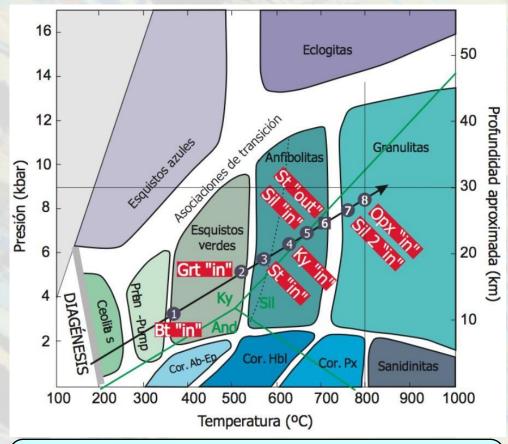
 $\mathbf{Est} + \mathbf{Bt} + \mathbf{Ms} + \mathbf{Qz} + \mathbf{Gt} + \mathbf{Pl} + \mathbf{Chl} (\mathbf{Esquisto})$


Zona de distena

Distena + Bt + Ms + Qz + Pl + Gt + Est (Esquisto)

Zona de sillimanita

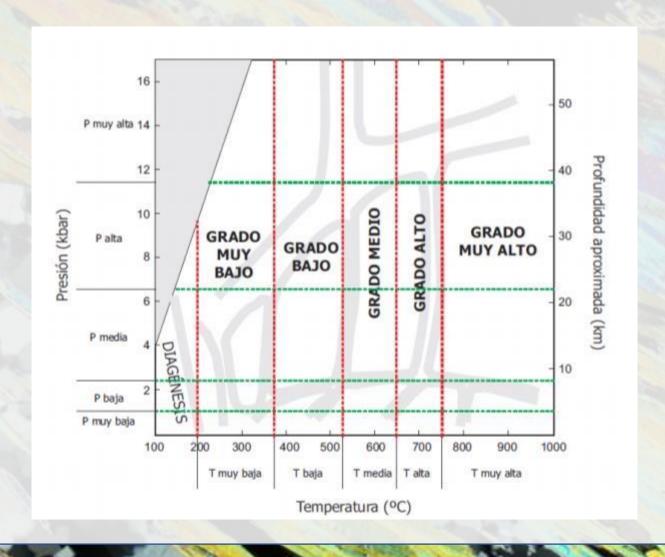
Sill + Bt + Ms + Qz + Pl + Gt + -Est (Esquisto - Gneiss)


Asociaciones minerales

Facies metamórficas

- Están definidas para <u>Metabasitas</u>. Pero podemos hacer el símil con Metapelitas.
- Cada facie metamórfica tiene mxs índices, sin embargo, estos mxs no necesariamente son visibles o existen en la roca, si la roca no tiene la composición química adecuada NO cristalizan.
- Conociendo la composición química de la roca + sus condiciones PT → Podemos predecir su asociación mineral.

Conjunto de asociaciones minerales que han cristalizado en las mismas condiciones de PT


Metapelitas sólo necesitan la identificación de un mineral índice o diagnóstico, para así identificar la zona metamórfica, y con ello, la facies

Facies metamórficas

Rocas pelíticas (metapelitas)	Rocas básica (metabasitas)
Zona de clorita	Facies de sub-esquistos verdes
Zona de biotita	Facies de esquistos verdes
Zona de granate	Facies de anfibolitas con epidota
Zona de estaurolita	-
Zona de distena	Facies de anfibolitas
Zona de sillimanita	-
Zona de sillimanita-feldespato potásico	Facies de granulitas con piroxeno y hornblenda

Facies	Asociaciones minerales diagnósticas	
	Metabasitas	Metapelitas con cuarzo
Ceolitas	Laumontita	
Prehnita-Pumpellyita	Prehnita + pumpellyita, prehnita + actinolita, pumpellyita + actinolita	
Esquistos verdes	Actinolita + clorita + epidota + albita	Cloritoide
Anfibolitas	Hornblenda + plagioclasa	Estaurolita
Granulitas	Ortopiroxeno + clinopiroxeno + plagio- clasa	Sillimanita+feldespato potásico Sin estaurolita, sin moscovita
Esquistos azules	Glaucofana, lawsonita, piroxeno jadeítico, aragonito	Glaucofana Sin biotita
Eclogitas	Onfacita + granate Sin plagioclasa	
Facies de metamorfis- mo de contacto	Las asociaciones minerales en las meta- basitas no difieren sustancialmente de las correspondientes a las facies de presión mayor	

Grado metamórfico

Mineralogía

- Cuarzo
- Feldespato potásico
- Mica Blanca
- Clorita
- Biotita
- Granate
- Estaurolita
- Cloritoíde (ricas en Al)
- Cordierita (baja presión)

- Talco
- Corindón (no existe si hay cuarzo)
- Espinela
- Óxidos de Fe Ti
- Glaucofano (alta presión)
- Ortopiroxeno (muy alta temperatura)
- Aluminosilicatos

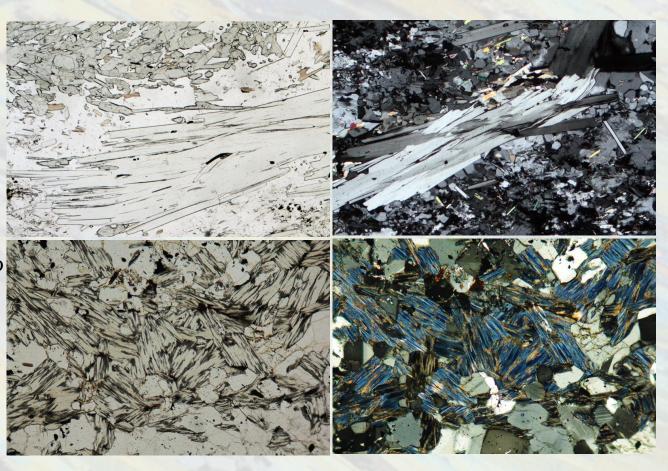
Andalusita (baja presión)

Cianita (baja presión)

Silimanita (alta temperatura)

Zona de Clorita

Clorita


Filosilicato con estructura T – O – T. Miembro importante de rocas metamórficas regionales y de contacto de grado bajo a medio, normalmente alcanza T < 400°C. Se forma por alteración de mxs máfico cómo Pxs, Anf, Bt, entre otros.

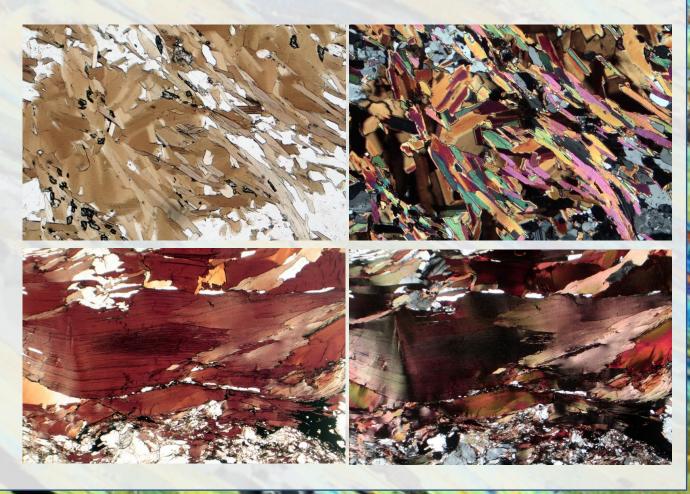
También ocurre como mx hidrotermal (recristalización de mxs de arcilla).

Propiedades ópticas

- Color: Verde mineral incoloro, verde pálido
- Hábito: Cristales tabulares con forma pseudo-hexagonal o micáceo.
- Clivaje perfecto
- CI: de primer orden (marrón, verde profundo, gris), "azul Berlín" profundo anómalo.
- Relieve: Bajo a moderado

Grado meramórfico de más bajo grado en las rocas pelíticas, pizarras y filitas afaníticas con mica blanca, clorita y cuarzo. Posibles óxidos de Fe-Ti y Pirita

Zona de Biotita


Biotita

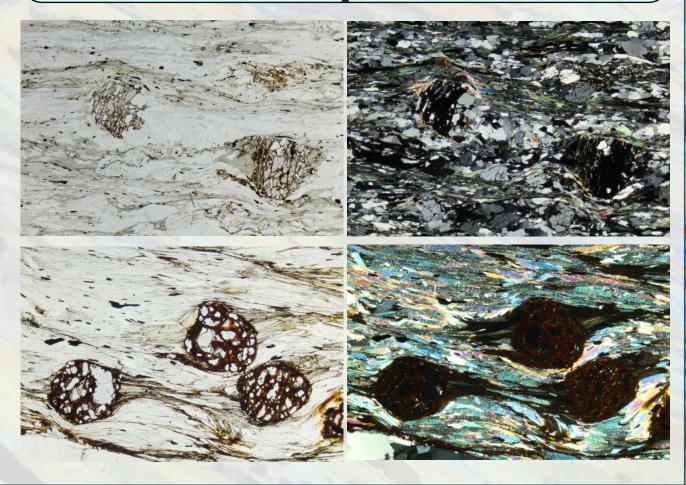
La biotita es una solución solida entre los miembros finales flogopita y annita. Pequeñas cantidades de Na, Rb, Cs y Ba pueden sustituir al K y, al igual que otros minerales, el F puede sustituir al OH y aumentar la estabilidad de la biotita a temperaturas y presiones más altas.

Propiedades ópticas

- Color: marrón a negro
- Hábito: micáceo
- Clivaje perfecto
- CI: 3er a 4to orden, enmascarada
- Relieve: Moderado

Aumento de temperatura en la Zona de Clorita comienza a formar biotita en porfidoblastos. Filitas y esquistos Fengita + Clorita → Biorita + Muscovita + Cuarzo + H₂O

Zona de Granate


Granate

Tienen la fórmula general X_3Y_2 (SiO₄)₃. El sitio X suele estar ocupado por cationes divalentes (Ca²⁺, Mg²⁺, Fe²⁺) y el sitio Y por cationes trivalentes (Al³⁺, Fe³⁺,Cr ³⁺) en un marco octaédrico/tetraédrico con [SiO₄] ⁴⁻ ocupando los tetraedros.

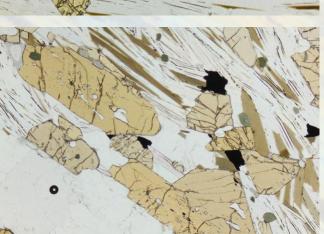
Propiedades ópticas

- Color: Incoloro a rosa (se diferencia de espinela porque esta tiene colores mucho más intensos)
- Hábito: cxs euhedrales de hábito generalmente dodecaédrico
- CI: Isotrópico
- Relieve: Alto

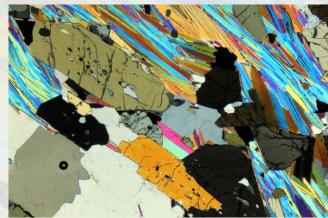
Comienzan a aparecer granates pequeños en pelitas con alto Mn, Ca y Fe⁺³. Esquistos porfidoblásticos Clorita + Muscovita → Granate + Clorita Mg + Biotita + H₂O

Zona de Estaurolita

Estaurolita

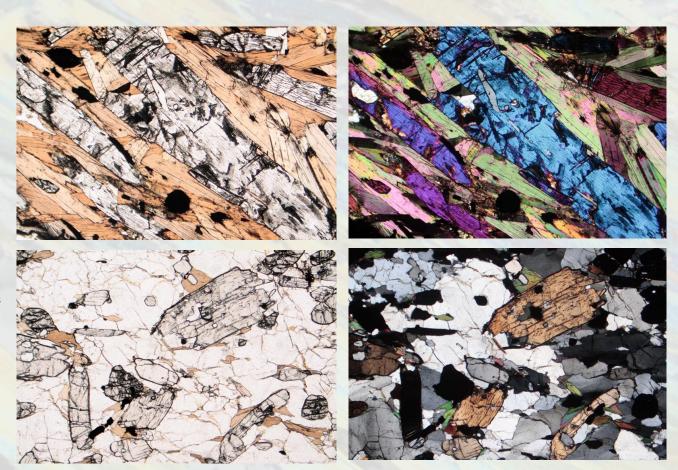

La estructura de la estaurolita consiste básicamente en capas de Al₂ SiO₅ (composición de cianita) y capas de AlFe₂ O₂ (OH)₂ alternadas paralelas a (010). Se asocia con la cianita comúnmente en rocas pelíticas de grano medio.

Propiedades ópticas


- Color: amarillo a amarillo pálido
- Presenta pleocroísmo
- Hábito: prismático
- CI: bajos de 1er orden
- Relieve: Alto
- Maclas en cruz

Granate + Clorita + Muscovita → Estaurolita +
Biotita + Cuarzo + H₂O
Poiquiloblastos de estaurolita con inclusiones
de cuarzo en esquistos

Zona de Cianita


Estaurolita + Clorita + Muscovita + Cuarzo → Cianita + Biotita + H₂O. Esquistos

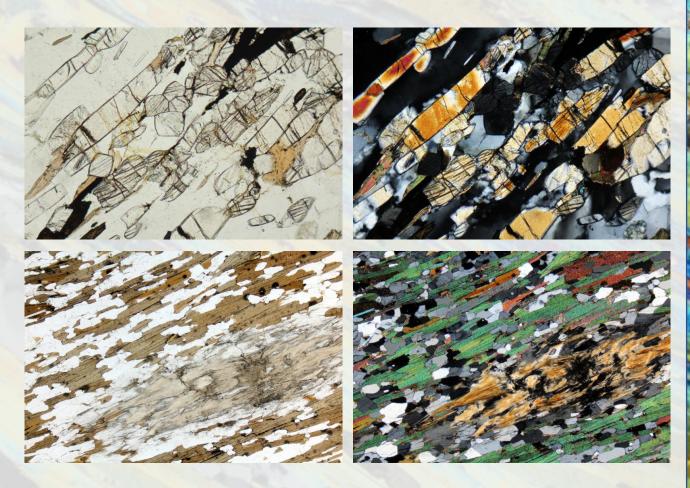
Cianita

La cianita en rocas metamórficas generalmente se forma a presiones medias a altas y temperaturas bajas a moderadas en metamorfismo regional de tipo Barrowiano. A temperaturas más altas, la kyanita se invierte en silimianita, en un amplio rango de presiones y altas temperaturas.

Propiedades ópticas

- Color: Incoloro o azul pálido
- Hábito: prismas subhedrales con "forma de hoja"
- CI: bajos a moderados. Tonos azules a amarillos
- Relieve: alto

Zona de Sillimanita

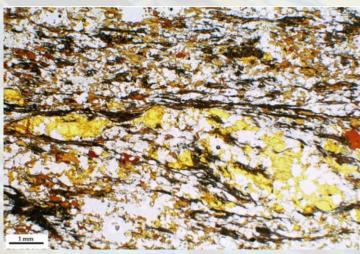

Polimorfo de Al₂SiO₅ de alta temperatura. Esquistos y gneiss

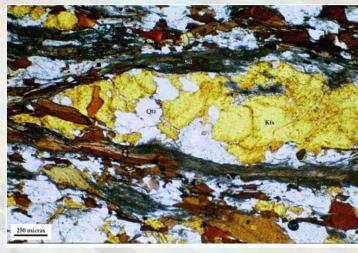
Sillimanita

Tanto las formas fibrosas como las tradicionales de silimanita son comunes en las rocas sedimentarias metamorfoseadas. Es un mineral índice que indica alta temperatura pero presión variable.

Propiedades ópticas

- Color: Incoloro
- Forma: prismas alargados o cxs fibrosos (sillimanita variedad fibrolita).
- CI: amarillos a naranjos de primer orden.
 Amarillo pálido.
- Relieve: alto




Zona de Fsp-K y Sillimanita

Muscovita +Albita + Cuarzo → Feldespato potásico + Sillimanita + H₂O Sillimanita + Granate + Cuarzo ↔ Plagioclasa (An) Esquistos y gneiss

- En el caso de que las temperaturas suban de los 750°C, las soluciones solidas de muscovita reaccionan con el cuarzo para formar feldespato potásico y un alumino silicato.
- Se encuentra a presiones intermedias.

Cristales de feldespato potásico generados durante la migmatización M2. Los cristales aparecen estirados paralelamente a L2, a la vez que desarrollan colas de recristalización asimétricas.



Cloritoide

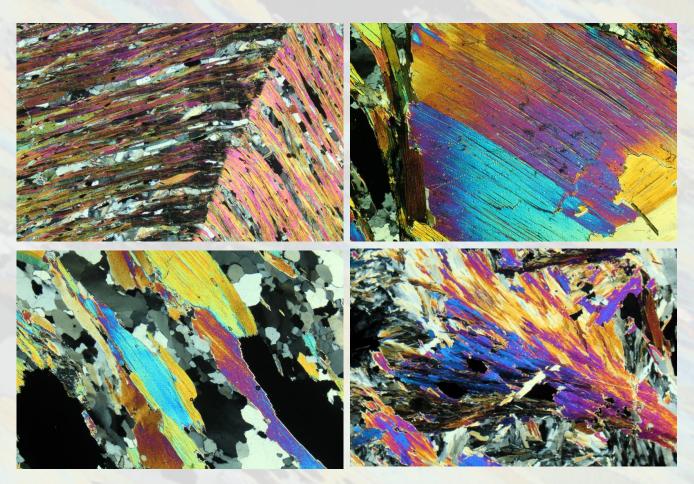
Propiedades ópticas

- Color: Incoloro-gris azulado, verde claro
- Forma: prismas alargados o exs fibrosos.
- CI: grises-blanco primer orden
- Relieve: alto

Muscovita

Muscovita principalmente (paragonita cuando Na sustituye a K). Característico de rocas metamórficas. Uno de los primeros mxs en aparecer en metamorfismo regional; en metamorfismo de contacto tiende a "disociarse".

Propiedades ópticas


Color: Incoloro
 Hábito: micáceo

Clivaje perfecto

• CI: 2do a 3er orden. Débiles en sección

basal

• Relieve: Moderado

Introducción al metamorfismo y Metapelitas

Petrología Ígnea y Metamórfica GL5103-3, Primavera 2022

Profesor: Diego Morata

Auxiliar: Matías Poblete

Ayudante: Valentina Villanueva