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PREFACE

This textbook evolved from a course in geophysical inverse methods taught during the
past two decades at New Mexico Tech, first by Rick Aster and, subsequently, jointly
between Rick Aster and Brian Borchers. The audience for the course has included a
broad range of first- or second-year graduate students (and occasionally advanced under-
graduates) from geophysics, hydrology, mathematics, astrophysics, and other disciplines.
Clift Thurber joined this collaboration during the production of the first edition and
has taught a similar course at the University of Wisconsin-Madison.

Our principal goal for this text is to promote fundamental understanding of param-
eter estimation and inverse problem philosophy and methodology, specifically regarding
such key issues as uncertainty, ill-posedness, regularization, bias, and resolution. We
emphasize theoretical points with illustrative examples, and MATLAB codes that imple-
ment these examples are provided on a companion website. Throughout the examples
and exercises, a web icon indicates that there is additional material on the website.
Exercises include a mix of applied and theoretical problems.

This book has necessarily had to distill a tremendous body of mathematics and
science going back to (at least) Newton and Gauss. We hope that it will continue to
find a broad audience of students and professionals interested in the general problem of
estimating physical models from data. Because this is an introductory text surveying a
very broad field, we have not been able to go into great depth. However, each chapter
has a “notes and further reading” section to help guide the reader to further explo-
ration of specific topics. Where appropriate, we have also directly referenced research
contributions to the field.

Some advanced topics have been deliberately left out of this book because of space
limitations and/or because we expect that many readers would not be sufficiently famil-
iar with the required mathematics. For example, readers with a strong mathematical
background may be surprised that we primarily consider inverse problems with discrete
data and discretized models. By doing this we avoid much of the technical complexity of
functional analysis. Some advanced applications and topics that we have omitted include
inverse scattering problems, seismic diffraction tomography, wavelets, data assimilation,
simulated annealing, and expectation maximization methods.

We expect that readers of this book will have prior familiarity with calculus, dif-
ferential equations, linear algebra, probability, and statistics at the undergraduate level.
In our experience, many students can benefit from at least a review of these topics, and
we commonly spend the first two to three weeks of the course reviewing material from
Appendices A, B, and C.



Preface

Chapters 1 through 4 form the heart of the book, and should be covered in sequence.
Chapters 5 through 8 are mostly independent of each other, but draw heavily on the
material in Chapters 1 through 4. As such, they may be covered in any order. Chapters 9
and 10 are independent of Chapters 5 through 8, but are most appropriately covered in
sequence. Chapter 11 is independent of the material in Chapters 5 through 10, and
provides an introduction to the Bayesian perspective on inverse problems and Bayesian
solution methods.

If significant time is allotted for review of linear algebra, vector calculus, probability,
and statistics in the appendices, there will probably not be time to cover the entire book
in one semester. However, it should be possible for teachers to cover substantial material
tollowing Chapter 4.

We especially wish to acknowledge our own professors and mentors in this field,
including Kei Aki, Robert Parker, and Peter Shearer. We thank our many colleagues,
including many students in our courses, who provided sustained encouragement and
teedback during the initial drafting and subsequent revision of the book, particularly
Kent Anderson, James Beck, Aaron Masters, Elena Resmerita, Charlotte Rowe, Tyson
Strand, and Suzan van der Lee. Stuart Anderson, Greg Beroza, Ken Creager, Don
Clewett, Ken Dueker, Eliza Michalopoulou, Paul Segall, Anne Shechan, and Kristy
Tiampo deserve special mention for their classroom testing of early and subsequent ver-
sions of this text and their helpful suggestions, and Jason Mattax deserves special mention
for his thorough proofreading of the second edition text. Robert Nowack, Gary Pavlis,
Randall Richardson, and Steve Roecker provided thorough and very helpful reviews
during the initial scoping. We offer special thanks to Per Christian Hansen of the Tech-
nical University of Denmark for his Regularization Tools, which we highly recommend
as an adjunct to this text, and which were an inspiration in writing the first edition. Valu-
able feedback that improved the second edition included that provided by Ken Dueker,
Anne Sheehan, Pamela Moyer, John Townend, Frederik Tilmann, and Kurt Feigl. Oleg
Makhnin cotaught this course with Rick Aster at New Mexico Tech in 2010 and pro-
vided significant contributions, particularly regarding material in Chapter 11, that have
been incorporated into this second edition. We also thank the editorial staft at Elsevier
over the years, especially Frank Cynar, Kyle Sarofeen, Jennifer Hel¢, and John Fedor
for essential advice and direction. Suzanne Borchers and Susan Delap provided valuable
proofreading and graphics expertise. Brian Borchers was a visiting fellow at the Institute
for Pure and Applied Mathematics (IPAM) at University of California-Los Angeles, and
Rick Aster was partially supported by the New Mexico Tech Geophysical Research
Center during preparation of this book. Finally, we express thanks for the boundless
support of our families during the many years that it has taken to complete this effort.

Rick Aster, Brian Borchers, and Cliff Thurber
June 2011



CHAPTER ONE

Introduction

Synopsis

General issues associated with parameter estimation and inverse problems are introduced
through the concepts of the forward problem and its inverse solution. Scaling and super-
position properties that characterize linear systems are given, and common situations
leading to linear and nonlinear mathematical models are discussed. Examples of discrete
and continuous linear and nonlinear parameter estimation problems to be revisited in
later chapters are shown. Mathematical demonstrations highlighting the key issues of
solution existence, uniqueness, and instability are presented and discussed.

1.1. CLASSIFICATION OF PARAMETER ESTIMATION AND INVERSE
PROBLEMS

Scientists and engineers frequently wish to relate physical parameters characterizing a
model, m, to collected observations making up some set of data, d. We will commonly
assume that the fundamental physics are adequately understood, so a function, G, may
be specified relating m and d such that

G(m) = d. (1.1)

In practice, d may be a function of time and/or space, or may be a collection of dis-
crete observations. An important issue is that actual observations always contain some
amount of noise. Two common ways that noise may arise are unmodeled influences
on instrument readings and numerical round-off. We can thus envision data as gener-
ally consisting of noiseless observations from a “perfect” experiment, dyye, plus a noise
component 1,

d= G(myue) +1 (1.2)
= dirue + n, (1.3)

where diye exactly satisfies (1.1) for m equal to the true model, mgyye, and we assume
that the forward modeling is exact. We will see that it is commonly mathematically
possible, although practically undesirable, to also fit all or part of n by (1.1). It may seem
remarkable, but it is often the case that a solution for m that is influenced by even a small

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00001-X
(© 2013 Elsevier Inc. All rights reserved.
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noise amplitude 1 can have little or no correspondence to mye. Another key issue that
may seem astounding at first is that commonly there are an infinite number of models
aside from migye Which fit the perfect data, dirye.

When m and d are functions, we typically refer to G as an operator. G will be called
a function when m and d are vectors. The operator G can take on many forms. In some
cases G is an ordinary differential equation (ODE) or partial differential equation (PDE).
In other cases, G is a linear or nonlinear system of algebraic equations.

Note that there is some inconsistency between mathematicians and other scientists in
modeling terminology. Applied mathematicians usually refer to G(m) = d as the “math-
ematical model” and to m as the “parameters.” On the other hand, scientists often refer
to G as the “forward operator” and to m as the “model.” We will adopt the scientific
parlance and refer to m as the “the model” while referring to the equation G(m) = d as
the “mathematical model.”

The forward problem is to find d given m. Computing G(m) might involve solving
an ODE or PDE, evaluating an integral, or applying an algorithm for which there is no
explicit analytical formula for G(m). Our focus in this text is on the inverse problem
of finding m given d. A third problem, not addressed here, is the model identification
problem of determining G given examples of m and d.

In many cases, we will want to determine a finite number of parameters, n, to define
a model. The parameters may define a physical entity directly (e.g., density, voltage,
seismic velocity), or may be coefficients or other constants in a functional relationship
that describes a physical process. In this case, we can express the model parameters as an
n element vector m. Similarly, if there are a finite number of data points then we can
express the data as an m element vector d. (Note that the use of the integer m here for
the number of data points is easily distinguishable from the model m by its context.) Such
problems are called discrete inverse problems or parameter estimation problems.
A general parameter estimation problem can be written as a system of equations

G(m) = d. (1.4)

In other cases, where the model and data are functions of continuous variables, such
as time or space, the associated task of estimating m from d is called a continuous
inverse problem. A central theme of this book is that continuous inverse problems can
often be well-approximated by discrete inverse problems.

We will generally refer to problems with small numbers of parameters as “parameter
estimation problems.” Problems with a larger number of parameters, and which will
often require the application of stabilizing constraints, will be referred to as “inverse
problems.” A key aspect of many inverse problems is that they are ill-conditioned in a
sense that will be discussed later in this chapter. In both parameter estimation and inverse
problems we solve for a set of parameters that characterize a model, and a key point of
this text is that the treatment of all such problems can be sufficiently generalized so
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that the distinction is largely irrelevant. In practice, what is important is the distinction
between ill-conditioned and well-conditioned parameter estimation problems.

A type of mathematical model for which many useful results exist is the class of
linear systems. Linear systems obey superposition

G(my +m2) = G(m1) + G(my) (1.5)
and scaling
G(am) = aG(m). (1.6)

In the case of a discrete linear inverse problem, (1.4) can always be written in the form
of a linear system of algebraic equations (see Exercise 1.1).

G(m) =Gm =d. (1.7)

In a continuous linear inverse problem, G can often be expressed as a linear integral
operator, where (1.1) has the form

b

/ g(x, §)m(§)dg = d(x) (1.8)

a

and the function g(x, &) is called the kernel. The linearity of (1.8) is easily seen because

b b

b
/g(X, &) (m1(§) + ma(§))ds Z/g(x» $)m1($)d€+/ g(x, §)ma(x)ds  (1.9)

a a

and

b b

/g(x, §am(§)dg =« /g(x, E)m(§)ds. (1.10)

a a

Equations in the form of (1.8), where m(x) is the unknown, are called Fredholm inte-
gral equations of the first kind (IFK). [FKs arise in a surprisingly large number of
inverse problems. A key characteristic of these equations is that they have mathematical
properties which make it difficult to obtain useful solutions by straightforward methods.

In many cases the kernel in (1.8) can be written to depend explicitly on x—§,
producing a convolution equation,

o0

[ - em@is = aco. (111)

—00
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Here we have written the interval of integration as extending from minus infinity to plus
infinity, but other intervals can easily be accommodated by having g(x — &) = 0 outside
of the interval of interest. When a forward problem has the form of (1.11), determining
d(x) from m(x) is called convolution, and the inverse problem of determining m(x)
from d(x) is called deconvolution.

Another IFK arises in the problem of inverting a Fourier transform

o0

d(f) = f e G (x) dx (1.12)

—0o0

(where 1 is »/—1) to obtain ¢ (x). Although there are many tables and analytic methods
of obtaining Fourier transforms and their inverses, numerical estimates of ¢ (x) may be
of interest, such as where there is no analytic inverse, or where we wish to estimate ¢ (x)
from spectral data collected at discrete frequencies.

It is an intriguing question as to why linearity appears in many interesting physical
problems. A principal reason is that many such systems are associated with only small
departures from equilibrium. One important geophysical example is seismic wave propa-
gation, where the stresses associated with elastic fields are often very small relative to the
elastic moduli of the medium. This situation leads to small strains and to a very nearly
linear stress—strain relationship. Because of this, seismic wave field problems in many
useful circumstances obey superposition and scaling. Other fields such as gravity and
magnetism, at field strengths typically encountered in geophysics, also show effectively
linear physics.

Because many important inverse problems are linear, and because linear theory is a
key component in solving nonlinear problems, Chapters 2 through 8 of this book cover
theory and methods for the solution of linear inverse problems. Nonlinear mathematical
models arise when the parameters of interest have an inherently nonlinear relationship to
the observables. This situation commonly occurs, for example, in electromagnetic field
problems where we wish to relate geometric model parameters such as layer thicknesses
to observed field properties. We discuss methods for nonlinear parameter estimation and
inverse problems in Chapters 9 and 10, respectively.

1.2. EXAMPLES OF PARAMETER ESTIMATION PROBLEMS
®
Example 1.1

A canonical parameter estimation problem is the fitting of a function, defined by a collec-
tion of parameters, to a data set. In cases where this function fitting procedure can be cast
as a linear inverse problem, the procedure is referred to as linear regression. An ancient
example of linear regression is the characterization of a ballistic trajectory. In a basic take
on this problem, the data, y, are altitude observations of a ballistic body at a set of times t
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./ Data points
y )

t

Figure 1.1 The parabolic trajectory problem.

(Figure 1.1). We wish to solve for a model, m, that contains the initial altitude (m1), ini-
tial vertical velocity (my), and eftective gravitational acceleration (m3) experienced by the
body during its trajectory. This and related problems are naturally of practical interest in
aeronautics and weaponry, but are also of fundamental geophysical interest, for example,
in absolute gravity meters capable of estimating ¢ from the acceleration of a falling object
in a vacuum to accuracies on the order of one part in 10° [91].

The mathematical model is a quadratic function in the (¢, y) plane

y(O) = my +mat — (1/2)m3r (1.13)

that we expect to apply at all times along the trajectory, not just at the times # when we
happen to have observations. The data will consist of m observations of the height of
the body y; at corresponding times f;. Assuming that the ¢ are measured precisely, and
applying (1.13) to each observation, we obtain a system of equations with m rows and
n =3 columns that relates the data y; to the model parameters, m;

1.27] _

1 n —3f "
1.2

L =36 | [y Y2

1 65 =38 |m|=|r] (1.14)
. ms .

_1 I _%ti_ V]

Although the mathematical model of (1.13) is quadratic, the equations for the three
parameters m; in (1.14) are linear, so solving for m = [mq, mo, M3]T is a linear parameter
estimation problem.

If there are more data points than model parameters in (1.14) (m > n), then the m
constraint equations in (1.14) will likely be inconsistent, and it will be impossible to find
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a model m that satisfies every equation exactly. The nonexistence of a model exactly
satisfying the observations in such a case can be seen geometrically because no parabola
will exist that goes through all of the (¢, y;) points (Exercise 1.2). Such a situation could
arise in practice because of noise in the determinations of the y;, and/or because the
forward model of (1.13) is approximate. For example, we have neglected the physics
of atmospheric drag, so a true trajectory will not be exactly parabolic and thus exactly
modeled by (1.13).

In elementary linear algebra, where an exact solution is typically expected for a
system of linear equations, we might throw up our hands at this point and simply state
that no solution exists. However, useful solutions to such systems may be found in
practice by solving for model parameters that satisfy the data in an approximate, or
“best-fit,” sense.

A reasonable approach to finding the “best” approximate solution to an inconsistent
system of linear equations is to find an m that minimizes some misfit measure, calculated
from the differences between the observations and the theoretical predictions of the
forward problem, commonly called residuals. A traditional and very widely applied
strategy is to find the model that minimizes the 2-norm (Euclidean length) of the
residual vector

m

ly—Gml2= | ) (i — (Gm))>. (1.15)
i=1

However, (1.15) is not the only, or necessarily the best, misfit measure that can be
applied to approximate solve systems of equations. An alternative misfit measure that is
superior in many situations is the 1-norm

m
ly = Gmlly =) |yi— (Gm)]. (1.16)
i=1

We shall see in Chapter 2 that a solution that minimizes (1.16) is less sensitive to data
points that are wildly discordant with the mathematical model than one that minimizes
(1.15). Solution techniques that are resistant to such data outliers are called robust
estimation procedures.

®
Example 1.2

A classic nonlinear parameter estimation problem in geophysics is determining the space
and time coordinates of an earthquake nucleation, the hypocenter, which is specified by
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Seismographs

Seismic
ray paths

Earthquake
hypocenter

Figure 1.2 The earthquake location problem.

the four-vector

_ |
m= |:T] (1.17)

where & is the three-dimensional earthquake location and the fourth element, 7, is
the earthquake origin time (Figure 1.2). The hypocenter model we seek best fits a
vector of seismic phase arrival times, t, observed at an m-station seismic network. The
mathematical model is

G(m) =t (1.18)

where G models the physics of seismic wave propagation to map a hypocenter into a
vector of predicted seismic arrival times at m stations. G depends on the seismic velocity
structure, v(x), which we assume here to be known.

The earthquake location problem is nonlinear even if v(x) is a constant, ¢. In this
case, all of the ray paths in Figure 1.2 would be straight, and the arrival time of the
seismic signal at station i would be

S. . —
st

i

(1.19)
C

where the ith column of the matrix S, S.;, specifies the coordinates for station i. Equa-
tion (1.19) is nonlinear with respect to the spatial parameters & in m, and thus the
problem cannot be expressed as a linear system of equations.

In a few special cases, a change of variables can convert a nonlinear problem to a
linear one. More generally, nonlinear parameter estimation problems can often be solved
by choosing a starting model and then iteratively improving it until a good solution is
obtained. General methods for solving nonlinear parameter estimation problems are
discussed in Chapter 9.
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1.3. EXAMPLES OF INVERSE PROBLEMS
®
Example 1.3

In vertical seismic profiling, we wish to know the vertical seismic velocity of the
material surrounding a borehole. A downward-propagating seismic wavefront is gener-
ated at the surface by a source, and seismic waves are sensed by a string of seismometers
in the borehole (Figure 1.3).

The arrival times of the seismic wavefront at each instrument, which reflects the
seismic velocity for vertically traveling waves as a function of depth, are measured from
the recorded seismograms. The problem is nonlinear if it is expressed in terms of seismic
velocities. However, we can linearize this problem via a simple change of variables where
we parameterize the seismic structure in terms of slowness, s(z), the reciprocal of the
velocity v(z). The observed travel time at depth z can then be expressed as the definite
integral of the vertical slowness, s, from the surface to z:

z

(2) = / o(E)de (1.20)
0

- / SE)H (= — £)dt (1.21)
0

where the kernel function H is the Heaviside step function, which is equal to one
when its argument is nonnegative and zero when its argument is negative. The explicit
dependence of the kernel on z — & shows that (1.21) is a convolution.

Source

o

N

Propagating - -
wavefront

- Medium with vertical
. slowness s(2)

Borehole with seismic sensors /.-

Figure 1.3 The vertical seismic profiling problem.
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In theory, we can solve (1.21) quite easily because, by the fundamental theorem of
calculus,

s(z) = . (1.22)

In practice, simply differentiating the observations to obtain a solution may not be useful.
This is because there will generally be noise present in the observed times f(z), and
applying (1.22) may result in a solution that includes unphysical values of s(z) or other
unrealistic model features.

®
Example 1.4

A further instructive linear inverse problem is the inversion of a vertical gravity anomaly,
d(x), observed at some height, &, to estimate an unknown buried line mass density
distribution deviation from a background model, m(x) = Ap(x) (Figure 1.4). The
mathematical model for this problem can be written as an IFK, because the data
are a superposition of the vertical gravity contributions from the differential elements
comprising the line mass

T h
d(x) =T _ [O T (&) dE (1.23)
- / ol& — x)m(E)de (1.24

where I' is Newton’s gravitational constant. Note that the kernel has the form g(§ — x),
and (1.24) is thus a convolution. Because the kernel is a smooth function, d(x) will be
a smoothed and scaled transformation of m(x). Conversely, solutions for m(x) will be a

NAANNNNN\N N Ap(x)

Figure 1.4 A linear inverse problem: determine the density deviation of a buried line mass, Ap(x),
relative to a background model, from gravity anomaly observations d(x).
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roughened transformation of d(x). For this reason we again need to be wary of possibly
severe deleterious effects of noise in the data.

@
Example 1.5

Consider a variation on Example 1.4, where the depth of the line density perturbation
varies, rather than the density contrast. The gravity anomaly is now attributable to a
variation in the burial depth, m(x) = h(x), of an assumed known density perturbation,
Ap (Figure 1.5). The physics is the same as in Example 1.4, so the data are still given
by the superposition of density perturbation contributions to the gravitational anomaly
field, but the mathematical model now takes the form

o0

é)
dx) =T / " Apde. 1.25
i (& — 22 +nm2())"? o 129

—0o0

This problem is nonlinear in m(x) because (1.25) does not follow the superposition and
scaling rules (1.5) and (1.6).

Nonlinear inverse problems are generally significantly more difficult to solve than
linear ones. In special cases, they may be solvable by coordinate transformations that
globally linearize the problem or by other clever special-case methods. In other cases,
the problem cannot be globally linearized, so nonlinear optimization techniques must
be applied. The essential differences in the treatment of linear and nonlinear problems
arise because, as we shall see, all linear problems can be generalized to be the “same”
in an important sense, so that a single set of solution methods can be applied to all. In
contrast, nonlinear problems tend to be nonlinear in mathematically different ways and

Figure 1.5 A nonlinear inverse problem: determine the depth to a buried line mass density anomaly
h(x) from observed gravity anomaly observations d(x).
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either require specific strategies or, more commonly, can by solved by iterative methods
that may rely on local linearization.

®
Example 1.6

A classic pedagogical inverse problem is an experiment in which an angular distribution
of illumination passes through a thin slit and produces a diffraction pattern, for which
the intensity is observed (Figure 1.6; [141]).

The data, d(s), are measurements of diffracted light intensity as a function of the
outgoing angle —7/2 < s < /2. Our goal is to find the intensity of the incident light
on the slit, m(@), as a function of the incoming angle —m/2 <0 <7 /2.

The forward problem relating d and m can be expressed as the linear mathematical

model,
" in(7 (sin(s) +sin(9))) \
_ 5> [ sin(7 (sin(s) + sin
d(s) = /(cos(5)+cos(9)) ( GG +sn (@) ) m(6)do. (1.26)
—/2
@
Example 1.7

Consider the problem of recovering the history of groundwater pollution at a source
site from later measurements of the contamination at downstream wells to which the
contaminant plume has been transported by advection and diftusion (Figure 1.7). This

Figure 1.6 The Shaw diffraction intensity problem (1.26).
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Figure 1.7 The contaminant plume source history reconstruction problem.

“source history reconstruction problem” has been considered by a number of authors
[117, 144, 145].

The mathematical model for contaminant transport is an advection—diffusion
equation

aC 92C  aC
=D —y—
ot x> 0x

C(0, ) = Ciu(0)

(1.27)

C(x,t) > 0 as x > o0

where D is the diffusion coefficient and v is the velocity of groundwater flow. The
solution to (1.27) at time T is the convolution

T

Clx, T) = f Cin(Of (x, T — 0)dt, (1.28)

0

where C;, (1) is the time history of contaminant injection at x = 0, and the kernel is

x _ L1012

fle, T—f) = ————e DT (1.29)

2/ D(T — )3

@
Example 1.8

An important and instructive inverse problem is tomography, from the Greek roots
fomos, “‘to section” or “to cut” (the ancient concept of an afom was that of an irreducible,
uncuttable object) and graphein, “to write.” Tomography is the general technique of
determining models that are consistent with path-integrated properties such as attenu-
ation (e.g., X-ray, radar, muon, seismic), travel time (e.g., electromagnetic, seismic, or
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acoustic), or source intensity (e.g., positron emission). Here, we will use examples from
seismic tomography. Although tomography problems originally involved determining
models that were two-dimensional slices of three-dimensional objects, the term is now
commonly used in situations where the model is two- or three-dimensional. Tomog-
raphy has many applications in medicine, engineering, acoustics, and Earth science.
One important geophysical example is cross-well tomography, where seismic sources
are installed in a borehole, and the signals are received by sensors in another borehole.
Another example is joint earthquake location/velocity structure inversion carried out
on scales ranging from a fraction of a cubic kilometer to global [158, 159, 160].

The physical model for tomography in its most basic form (Figure 1.8) assumes that
geometric ray theory (essentially the high-frequency limiting case of the wave equation)
is valid, so that wave energy traveling between a source and receiver can be considered to
be propagating along infinitesimally narrow ray paths. The density of ray path coverage
in a tomographic problem may vary significantly throughout a section or volume, and
provide much better constraints on physical properties in densely sampled regions than
in sparsely sampled ones.

In seismic tomography, if the slowness at a point x 1s s(x), and the ray path £ is
known, then the travel time for seismic energy transiting along that ray path is given by
the line integral along £

t:/ s(x(h))dl. (1.30)

14

ﬂ) Sources

Receivers

|

Unknown
internal
structure

Figure 1.8 Conceptual depiction of ray path tomography. Sources and receivers may, in general, be
either at the edges or within the volume, and ray paths may be either straight, as depicted, or curved.
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Note that (1.30) is just a higher-dimensional generalization of (1.21), the forward prob-
lem for the vertical seismic profiling example. In general, seismic ray paths will be
bent due to refraction and/or reflection. In cases where such effects are negligible, ray
paths can be usefully approximated as straight lines (e.g., as depicted in Figure 1.8),
and the forward and inverse problems can be cast in a linear form. However, if the ray
paths are significantly bent by slowness variations, the resulting inverse problem will be
nonlinear.

1.4. DISCRETIZING INTEGRAL EQUATIONS

Consider problems of the form
b

d(x)=/g(x, E)m(§)ds. (1.31)

a

Here d(x) is a known function, typically representing observed data. The kernel g(x, &)
is considered to be given, and encodes the physics relating an unknown model m(x)
to observed data d(s). The interval [a, b] may be finite or infinite. The function d(x)
might in theory be known over an entire interval, but in practice we will only have
measurements of d(x) at a finite set of points.

We wish to solve for m(x). This type of linear equation is called a Fredholm inte-
gral equation of the first kind, or IFK. A surprisingly large number of inverse prob-
lems, including all of the examples from the previous section, can be written as IFKs.
Unfortunately, IFKs have properties that can make them very challenging to solve.

To obtain useful numerical solutions to IFKs, we will frequently discretize them into
forms that are tractably solvable using the methods of linear algebra. We first assume
that d(x) is known at a finite number of points x1, x3, . . . , x;,,. We can then write the
forward problem as

b

di=d(x;) = / o(x;, E)ym&)ds i=1,2,...,m (1.32)
or as
b
d; = f gimx)dx i=1,2,...,m, (1.33)

where g;(x) = g(x;, §). The functions g;(t) are referred to as representers or data
kernels.
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Discretizing Integral Equations

Here, we will apply a quadrature rule to approximate (1.33) numerically. Note
that, although quadrature methods are applied in this section to linear integral equations,
they also have utility in the discretization of nonlinear problems. The simplest quadrature
approach is the midpoint rule, where we divide the interval [a, b] into # subintervals,

and pick points x1, x2, . . ., x, in the middle of each interval. The points are given by
Ax )
xj=a+7+(]—l)Ax (1.34)
where
b—a
Ax = . (1.35)
n

The integral (1.33) is then approximated by (Figure 1.9):

b

di= f gi(x)m(x)dx ~ Zgi(xj)m(xj)Ax, i=1,2,...,m (1.36)
a J=1
If we let
Gij = gi(x) Ax (;z 1 g r) (€37
and
mi=m(x;) j=1,2,...,n (1.38)

then we obtain a linear system of equations Gm = d.

The approach of using the midpoint rule to approximate the integral is known as
simple collocation. Of course, there are also more sophisticated quadrature rules for
numerically approximating integrals (e.g., the trapezoidal rule, or Simpson’s rule). In
each case, we end up with an m by n linear system of equations, but the formulas for
evaluating the elements of G will be different.

Figure 1.9 Grid for the midpoint rule.
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@
Example 1.9

Consider vertical seismic profiling (Example 1.3), where we wish to estimate vertical
seismic slowness using travel time measurements of downward propagating seismic waves
(Figure 1.10). We discretize the forward problem (1.21) for m travel time data points, f;,
and n model depths, z;, spaced at constant intervals of Az. This discretization is depicted
in Figure 1.10.

The discretized problem has

n
(= Hli—2)sAz, (1.39)
j=1

where n/m = Ay/Az is an integer. The rows, G;., of the matrix each consist of i - n/m
elements equal to Az on the left and n— (i- n/m) zeros on the right. Forn =m, G is a
lower triangular matrix with each nonzero entry equal to Az.

@
Example 1.10

To discretize the Shaw problem (1.26), we apply the method of simple collocation with
m and n intervals for the data and model functions, respectively. We additionally define

Source
. O
z - .S v L
e . Y1'——~X ‘P S
se F ropagatmg_,
v, —4— v . wavefront -
. 1 s .
-
° e - e
: L e o Interval .-
Sensor .~ ¢ || e slownesses,s;
locations, y, . _Q ... = .
T+
sﬂ
ym;'—v '

Figure 1.10 Discretization of the vertical seismic profiling problem (n = 2m) into uniform intervals.
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the data and model points at m and n equally spaced respective angles given by

(i—-05)nm mwm
ssi=——————— i=1,2,...,m (1.40)
m 2
and
—05)mr m
6= U0 Ty (1.41)
n 2

Correspondingly, discretizing the data and model into m- and n-length vectors
d=d() i=1,2,...,m (1.42)
and
mi=m®) j=1,2,...,n (1.43)

leads to a discrete linear system Gm = d, where

o , 2 ((sin(@(sin(s) +sin(6)) 2
(o = (s e ( 7 (sin(s) 1 sin(6) ) A
and
no=" (1.45)
n
[

Example 1.11

We discretize the advection—diftusion problem (1.27), assuming that the parameters D
and v in (1.29) are known. We wish to estimate C;,(¢) from simultaneous concentration
observations at the locations x; at some later time T'. The convolution (1.28) for C(x, T)
is discretized as

d=Gm (1.46)

where d is a vector of sampled concentrations at different well locations, x, at time T,
m is a vector of Cj, values to be estimated, and

Gl}i =f(xj, T— tj)At (1.47)

xi Lyi—o(T—1)]? At

R — (1.48)

o2 faD(T - Nk
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@
Example 1.12

A common way of discretizing the model in a tomographic problem is as uniform blocks

(Figure 1.11). This approach is essentially applying the midpoint rule to the travel-time

forward problem (1.30).

In this parameterization, the elements of G are just the lengths of the ray paths within

corresponding blocks. Consider the example of Figure 1.11, where nine homogeneous

blocks with sides of unit length and unknown slowness are crossed by eight ray paths.

For straight ray paths, we map the two-dimensional slowness grid to a model vector

using a row-by-row indexing convention. The constraint equations in the mathematical

model are then

= [s11]
51,2
51,3
2.1
2.2
2,3
3.1
53,2

(e») O O = O O =
S

Gm =

SO O O = OO O -
SO O O = O = OO
SO O —m,) O OO O -
SO O —m,) O O O = O

— —
SG-ee-oe

O O OO = = O O
(e») O = O O = O
S

SO O OO = O = O

$3,3_]

f
o)
13
t4
t5
fe
t7
f8

(1.49)

Because there are nine unknown parameters s;; in the model, but only eight con-

straints, the G matrix is clearly rank deficient. In fact, rank(G) is only seven. In addition,

1 1 1
! ! !
N I I I
N 1 1
N I I
Ay 2 3 Ly,
N | |
1 N 1 1
1 AN 1 1
1 N 1
1 > ! 1
___211__:____ 2_!_2_;:\_____2:.?2_:____ - tS
| Y I P2
I I I
I I ~ I 4
1 1 N7
1 1 N
__§L1__:____ %!_2_.:____53!_:‘,1\_/\'4\’___ > 1y
| | AN
1 1 7z 1 N
Y 2 Y Y
ty t ts t7

Figure 1.11 Discretization of a tomography problem into uniform blocks. Ray paths correspond to the

constraint equations in (1.49).
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there is clearly redundant information in (1.49), in that the slowness 53 3 is completely

determined by fg, yet s3 3 also influences the observations f3, t, and #7.

1.5. WHY INVERSE PROBLEMS ARE DIFFICULT

Scientists and engineers need to be concerned with far more than simply finding mathe-

matically acceptable answers to parameter estimation and inverse problems. One reason is
that there may be many models that adequately fit the data. It is essential to characterize
just what solution has been obtained, how “good” it is in terms of physical plausibility, its

ability to predict the data, and perhaps how consistent it is with other constraints. Essen-

tial issues that must be considered include solution existence, solution uniqueness,
and instability of the solution process.

1.

Existence. There may be no model that exactly fits the data. This can occur in practice
because the mathematical model of the system’s physics is approximate (or perhaps
simply incorrect) or because the data contain noise.

Uniqueness. 1f exact solutions do exist, they may not be unique, even for an infi-
nite number of exact data points. That is, there may be other solutions besides mye
that exactly satisfy G(m) = dirye. This situation commonly occurs in potential field
problems. A classic example is the external gravitational field from a spherically sym-
metric mass distribution, which depends only on the total mass, and not on the radial
density distribution.

Nonuniqueness is a characteristic of rank deficient discrete linear inverse prob-
lems because the matrix G in this case has a nontrivial null space. In linear inverse
problems, models (myg) that lie in the null space of G are solutions to Gmg = 0. By
superposition, any linear combination of these null space models can be added
to a particular model that satisfies (1.7) and not change the fit to the data. There
are thus an infinite number of mathematically acceptable models in such situations.
In practical terms, suppose that there exists a nonzero model myg that results in an
instrument reading of zero. We cannot discriminate this situation from the situation
where my is truly zero.

An important and thorny issue with problems that have nonunique solutions is
that an estimated model may be significantly smoothed or otherwise biased relative
to the true situation. Characterizing such bias is essential to interpreting models in
terms of their possible correspondence to reality. This issue falls under the general
topic of model resolution analysis.

Instability. The process of computing an inverse solution can be, and often is,
extremely unstable in that a small change in measurement (e.g., a small 7 in (1.3))
can lead to an enormous change in the estimated model. Inverse problems where this
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situation arises are referred to as ill-posed in the case of continuous systems, or ill-
conditioned in the case of discrete linear systems. A key point is that it is commonly
possible to stabilize the inversion process by imposing additional constraints that bias
the solution, a process that is generally referred to as regularization. Regulariza-
tion is frequently essential to producing a usable solution to an otherwise intractable
ill-posed or ill-conditioned inverse problem.

To examine existence, uniqueness, and instability issues, let us consider some simple

mathematical examples using an IFK,

1

f g(x, &)m(§)d§ = y(x). (1.50)

0

First, consider the trivial case where the kernel is a constant, such as

gx, & =1, (1.51)
which produces the integral equation

1

/ m(E)dE = y(x). (1.52)

0

Because the left-hand side of (1.52) is independent of x, this system has no solution
unless y(x) is a constant. Thus, there are an infinite number of mathematically conceiv-
able data sets y(x) that are not constant and for which no exact solution exists. This is a
simple illustration of a solution existence issue.

Where a solution to (1.52) does exist, the solution is nonunique because there are an
infinite number of functions that, when integrated over the unit interval, produce the
same constant and thus satisfy the IFK exactly. This demonstrates a uniqueness issue.

A more subtle example of nonuniqueness can be seen for

g(x, §) =x-sin(m§) (1.53)
in (1.50), so that the IFK becomes

1

/ x-sin(m&)m(§)dé = y(x). (1.54)

0
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The functions sin(krx) for integer values of k are orthogonal in the sense that

1 1
1
/ sin(kmx) sin(lmx)dx = —3 / cos(mm(k+ Dx) — cos(m(k— Dx)dx =
0 0
1 (sin(m(k+1) sin(m(k—1))
- — =0 (k#Zxl k [#£0). 1.55
2 ( k+1 k—1 (k7 70) (1.53)
Thus, in (1.54), for models of the form m(x) =sin(kmrx), for k=+£2, £3, ..., we
have
1 1
/g(x, E)m(§)ds = / 8(x, §) sin(k§)dé = 0. (1.56)
0 0
Furthermore, because (1.54) is a linear system, we can add any function of the form
o0
mo(x) = Z o sin(km x) (1.57)
k=2

to a solution, m(x), and obtain a new model that fits the data equally well.

1 1

1
/ s SIn(GTE) (m(E) + mo(§))de = f - sin(rE)m(E)dE + f s sin(TE)mo (8)d8
0 0 0

1

=/ x-sin(mw&)m(§)dE 4 0. (1.58)
0

There are thus an infinite number of very different solutions that fit the data equally
well.

Finally, even if we do not encounter existence or uniqueness issues, instability is a
fundamental feature of IFKs. It can be shown that, in the limit as k goes to infinity,

lim f o(x, &) sin kT&dE =0 (1.59)

for all square-integrable functions g(x, £). This result is known as the Riemann-
Lebesgue lemma [134]. Examining (1.59) in more detail, we can better understand
why this occurs. The oscillatory sine function is smoothed by integration with the kernel
9(&, x). For sufficiently large values of the sine frequency, k, the positive and negative
excursions of the sine function will average out to zero. The inverse problem has this
situation reversed, so that an inferred model can be extremely sensitive to small changes
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in the data. If such small data changes are created by random noise that has nothing to
do with the physical system that we are studying, then an inferred model from solving
an inverse problem to fit this noise can easily have essentially no correspondence to the
true model.

The unstable character of IFK solutions is similar to the situation encountered in
solving linear systems of equations where the condition number of the matrix is very
large, or equivalently, where the matrix is nearly singular. In both cases, the difficulty
lies in the mathematical model itself, and not in the particular algorithm used to solve
the problem. Fundamentally, most inverse problems are ill-posed.

1.6. EXERCISES

1. Consider a mathematical model of the form G(m) = d, where m is a vector of
length n, and d is a vector of length m. Suppose that the model obeys the superposi-
tion and scaling laws and is thus linear. Show that G(m) can be written in the form

G(m) =Tm (1.60)

where T is an m by n matrix. What are the elements of I'? Hint: Consider the
standard basis, and write m as a linear combination of the vectors in the stan-
dard basis. Apply the superposition and scaling laws. Finally, recall the definition
of matrix-vector multiplication.
2. Can (1.14) be inconsistent, even with only m = 3 data points? How about just m = 2
data points? If the system can be inconsistent, give an example. If not, explain why.
3. Consider the borehole vertical seismic profile problem of Examples 1.3 and 1.9 for
n =100 equally spaced seismic sensors located at depths of z = 0.2, 0.4, . . ., 20 m,
and for a model m describing n corresponding equal-length seismic slowness values
for 0.2 m intervals having midpoints at z — 0.1 m.
a. Calculate the appropriate system matrix, G, for discretizing the integral equation
(1.21) using the midpoint rule.
b. For a seismic velocity model having a linear depth gradient specified by

v =y + kz, (1.61)

where the velocity at z =0 is vp = 1 km/s and the gradient is k =40 m/s per
m, calculate the true slowness values, My, at the midpoints of the n intervals.
Integrate the corresponding slowness function for (1.61) using (1.21) to calculate
a noiseless synthetic data vector, d, of predicted seismic travel times at the sensor
depths.

c. Solve for the slowness, m, as a function of depth using your G matrix and ana-
Iytically calculated noiseless travel times using the MATLAB backslash operator.
Compare your result graphically with mye.
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d. Generate a noisy travel time vector where independent normally distributed noise
with a standard deviation of 0.05 ms is added to the elements of d. Resolve the
system for m and again compare your result graphically with myy.. How has the
model changed?

e. Repeat the problem, but for just n =4 sensor depths and corresponding equal
length slowness intervals. Is the recovery of the true model improved? Explain in
terms of the condition numbers of your G matrices.

4. Find a journal article that discusses the solution of an inverse problem in a discipline
of special interest to you. What are the data? Are the data discrete or continuous?
Have the authors discussed possible sources of noise in the data? What is the model?
Is the model continuous or discrete? What physical laws determine the forward
operator G? Is G linear or nonlinear? Do the authors discuss any issues associated
with existence, uniqueness, or instability of solutions?

1.7. NOTES AND FURTHER READING

Some important references on inverse problems in geophysics and remote sensing
include [28, 60, 99, 126, 166]. Instructive examples of ill-posed problems and their solu-
tions can be found in the book edited by Tikhonov and Goncharsky [162]. More mathe-
matically oriented references on inverse problems include [8, 45, 59, 65, 67, 90, 94, 108,
112, 155, 161]. Tomography, particularly in medical imaging and seismology, is a very
large field. Some general references on tomography are [70, 79, 84, 98, 100, 114, 121].
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CHAPTERTWO

Linear Regression

Synopsis

Linear regression is introduced as a parameter estimation problem, and least squares solu-
tions are derived. Maximum likelihood is defined, and its association with least squares
solutions under normally distributed data errors is demonstrated. Statistical tests based
on x? that provide insight into least squares solutions are discussed. The mapping of data
errors into model errors in the context of least squares is described. The determination
of confidence intervals using the model covariance matrix and the meaning of model
parameter correlations is discussed. The problems of estimating unknown data standard
deviations and recognizing proportional data errors are addressed. The issue of data out-
liers and the concept of robust estimation are introduced, and 1-norm minimization
is introduced as a robust estimation technique. General propagation of errors between
data and model using Monte Carlo methods is discussed in the context of the iteratively
reweighted least squares 1-norm minimization algorithm.

2.1. INTRODUCTION TO LINEAR REGRESSION

The problem of finding a parameterized curve that approximately fits a set of data is
referred to as regression. When the regression model is linear in the fitted parameters,
then we have a linear regression problem. In this chapter, linear regression problems
are analyzed as discrete linear inverse problems.

Consider a discrete linear inverse problem. We begin with a data vector, d, of m obser-
vations, and a vector, m, of n model parameters that we wish to determine. The forward
problem can be expressed as a linear system of equations using an m by n matrix G

Gm=d. (2.1)

Recall that if rank(G) = n, then the matrix has full column rank. In this chapter we
will assume that the matrix G has full column rank. In Chapter 3 we will consider rank
deficient problems.

For a full column rank matrix, it is frequently the case that there is no solution m that
satisfies (2.1) exactly. This happens because the dimension of the range of G is smaller
than m and a noisy data vector, d, will generally lie outside of the range of G (d will lie
in R" for typical noise scenarios).

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00002-1
(© 2013 Elsevier Inc. All rights reserved.
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A useful approximate solution may still be found by finding a particular model m that
minimizes some measure of the misfit between the actual data and Gm. The residual
vector is the vector of differences between observed data and corresponding model
predictions

r=d—Gm. (2.2)

and the elements of r are frequently referred to simply as residuals. One commonly used
measure of the misfit is the 2-norm of the residual vector, and a model that minimizes
this 2-norm is called a least squares solution. The least squares or 2-norm solution is
of special interest both because it is readily amenable to analysis and geometric intuition,
and because it turns out to be statistically the most likely solution if data errors are
normally distributed.

The least squares solution is, from the normal equations (A.73),

mp, =(G'G)"'GTd. (2.3)

It can be shown that if G is of full column rank, then (GTG) ™! exists (Exercise A.13f).
A classic linear regression problem is finding parameters mq and my for a line, y; =
m1 4 myx;, that best fits a set of m > 2 data points. The system of equations in this case is

1 x d
1 x do
. mo .

_1 Xm_] L dy |

where the d; are observations of y at each corresponding position x;. Applying (2.3) to
the G and m specified in (2.4) gives the least squares solution

mp, =(G'G)"'G"d (2.5)
—1 d1

)

dm

| —|
=2~
—_

—_

- -1
| m Dy X disy di
DRI doiny xid;

m 2 m m
_ 1 s %~ iy x| | 2z di
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2.2, STATISTICAL ASPECTS OF LEAST SQUARES

If we consider data points to be imperfect measurements that include random errors,
then we are faced with the problem of finding the solution that is best from a statistical
point of view. One approach, maximum likelihood estimation, considers the ques-
tion from the following perspective. Given that we observed a particular data set, that we
know the statistical characteristics of these observations, and that we have a mathematical
model for the forward problem, what is the model from which these observations would
most likely arise?

Maximum likelihood estimation is a general method that can be applied to any
estimation problem where a joint probability density function (B.26) can be assigned to
the observations. The essential problem is to find the most likely model, as characterized
by the elements of the parameter vector m, for the set of observations contained in the
vector d. We will assume that the observations are independent so that we can use the
product form of the joint probability density function (B.28).

Given a model m, we have a probability density function f;(d;|m) for each of the
observations. In general, these probability density functions will vary depending on m,
so probability densities are conditional on m. The joint probability density for a vector
of independent observations d will be

S(dim) =fi(di|m) - fo(d2|m) - - - f(dyu[m). (2.6)

Note that the f(d;|m) are probability densities, not probabilities. We can only com-
pute the probability of observing data in some range for a given model m by integrating
f(d|m) over that range. In fact, the probability of getting any particular set of data
exactly is precisely zero! This conceptual conundrum can be resolved by considering
the probability of getting a data set that lies within a small m-dimensional box around
a particular data set d. This probability will be nearly proportional to the probability
density f(d|m).

In practice, we measure a particular data vector and wish to find the “best” model to
match it in the maximum likelihood sense. That is, d will be a fixed set of observations,
and m will be a vector of parameters to be estimated. The likelihood function, L, is
the probability of m given an observed d, which is identical to (2.6), the joint probability
density function of d given m

L(m|d) =f(d|m). (2.7)

For many possible models, m, (2.7) will be extremely close to zero because such models
would be extremely unlikely to produce the observed data set d. The likelihood would
be much larger for any models that, conversely, would be relatively likely to produce the
observed data. According to the maximum likelihood principle we should select the
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model m that maximizes the likelihood function (2.7). Model estimates obtained in this
manner have many desirable statistical properties [29, 40].

It is particularly insightful that when we have a discrete linear inverse problem and
the data errors are independent and normally distributed, then the maximum likelihood
principle solution is the least squares solution. To show this, assume that the data have
independent random errors that are normally distributed with expected value zero, and
where the standard deviation of the ith observation, d;, is 0;. The probability density for
d; then takes the form of (B.6),

fi(dijm) = o3 (di=(Gm))* /o] 2.8)

1
o 21

The likelihood function for the complete data set is the product of the individual
likelihoods,

m

1 1 2, 2
_ —3(d—(Gm);)?/o;
Lmld) = o ]1 ¢ : (2.9)

The constant factor does not affect the maximization of L, so we can solve

m
max l_[ ¢~ 2 [im(Gm))* P (2.10)
i=1

The natural logarithm is a monotonically increasing function, so we can equivalently
solve

m

m 2
~Ldi—(Gm))*/o? _ 1 (d; — (Gm),)
max log 1_[ e 2 = max > Z — 2 | (2.11)

i=1 i=1 !

Finally, if we turn the maximization into a minimization by changing sign and ignore
the constant factor of 1/2, the problem becomes

m

L N2
min Y i = (Gm),)” (2.12)

2
i=1 o
Aside from the distinct 1/ O'l-2 factors in each term of the sum, this is identical to the least
squares problem for Gm = d.
To incorporate the data standard deviations into this solution, we scale the system of
equations to obtain a weighted system of equations. Let a diagonal weighting matrix be

W = diag(1/01, 1/0, . . ., 1/0om). (2.13)



2.2, Statistical Aspects of Least Squares

29

Then let

G, =WG (2.14)
and

d, =wd. (2.15)

The weighted system of equations is then

G,m=d,. (2.16)
The normal equations (A.73) solution to (2.16) is
my, = (GZ;Gw)ilGZ;dw~ (217)
Now,
m
ldw — Gump,[l3 = Y (di — (Gmy,))’ /7. (2.18)

i=1
Thus, the least squares solution to G,,m = d,, is the maximum likelihood solution.
The sum of the squares of the residuals also provides useful statistical information
about the quality of model estimates obtained with least squares. The chi-square
statistic is
m
Xaps = D _(di— (Gmy,))? [0}, (2.19)
i=1

Since ngs depends on the random measurement errors in d, it is itself a random variable.
It can be shown that under our assumptions, ngs has a x? distribution with v =m —n
degrees of freedom [29, 40].

The probability density function for the x? distribution is
%v—l

fra(x) = e /2 (2.20)

220 (v)2)"
(Figure B.4). The x? test provides a statistical assessment of the assumptions that we
used in finding the least squares solution. In this test, we compute ngs and compare it
to the theoretical x2 distribution with v = m — n degrees of freedom.

The probability of obtaining a x2 value as large or larger than the observed value
(and hence a worse misfit between data and model data predictions than that obtained)
is called the p-value of the test, and is given by

p= f Sy (x)dx. (2.21)

Xobs
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When data errors are independent and normally distributed, and the mathematical
model is correct, it can be shown that the p-value will be uniformly distributed between
zero and one (Exercise 2.4). In practice, particular p-values that are very close to either
extreme indicate that one or more of these assumptions are incorrect.

There are three general cases.

1. The p-value is not too small and not too large. Our least squares solution produces
an acceptable data fit and our statistical assumptions of data errors are consistent.
Practically, p does not actually have to be very large to be deemed marginally “accept-
able” in many cases (e.g., p &~ 1072), as truly “wrong” models will typically produce
extraordinarily small p-values (e.g., 107!?) because of the short-tailed nature of the
normal distribution.

Because the p-value will be uniformly distributed when we have a correct mathe-
matical model and our statistical data assumptions are valid, it is inappropriate to
conclude anything based on the differences between p-values in this range. For
example, one should not conclude that a p-value of 0.7 is “better” than a p-value
of 0.2.

2. The p-value is very small. We are faced with three nonexclusive possibilities, but
something is clearly wrong.

a. The data truly represent an extremely unlikely realization. This is easy to rule out
for p-values very close to zero. For example, suppose an experiment produced a
data realization where the probability of a worse fit was 10™%. If the model was
correct, then we would have to perform on the order of a billion experiments to
get a comparably poor fit to the data. It is far more likely that something else is
wrong.

b. The mathematical model Gm = d is incorrect. Most often this happens because
we have left some important aspect of the physics out of the mathematical model.

c. The data errors are underestimated or not normally distributed. In particular, we
may have underestimated the o;.

3. The p-value is very close to one. The fit of the model predictions to the data is
almost exact. We should investigate the possibility that we have overestimated the
data errors. A more sinister possibility is that a very high p-value 1s indicative of data
fraud, such as might happen if data were cooked up ahead of time to fit a particular
model!

A rule of thumb for problems with a large number of degrees of freedom, v, is
that the expected value of x? approaches v. This arises because, by the central limit
theorem (Section B.6), the x 2 random variable, which is itself a sum of random variables,
will become normally distributed as the number of terms in the sum becomes large.
The mean of the resulting distribution will approach v and the standard deviation will
approach (2v)!/2.
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In addition to examining ngs, it is important to examine the individual weighted
residuals corresponding to a model, r,,; = (d — Gm);/0; = (d,, — G,;m);. The elements
of r,, should be roughly normally distributed with standard deviation one and should
show no obvious patterns. In some cases where an incorrect model has been fitted to
the data, the residuals will reveal the nature of the modeling error. For example, in
linear regression to a line, it might be that all of the residuals are negative for small and
large values of the independent variable x but positive for intermediate values of x. This
would suggest that an additional quadratic term is required in the regression model.

Parameter estimates obtained via linear regression are linear combinations of the data
(2.17). If the data errors are normally distributed, then the parameter estimates will also
be normally distributed because a linear combination of normally distributed random
variables is normally distributed [4, 29]. To derive the mapping between data and model
covariances, consider the covariance of a data vector, d, of normally distributed, inde-
pendent random variables, operated on by a general linear transformation specified by a
matrix, A. The appropriate covariance mapping is (B.65)

Cov(Ad) = ACov(d)AT. (2.22)

The least squares solution has A = (G G,,)"'G L. The general covariance matrix of the
model parameters for a least squares solution is thus

Cov(mp,) = (G G,)'Gl Cov(d,)G,(GIG,)~". (2.23)

If the weighted data are independent, and thus have an identity covariance matrix, this
simplifies to

COV(mLz) = (GZ;GW)_1 G“’I;II‘I’IGW(GZ/—'GM')_1 = (GZ;GW)_1 . (224)

In the case of independent and identically distributed normal data errors, so that the data
covariance matrix Cov(d) is simply the variance o2 times the m by m identity matrix,
I, (2.24) can be written in terms of the unweighted system matrix as

Cov(mp,) =0*(GTG)™". (2.25)

Note that even for a diagonal data covariance matrix, the model covariance matrix
is typically not diagonal, and the model parameters are thus correlated. Because ele-
ments of least squares models are each constructed from linear combinations of the data
vector elements, this statistical dependence between the elements of m should not be
surprising.

The expected value of the least squares solution is

Elmp,] = (G G,) "G E[d,]. (2.26)
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Because E[d,,] = dgye,w, and Gymyye = dirye,w, We have

G, Gymye = G,) dirye, - 2.27)

Thus
Elmp,] = (G, Gu) ™' G| Gumgue (2.28)
= Myye- (2.29)

In statistical terms, the least squares solution is said to be unbiased.

We can compute 95% confidence intervals for individual model parameters using
the fact that each model parameter m; has a normal distribution with mean given by
the corresponding element of myy. and variance Cov(my,);;. The 95% confidence
intervals are given by

mp, 4 1.96 diag(Cov(myp,))"/?, (2.30)
where the 1.96 factor arises from
1.960
1 _ 2
/ e 202%dx =~ 0.95. (2.31)
o2
—1.960
@
Example 2.1

Let us recall Example 1.1 of linear regression of ballistic observations to a quadratic
model, where the regression model is

y(8) = my 4+ mot — (1/2)m3 . (2.32)

Here y is measured in the upward direction, and the minus sign is applied to the third
term because gravitational acceleration is downward. Consider a synthetic data set with
m = 10 observations and independent normal data errors (0 = 8 m), generated using

Myre = [10 m, 100 m/s, 9.8 m/s%]” (2.33)

(Table 2.1).
To obtain the least squares solution, we construct the G matrix. The ith row of G is
given by

Gi. =1, 4, —(1/2)¢], (2.34)

Table 2.1 Data for the ballistics example.
t(s) 1 2 3 4 5 6 7 8 9 10
y(m) 1094 1875 267.5 3319 386.1 4284 4522 498.1 5123 513.0
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so that

—0.57
—2.0
—4.5
—8.0
—12.5
—18.0
—24.5
—32.0
—40.5
—50.0 |

(2.35)

N N =N
O 0 N1 O U1 &~ LW N —

—
o

We solve for the parameters using the weighted normal equations, (2.17), to obtain a
model estimate,

mp, = [16.4 m, 97.0 m/s, 9.4 m/s?| " (2.36)

Figure 2.1 shows the observed data and the fitted curve. The model covariance matrix
associated with my, is

88.53 —33.60 —5.33
Cov(mp,) = [ —33.60 15.44 2.67 |. (2.37)
—5.33 2.67 0.48

600 T T T T T

500

400
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Figure 2.1 Data and model predictions for the ballistics example, with one standard deviation data
error bounds indicated.
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In our example, m = 10 and n = 3, so (2.30) gives the following parameter estimates
with 95% confidence intervals:

myp, = [16.424 18.44m, 96.97 +7.70m/s, 9.41 £ 1.36m/s?| ", (2.38)

The x? value for this regression is approximately 4.2, and the number of degrees of
freedomis v=m—n=10—3 =7, so the p-value, (2.21), is

)

1 5 X
= | — e 076, 2.39
r= | g i 23

4.20
which is in the realm of plausibility. This means that the fitted model is consistent with

the modeling and data uncertainty assumptions.

If we consider combinations of model parameters, the interpretation of the uncer-
tainty in the model parameters becomes more complicated. To characterize model
uncertainty more effectively, we can examine 95% confidence regions for pairs or
larger sets of parameters. When joint parameter confidence regions are projected onto
the coordinate axes, m;, we obtain intervals for parameters that may be significantly
larger than we would estimate when considering parameters individually, as in (2.38).

For a vector of estimated model parameters my, characterized by an n-dimensional
multivariate normal distribution with mean myyu. and covariance matrix C =
Cov(myp,),

(Myrye — ng)TC_l (Myrye — mLz): (240)

can be shown to have a x? distribution with 1 degrees of freedom [89]. Thus if A? is the
95th percentile of the x? distribution with n degrees of freedom, the 95% confidence
region is defined by the inequality

(Mrge — rnLg)TC_1 (Mrye — mLz) =< A2' (2.41)

The confidence region defined by this inequality is an #n-dimensional ellipsoid.

If we wish to find an error ellipsoid for a lower dimensional subset of the model
parameters, we can project the n-dimensional error ellipsoid onto the lower dimensional
subspace by taking only those rows and columns of C and elements of m that correspond
to the dimensions that we want to keep [1]. In this case, the number of degrees of
freedom in the associated A? calculation should be correspondingly reduced from n to
match the number of model parameters in the projected error ellipsoid.

Since the covariance matrix and its inverse are symmetric and positive definite, we

can diagonalize C™! using (A.77) as
c'=pPTAP, (2.42)
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where A is a diagonal matrix of positive eigenvalues and the columns of P are orthonor-
mal eigenvectors. The semiaxes defined by the columns of P and associated eigenvalues
are referred to as the principal axes of the error ellipsoid. The ith semimajor error
ellipsoid axis direction is defined by P. ; and its corresponding length is A/ \/E

Because the model covariance matrix is typically not diagonal, the principal axes are
typically not aligned in the m; axis directions. However, we can project the appropriate
confidence ellipsoid onto the m; axes to obtain a “box” that includes the entire 95%
error ellipsoid, along with some additional external volume. Such a box provides a
conservative confidence interval for a joint collection of model parameters.

Correlations for parameter pairs (m;, m;) are measures of the inclination of the error
ellipsoid with respect to the parameter axes. A correlation approaching 4+1 means the
projection is needle-like with its long principal axis having a positive slope, a zero cor-
relation means that the projection has principal axes that are aligned with the axes of the
(m;, m;) plane, and a correlation approaching —1 means that the projection is needle-like
with its long principal axis having a negative slope.

®
Example 2.2

The parameter correlations for Example 2.1 are

Cov(m;, mj)

mi,m; — 5 2.43
P Var(m;) - Var(m;) 243)
which give
Omy.my, = —0.91 (2.44)
Pmy,my = —0.81 (245)
Py = 0.97. (2.46)

The three model parameters are highly statistically dependent, and the error ellipsoid is
thus inclined in model space. Figure 2.2 shows the 95% confidence ellipsoid.

Diagonalization of C™! (2.42) shows that the directions of the semiaxes for the error
ellipsoid are

093 036 —0.03
P=[P.;, P, P3|~ |—036 090 —023], (2.47)
—0.06 023 097

with corresponding eigenvalues

[A1, A2, A3] & [0.0098, 0.4046, 104.7]. (2.48)
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Figure 2.2 Projections of the 95% error ellipsoid onto model axes. (a) Projections in perspective; (b)
projections onto the parameter axis planes.

The corresponding 95% confidence ellipsoid semiaxis lengths are

‘/F;21’3(O.95)[1/\/)T , 1/v/ A2, 1/3/A3] ~ [28.2, 4.4, 0.27] (2.49)

where F;; 3(0.95) A 7.80 is the 95th percentile of the x? distribution with three degrees
of freedom.

Projecting the 95% confidence ellipsoid defined by (2.47) and (2.49) into the
(my, mp, m3) coordinate system, and selecting maximum absolute values in the m; direc-
tions to define an ellipsoid-bounding box, we obtain 95% confidence intervals for the

parameters considered jointly,

[m1, m, m3] = [16.42 £ 26.25 m, 96.97 +10.24 m/s, 9.41 +1.65 m/s?],  (2.50)

which are appreciably broader than the single parameter confidence estimates obtained
using only the diagonal covariance matrix terms in (2.38). Note that there is actually a
greater than 95% probability that the box defined by (2.50) will include the true values
of the parameters. The reason is that these intervals, considered together as a rectangular
prism-shaped region, include a significant parameter space volume that lies outside of

the 95% confidence ellipsoid.

It is insightful to note that the model covariance matrix (2.23) does not depend
on the estimated model, but depends solely on the system matrix and data covariance.
Model covariance is thus exclusively a characteristic of experimental design that reflects



2.3. An Alternative View of the 95% Confidence Ellipsoid

37

how much influence the noise in a general data set will have on a model estimate, not on
particular data values from an individual experiment. It is essential to evaluate the p-value,
or another “goodness-of-fit” measure, in assessing a model because an examination of
the solution parameters and the covariance matrix alone does not reveal whether we are
actually fitting the data adequately.

2.3. AN ALTERNATIVE VIEW OF THE 95% CONFIDENCE ELLIPSOID

Recall (2.29) that in linear regression, the least squares solution my, for zero-mean
multivariate distributed normal data errors itself has a multivariate normal distribution
with

E[mLz] = Mype- (2.51)
By (2.24), the model covariance matrix is

C = Cov(mp,) = (G G,)", (2.52)

w

where the rows of G,, are those of G that have been weighted by respective reciprocal
data standard deviations (2.14), and we assume that the data errors are independent and
that (GgGw) is nonsingular. By Theorem B.6,

(mtrue - ng) TC_] (mtrue - mLz) (253)

has a x2 distribution with degrees of freedom equal to the number of model parameters,
n. Let A? be the 95th percentile of the x? distribution with # degrees of freedom. Then
the probability

P ((mtrue - ng)TC_l (Myrye — mLz) = AZ) (2.54)

will be 0.95.

Although (2.54) describes an ellipsoid centered at My, the inequality is symmetric
in My and my,, and can also therefore be thought of as defining an ellipsoid centered
around my,. Thus, there is a2 95% probability that when we gather our data and compute
my,, the true model my.y. will lie within the model space ellipsoid defined by

(m—mLZ)TC_l(m—mL2) < A% (2.55)

Since C = (G;Gu,)_l, c = G;{Gw, and the 95th percentile confidence ellipsoid
can also be written as

(m—-mp,) GG, (m—mp,) < A” (2.56)
If we let

x’(m) = |G,m—d,[3=(G,m—-d,)" (G,m—d,), (2.57)
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then
x*(m) — x*(mp,) = (G,m—d,) (G,m—-d,) - (G,m, —d,) (G,m[, —d,)

T
dw

w

= mTGuT,Gwm - dZGwm - mTGZdW +d

T ~T T T T
—mp, G,G,mp, + dw G,mp, +mp,G,, d, — dw d,

T
d,

w

= mTGZGwm — dgGwm -m'G
-m/,G/G,my, +d/G,m, +m/ G]d,. (2.58)

Since my, is a least squares solution to the weighted system of equations, it satisfies the
corresponding normal equations. We can thus replace all occurrences of G2T d,, with
G£ G,my, using (2.3) to obtain

Xz(m) — X2(mL2) = mTGLwam — m{z GgGwm — mTbeGme2
- mg Gt{Gme2 + m{z GMT,GWmL2 + m{z GgGme2
= mTG“T/ G,m— mLT2 Gg G, m
-m'G/G,m[, +m],G/G,mp,, (2.59)
and, finally,
x*(m) — x*(mp,) = (m—mg,)" G, G, (m—mp,). (2.60)
Thus our 95% confidence ellipsoid can also be written as
x*(m) — x*(myp,) < A (2.61)

and the contour of the x2(m) function at XZ(mLZ) + A2 gives the boundary of the
95th percentile confidence ellipsoid.

2.4. UNKNOWN MEASUREMENT STANDARD DEVIATIONS

Suppose that we do not know the standard deviations of the measurement errors a priori.
In this case, if we assume that the measurement errors are independent and normally
distributed with expected value of zero and standard deviation o, then we can perform
the linear regression and estimate o from the residuals.

First, we find the least squares solution to the unweighted problem Gm = d, and let

r=d—Gmy,. (2.62)
To estimate the standard deviation from the residuals, let

|xll2

NG

s=

(2.63)
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where v = m — n is the number of degrees of freedom [40].
As you might expect, there is a statistical cost associated with not knowing the true
standard deviation. If the data standard deviations are known ahead of time, then each

’ m; — Mirue;

= 2.

", \/a , (2.64)
where C is the covariance matrix (2.25), has a standard normal distribution. However,
if instead of a known standard deviation we have an estimate, s, obtained using (2.63),
then, if C' is given by the covariance matrix formula (2.25), but with 0 =, each

l’l’l: _ M — Mirue; (2.65)

i
has a Student’s ¢ distribution (B.7) with v = m — n degrees of freedom. For smaller num-
bers of degrees of freedom this produces appreciably broader confidence intervals than
the standard normal distribution. As v becomes large, (2.63) becomes an increasingly
better estimate of o as the two distributions converge. Confidence ellipsoids correspond-
ing to this case can also be computed, but the formula is somewhat more complicated
than in the case of known standard deviations [40].

In assessing goodness-of-fit in this case, a problem arises in that we can no longer
apply the x? test. Recall that the 2 test was based on the assumption that the data errors
were normally distributed with known standard deviations o;. If the actual residuals were
too large relative to the oj, then x? would be large, and we would reject the linear
regression fit based on a very small p-value. However, if we substitute (2.63) into (2.19),
we find that ngs =1, so such a model will always pass the x2 test.

®
Example 2.3

Consider the analysis of a linear regression problem in which the measurement errors are
assumed to be independent and normally distributed, with equal but unknown standard
deviations, 0. We are given data y; collected at points x; (Figure 2.3) that appear to
follow a linear relationship.

In this case, the system matrix for the forward problem is

1 x
X2

G=|" | (2.66)
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Figure 2.3 Data for Example 2.3, and corresponding linear regression line.

The least squares solution to
Gm=y (2.67)
has
yi = —1.03410.09x;. (2.68)

Figure 2.3 shows the data and the linear regression line. Our estimate of the standard
deviation of the measurement errors from (2.63) is s = 30.74. The estimated covariance
matrix for the fitted parameters is

(2.69)

C = 2GTG) = [338.24 —4.93}.

—4.93 0.08

The parameter confidence intervals, evaluated for each parameter separately, are

my = —1.03 % v/338.244,_50975 = —1.03 £ 38.05 (2.70)
and
mz = 10.09 £ v/ 0.08t,,—2,0.975 = 10.09 £ 0.59. (2.71)

Since the actual standard deviation of the measurement errors is unknown, we
cannot perform a x 2 test of goodness-of-fit. However, we can still examine the residuals.
Figure 2.4 shows the residuals. It is clear that although they appear to be random, the
standard deviation seems to increase as x and y increase. This is a common phenomenon
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Figure 2.4 Unweighted residuals for Example 2.3.

in linear regression, called a proportional effect. One possible way that such an
effect might occur is if the sizes of the measurement errors were proportional to the
measurement magnitude due to characteristics of the instrument used.

For independent errors where the standard deviations of the data points are propor-
tional to the observation, we can rescale the system of equations (2.67) by dividing each
equation by y;, to obtain

G,m=y,. (2.72)

If statistical assumptions are correct, (2.72) has a least squares solution that approximates
(2.17). We obtain a revised least squares estimate of

yi = —12.24 4 10.25x; (2.73)
with 95% parameter confidence intervals, evaluated as in (2.70) and (2.71), of
my = —12.24 £22.39 (2.74)
and
my = 10.25+0.47. (2.75)

Figure 2.5 shows the data and least squares fit. Figure 2.6 shows the scaled residuals.
Note that there is now no obvious trend in the magnitude of the residuals as x and
y increase, as there was in Figure 2.4. The estimated standard deviation is 0.045, or
4.5% of the y value. In fact, these data were generated according to the true model
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Figure 2.5 Data for Example 2.3, and corresponding linear regression line, weighted system.
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Figure 2.6 Weighted residuals for Example 2.3.

yi = 10x; + 0, using standard deviations for the measurement errors that were 5% of

the y value.

2.5. L REGRESSION

Least squares solutions are highly susceptible to even small numbers of discordant obser-

vations, or outliers. Outliers are data points that are highly inconsistent with the other
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data. Outliers may arise from procedural measurement error, for example from incor-
rectly recording the position of a decimal point in an observation or from instrumental
glitches. Outliers should be investigated carefully, since the data may actually be show-
ing us that the form of the mathematical model that we are trying to fit is incorrect.
However, if we conclude that there are only a small number of outliers in the data due
to incorrect measurements, we need to analyze the data in a way that minimizes their
effect on the estimated model.

We can readily appreciate the strong effect of outliers on least squares solutions from
a maximum likelihood perspective by noting the very rapid fall-off of the tails of the
normal distribution. For example, the probability of a single data point drawn from a
normal distribution being more than five standard deviations away from its expected
value is less than 1 in 1 million:

o

2

P(|X — E[X]| > 50) = N / 2 g~ 6 x 1077 (2.76)
5

If an outlier occurs in the data set due to a non—normal error process, the least squares
solution will go to great lengths to accommodate it, and thus prevent its corresponding
factor in the total likelihood product (2.9) from being vanishingly small.

As an alternative to least squares, consider the solution that minimizes the 1-norm
of the residual vector,

m |dz — (Gm),|
M(l) = Z - = ”dw - Gwmul' (2'77)

i=1 !

The 1-norm solution, my,, will be more outlier resistant, or robust, than the least
squares solution, my,, because (2.77) does not square each of the terms in the misfit
measure, as (2.12) does. The 1-norm solution my, also has a maximum likelihood
interpretation; it is the maximum likelihood estimator for data with errors distributed
according to a double-sided exponential distribution (Appendix B),

fx) = %ﬁeﬁ'x“'/". (2.78)

Data sets distributed as (2.78) are unusual. Nevertheless, it is often worthwhile to con-
sider a solution where (2.77) is minimized rather than (2.12), even if most of the
measurement errors are normally distributed, should there be reason to suspect the pres-
ence of outliers. This solution strategy may be useful if the data outliers occur for reasons
that do not undercut our belief that the mathematical model is otherwise correct.
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®
Example 2.4

We can demonstrate the advantages of 1-norm minimization using the quadratic regres-
sion example discussed earlier. Figure 2.7 shows the original sequence of independent
data points with unit standard deviations, except one of the points (d4) is now an outlier
with respect to a mathematical model of the form (2.32). It is the original data point
with 200 m subtracted from it. The least squares model for this data set is

mp, = [26.4 m, 75.6 m/s, 4.86 m/s’| . (2.79)

The least squares solution is skewed away from the majority of data points in trying
to accommodate the outlier and is a poor estimate of the true model. We can also see
that (2.79) fails to fit these data acceptably because of its huge x2 value (R 489). This is
clearly astronomically out of bounds for a problem with 7 degrees of freedom, where the
x? value should not be far from 7. The corresponding p-value for x2 = 489 is effectively
zZero.

The upper curve in Figure 2.7

my, = [17.6 m, 96.4 m/s, 9.31 m/s*|" (2.80)

is obtained using the 1-norm solution that minimizes (2.77). The data prediction from
(2.80) faithfully fits the quadratic trend for the majority of the data points and is only
slightly influenced by the outlier at f = 4. It is also much closer than (2.79) to the true
model (2.33), and to the least squares model for the data set without the outlier (2.36).
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Figure 2.7 L, (solid) and L, (dashed) solutions for a parabolic data set with an outlierat t = 4 s.
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In examining the differences between 2- and 1-norm models, it is instructive to con-
sider the almost trivial regression problem of estimating the value of a single parameter
from repeated measurements. The system of equations Gm =d is

1 d
1 d
1 ds
m= , (2.81)
1] | d |

where m is the 1 by 1 vector containing the parameter that we wish to estimate.
The least squares solution to (2.81) can be seen from the normal equations (A.73) to
be simply the observational average

m
mp, =G GG d=m"" )" d. (2.82)
i=1
Finding the 1-norm solution is more complicated. The problem is that the 1-norm
of the residual vector,

m
fm)=[d—Gml|; =" |d— (Gm),, (2.83)
i=1
is a nondifferentiable function of m at each point where (Gm); = d;. The good news
is that f(m) is a convex function of m. Thus any local minimum point is also a global
minimum point. We can proceed by finding f’(m) at those points where it is defined,
and then separately consider the points at which the derivative is not defined. Every
minimum point must either have f'(m) undefined or f'(m) = 0.
At those points where f'(m) is defined, it is given by
m
f/m)=>" sgn(d; —m). (2.84)
i=1
where the signum function, sgn(x), is —1 if its argument is negative, 1 if its argument
is positive, and 0 if its argument is zero. The derivative (2.84) is zero when exactly half
of the data are less than m and half of the data are greater than m. Of course, this can
only happen when the number of observations, m, is even. In this case, any value of
m lying between the two middle observations is a 1-norm solution. When there are
an odd number of data, the median data point is the unique 1-norm solution. Even an
extreme outlier will not have a large effect on the median of an otherwise clustered set
of observations. This illuminates the robustness of the 1-norm solution.
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The general problem of finding solutions that minimize ||d — Gml]|; is a bit compli-
cated. One practical method is iteratively reweighted least squares, or IRLS [138].
The IRLS algorithm solves a sequence of weighted least squares problems whose solu-
tions converge to a 1-norm minimizing solution. Beginning with the residual vector

r=d—Gm, (2.85)

we want to minimize
m
fm) = el =" Il (2.86)
i=1

The function in (2.86), like the function in (2.83), is nondifferentiable at any point
where one of the elements of r is zero. Ignoring this issue for a moment, we can go
ahead and compute the derivatives of f at other points:

a m a : m
) (m) = ﬂ =— Z Gif sgn(r). (2.87)
i=1

dmy, = amy,
=

Writing sgn(r;) as r;/|r| gives

ofm) _ _ > Gi,k%r,». (2.88)

The gradient of f is
Vf(m) = —G'Rr= —G"R(d — Gm), (2.89)

where R is a diagonal weighting matrix with diagonal elements that are the absolute
values of the reciprocals of the residuals, so that

Rij=1/In]. (2.90)
To find the 1-norm minimizing solution, we solve Vf(m) = 0, which gives
G'R(d-Gm) =0 (2.91)
or
G'RGm =G'Rd. (2.92)

Because R is a nonlinear function of m, (2.92) is a nonlinear system of equations
that we cannot solve directly. IRLS is an iterative algorithm to find the appropriate
weights and solve the system. The algorithm begins with the least squares solution m” =
my,. We calculate the corresponding residual vector r’ =d — Gm" to construct the
weighting matrix R using (2.90). We then solve (2.92) to obtain a new model m'! and
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associated residual vector r!. The process is repeated until the model and residual vectors
converge. A typical rule is to stop the iteration when

[m*t! — mF||

—_— <7 2.93
Py @99)

for some tolerance T.

If any element of the residual vector becomes zero, then (2.90) becomes undefined.
However, this problem can be easily addressed by selecting a tolerance € below which we
consider the residuals to be effectively zero. If |r;| < €, then we set R;; = 1/€. With this
modification it can be shown that this procedure will always converge to an approximate
1-norm minimizing solution.

As with the x2 misfit measure for least squares solutions, there is a corresponding p-
value that can be evaluated under the assumption of normal data errors for the assessment
of 1-norm solutions [127]. Let

1
u') = 1Gmy, —d|. (2.94)

For an observed 1-norm misfit measure (2.94), the probability that a worse misfit
could have occurred, given independent and normally distributed data and v degrees
of freedom, is approximately given by

72
P =P (10> u)) =1- 5@+ VT(’C) (2.95)
where
Rt
S(x) = e i d 2.96
0= / g (2.96)
—00
o=+ (1 —=2/m)v (2.97)
2—m/2
y=—""_ (2.98)
(w/2—1)3/2v2
21 2
7P =2 % 2.99
o (2.99)
W _.n
N ek (2.100)

o1

2.6. MONTE CARLO ERROR PROPAGATION

For solution techniques that are nonlinear and/or algorithmic, such as IRLS, there is
typically no simple way to propagate uncertainties in the data to uncertainties in the
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estimated model parameters. In such cases, one can apply Monte Carlo error prop-
agation techniques, in which we simulate a collection of noisy data vectors and then
examine the statistics of the resulting ensemble of models.

For Li minimizing solutions, we can obtain an approximate covariance matrix by
first forward-propagating the solution into an assumed noise-free baseline data vector

Gm, =d; (2.101)

We next re-solve the IRLS problem many times for independent data realizations,
obtaining a suite of g 1-norm solutions to

Gmy,; =dy+1, (2.102)

where 9; is the ith noise vector realization. If A is the g by # matrix where the ith row
contains the difference between the ith model estimate and the average model,

A.=mj] ;—m],, (2.103)
then an empirical estimate of the covariance matrix is
ATA
Cov(myp,) = . (2.104)
q
®
Example 2.5

Recall Example 2.4. An estimate of Cov(my,) using 10,000 iterations of the Monte
Carlo procedure is

1241 —4547 -7.059
Cov(myp,) = | —45.47 20.54 3.501 |, (2.105)
—7.059 3.501  0.6316

which contains elements that are about 1.4 times as large as those of the least squares
solution (2.37). Unlike least squares solutions, model parameters obtained with the
IRLS algorithm will not generally be normally distributed. However, we can com-
pute approximate confidence intervals for the parameters from the covariance matrix
diagonal, provided that analysis of the obtained Monte Carlo solution parameter distri-
butions reveals that they are approximately normally distributed. Such an analysis can
be performed by examining the parameter distributions with a Q—Q plot (Appendix B)
and/or generating an ellipsoidal confidence boundary under normal assumptions and
counting the proportion of points within the ellipsoid to check for consistency. In this
example, Q—Q plots reveal the estimates to be approximately normally distributed, and
calculating corresponding 95% confidence intervals from (2.105) using (2.30) gives

my, =[17.6421.8 m, 96.4+8.88 m/s, 9.31 4 1.56 m/s?]" . (2.106)
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2.7. EXERCISES

1. A seismic profiling experiment is performed where the first arrival times of seismic
energy from a mid-crustal refractor are observed at distances (in kilometers) of

[ 6.00007]
10.1333
14.2667

*=118.4000 (2.107)

22.5333

| 26.6667 |

from the source, and are found to be (in seconds after the source origin time)

[3.4935]
4.2853
5.1374

t=|:a1s1 | (2.108)

6.8632

| 8.1841 |

These vectors can also be found in the MATLAB data file profile.mat. A two-layer,
flat Earth structure gives the mathematical model

ti =ty + sox;, (2.109)

where the intercept time, fy, depends on the thickness and slowness of the upper

layer, and s; is the slowness of the lower layer. The estimated noise in the first arrival

time measurements is believed to be independent and normally distributed with

expected value 0 and standard deviation o = 0.1 s.

a. Find the least squares solution for the model parameters #, and s,. Plot the data,
the fitted model, and the residuals.

b. Calculate and comment on the model parameter correlation matrix (e.g., 2.43).
How are the correlations manifested in the general appearance of the error
ellipsoid in (f, s2) space?

c. Plot the error ellipsoid in the (fy, s2) plane and calculate conservative 95% confi-
dence intervals for fy and s, for the appropriate value of A%, Hint: The following
MATLAB function will plot a two-dimensional covariance ellipse about the
model parameters, where C is the covariance matrix, DELTA2 is A% and m
is the 2-vector of model parameters.

%set the number of points on the ellipse to generate and plot
function plot_ellipse(DELTA2,C,m)

n=100;

%construct a vector of n equally-spaced angles from (0,2*pi)
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theta=linspace(0,2xpi,n)’;

%corresponding unit vector
xhat=[cos(theta),sin(theta)]l;

Cinv=inv(C);

%preallocate output array

r=zeros(n,2);

for i=l:n

%store each (x,y) pair on the confidence ellipse
%in the corresponding row of r
r(i,:)=sqrt(DELTAZ/(xhat(i,:)*Cinvxxhat(i,:)’))*xhat(i,:);
end

plot(m(1)+r(:,1), m(2)+r(:,2));

axis equal

d. Evaluate the p-value for this model. You may find the library function chi2ecdf
to be useful here.

e. Evaluate the value of x? for 1000 Monte Carlo simulations using the data pre-
diction from your model perturbed by noise that is consistent with the data
assumptions. Compare a histogram of these x2 values with the theoretical x>
distribution for the correct number of degrees of freedom. You may find the
library function chi2pdf to be useful here.

f. Are your p-value and Monte Carlo x? distribution consistent with the theoretical
modeling and the data set? If not, explain what is wrong.

g. Use IRLS to find 1-norm estimates for fo and sp. Plot the data predictions from
your model relative to the true data and compare with (a).

h. Use Monte Carlo error propagation and IRLS to estimate symmetric 95%
confidence intervals on the 1-norm solution for ¢y and s.

i. Examining the contributions from each of the data points to the 1-norm misfit
measure, can you make a case that any of the data points are statistical outliers?

In this chapter we have largely assumed that the data errors are independent. Suppose

instead that the data errors have an MVN distribution with expected value 0 and a

covariance matrix Cp. It can be shown that the likelihood function is then

L(m|d) = — L ~Gm-97cy @m-a)2, (2.110)

(2m)"/? /det(Cp)

a. Show that the maximum likelihood estimate can be obtained by solving the
minimization problem,

min(Gm — d)'C;'(Gm — d). 2.111)
b. Show that (2.111) can be solved using the system of equations

G'c'Gm=G"cy'd. (2.112)
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Show that (2.111) is equivalent to the linear least squares problem

—1/2

min |C;"*Gm — c;;'/2d|,, (2.113)

—-1/2 . . —
where C /2 is the matrix square root of CDl.

. The Cholesky factorization of CBl can also be used instead of the matrix square

root. Show that (2.111) is equivalent to the linear least squares problem
min [RGm —Rd]||5, (2.114)

where R is the Cholesky factor of CBl.

3. Use MATLAB to generate 10,000 realizations of a data set of m =5 points d = a+
bx + 1, where x =[1, 2, 3, 4, 5]T, the n =2 true model parameters are a=b=1,
and 7 is an m-element vector of independent N (0, 1) noise.

a.

Assuming that the noise standard deviation is known a priori to be 1, solve for the
parameters a and b using least squares for each realization and histogram them in
100 bins.
Calculate the parameter covariance matrix, C = 02(G'G)~!, assuming inde-
pendent N(0, 1) data errors, and give standard deviations, o, and o}, for your
estimates of @ and b estimated from C.
Calculate standardized parameter estimates

a—1

d = (2.115)
Ci

7

and
b—1
NAGY)

for your solutions for a and b. Demonstrate using a Q—Q plot (Appendix B) that
your estimates for @ and b’ are distributed as N (0, 1).
Show, using a Q—Q plot, that the squared residual lengths

V=

(2.116)

Iell3 = ld — Gm||3 2.117)

for your solutions in (a) are distributed as x? with m—n=1v =3 degrees of
freedom.

. Assume that the noise standard deviation for the synthetic data set is not known,

and instead estimate it for each realization, k, as

. (2.118)
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Histogram your standardized solutions

d= (2.119)

and

: (2.120)
NieP

where C' = si (GTG)™! is the covariance matrix estimation for the kth realiza-
tion.

f. Demonstrate using a Q—Q plot that your estimates for @’ and b’ are distributed as
the Student’s ¢ distribution with v = 3 degrees of freedom.

4. Suppose that we analyze a large number of data sets d in a linear regression problem
and compute p-values for each data set. The X§bs values should be distributed accor-
ding to a x 2 distribution with m — n degrees of freedom. Show that the correspond-
ing p-values will be uniformly distributed between 0 and 1.

5. Use linear regression to fit a polynomial of the form

yi=a0+a1xi+a2xi2+. . .+a19xl-19 (2.121)
to the noise-free data points
(xi, yi) = (=0.95, —0.95), (—=0.85, —0.85), . . ., (0.95, 0.95). (2.122)

Use the normal equations to solve the least squares problem.

Plot the data and your fitted model, and list the parameters, a;, obtained in your
regression. Clearly, the correct solution has a; = 1, and all other a; = 0. Explain why
your answer differs.

2.8. NOTES AND FURTHER READING

Linear regression is a major subfield within statistics, and there are literally hundreds of
associated textbooks. Many of these references focus on applications of linear regression
in the social sciences. In such applications, the primary focus is often on determining
which variables have an effect on response variables of interest (rather than on estimating
parameter values for a predetermined model). In this context it is important to compare
alternative regression models and to test the hypothesis that a predictor variable has a
nonzero coefticient in the regression model. Since we normally know which predictor
variables are important in the physical sciences, the approach commonly differs. Useful
linear regression references from the standpoint of estimating parameters in the context
considered here include [40, 113].
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Robust statistical methods are an important topic. Huber discusses a variety of robust
statistical procedures [77]. The computational problem of computing a 1-norm solution
has been extensively researched. Techniques for 1-norm minimization include methods
based on the simplex method for linear programming, interior point methods, and iter-
atively reweighted least squares [6, 32, 130, 138]. The IRLS method is the simplest to
implement, but interior point methods can be the most efficient approaches for very
large problems. Watson reviews the history of methods for finding p-norm solutions
including the 1-norm case [171].

We have assumed that G is known exactly. In some cases elements of this matrix
might be subject to measurement error. This problem has been studied as the total
least squares problem [78]. An alternative approach to least squares problems with
uncertainties in G that has recently received considerable attention is called robust
least squares [11, 43].
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CHAPTER THREE

Rank Deficiency and lll-Conditioning

Synopsis

The characteristics of rank-deficient and ill-conditioned linear systems of equations
are explored using the singular value decomposition. The connection between model
and data null spaces and solution uniqueness and ability to fit data is examined.
Model and data resolution matrices are defined. The relationship between singular value
size and singular vector roughness and its connection to the effect of noise on solutions
are discussed in the context of the fundamental trade-oft between model resolution and
instability. Specific manifestations of these issues in rank-deficient and ill-conditioned
discrete problems are shown in several examples.

3.1. THE SVD AND THE GENERALIZED INVERSE

A method of analyzing and solving least squares problems that is of particular interest in
ill-conditioned and/or rank-deficient systems is the singular value decomposition,
or SVD. In the SVD [53, 93, 152], an m by n matrix G is factored into

G=USV’, (3.1)

where
* U is an m by m orthogonal matrix with columns that are unit basis vectors spanning
the data space, R".
* Vs an n by n orthogonal matrix with columns that are basis vectors spanning the
model space, R".
* Sisan m by n diagonal matrix with diagonal elements called singular values.
The SVD matrices can be computed in MATLAB with the svd command. It can be
shown that every matrix has a singular value decomposition [53].
The singular values along the diagonal of S are customarily arranged in decreasing
size, S > $2 > . . . = Smin(m,n) = 0. Note that some of the singular values may be zero. If
only the first p singular values are nonzero, we can partition S as

S = [SOP g] (3.2)

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00003-3
(© 2013 Elsevier Inc. All rights reserved.
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where S, is a p by p diagonal matrix composed of the positive singular values. Expanding
the SVD representation of G in terms of the columns of U and V gives

s, 0
G=[U,, U, ...,U,] [OP 0] [V, Voo, .., V]! (3.3)
= [0}, Ug] [ 7o } [V, Vo] (3.4)

where U, denotes the first p columns of U, Uy denotes the last m — p columns of U, V,,
denotes the first p columns of V, and V() denotes the last n — p columns of V. Because
the last m — p columns of U and the last n — p columns of V in (3.4) are multiplied by
zeros in S, we can simplify the SVD of G into its compact form

G=U,S,V,. (3.5)

For any vector y in the range of G, applying (3.5) gives
y = Gx (3.6)
~U, (sprT x). (3.7)

Thus every vector in R(G) can be written as y = U,z where z = SpV;‘x. Writing out
this matrix—vector multiplication, we see that any vector y in R(G) can be written as a
linear combination of the columns of U,

P
y=Y_ zU. (3.8)
i=1

The columns of U, span R(G), are linearly independent, and form an orthonormal basis
for R(G). Because this orthonormal basis has p vectors, rank(G) = p.

Since U is an orthogonal matrix, the columns of U form an orthonormal basis
for R". By Theorem A.5, N(GT) 4+ R(G) = R™, so the remaining m — p columns of
U form an orthonormal basis for the null space of G'. Note that because the null
space basis is nonunique, and because basis vectors contain an inherent sign ambiguity,
basis vectors calculated and illustrated in this chapter and elsewhere may not match
ones calculated locally using the provided MATLAB code. We will sometimes refer to
N(G7') as the data null space. Similarly, because GT = VPSPUPT, the columns of V,
form an orthonormal basis for R(GT) and the columns of V form an orthonormal
basis for N(G). We will sometimes refer to N(G) as the model null space.

Two other important SVD properties are similar to properties of eigenvalues and
eigenvectors. See Section A.6. Because the columns of V are orthonormal,

viv,=e. (3.9)
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Thus

GV.;=USV'V ; (3.10)
= USe; (3.11)
=U.;, (3.12)

and, similarly,
G'u,;=vs'uTu, (3.13)
=vVsTe; (3.14)
=5V, (3.15)

There is a connection between the singular values of G and the eigenvalues of GGT
and GTG.

GG'U ;=GyV (3.16)
=5GV.; (3.17)
=sU. . (3.18)
Similarly,
GGV =5V, (3.19)

These relations show that we could, in theory, compute the SVD by finding the eigen-
values and eigenvectors of GT'G and GG'. In practice, more efficient specialized
algorithms are used [38, 53, 164].

The SVD can be used to compute a generalized inverse of G, called the Moore-
Penrose pseudoinverse, because it has desirable inverse properties originally identified
by Moore and Penrose [110, 129]. The generalized inverse is

G'=v,s 'ul. (3.20)

MATLAB has a pinv command that generates G'. This command allows the user to
select a tolerance such that singular values smaller than the tolerance are not included in
the computation.

Using (3.20), we define the pseudoinverse solution to be

m; =G'd (3.21)
_ —1y+1T
=V,s;'U/d. (3.22)

Among the desirable properties of (3.22) is that G', and hence ms, always exist. In
contrast, the inverse of GTG that appears in the normal equations (2.3) does not exist
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when G is not of full column rank. We will shortly show that m+ is a least squares
solution.
To encapsulate what the SVD tells us about our linear system, G, and the corres-
ponding generalized inverse system G, consider four cases:
1. m = n = p. Both the model and data null spaces, N(G) and N(GT), respectively, are
trivial. U, = U and V,, = V are square orthogonal matrices, so that UPT = Up_1, and

VPT = Vp_l. Equation (3.22) gives

G'=v,s 'uf (3.23)
= (U,8,V,)™ (3.24)
=G! (3.25)

which is the matrix inverse for a square full rank matrix. The solution is unique, and
the data are fit exactly.

2. m=pand p < n. N(G) is nontrivial because p < n, but N(GT) is trivial. UPT = U;l
and VPT V, =1,. G applied to the generalized inverse solution gives

Gm; = GG'd (3.26)
=U,8,V,V,8,'U/d (3.27)
=U,S,L,S,'U;d (3.28)
=d. (3.29)

The data are fit exactly but the solution is nonunique because of the existence of the
nontrivial model null space N(G).

If m is any least squares solution, then it satisfies the normal equations. This is
shown in Exercise C.5.

(GTG)m=G"d. (3.30)
Since my is a least squares solution, it also satisfies the normal equations.
(G'G)m; =G'a. (3.31)
Subtracting (3.30) from (3.31), we find that
(GTG)(m; —m) =0. (3.32)

Thus m+ —m lies in N(GTG). It can be shown (see Exercise 13f in Appendix A)
that N(GTG) = N(G). This implies that m; — m lies in N(G).

The general solution is thus the sum of m+ and an arbitrary model null space
vector, my, that can be written as a linear combination of a set of basis vectors for
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N(G). In terms of the columns of V, we can thus write
m = m+ +my

- (3.33)

for any coefficients, ;. Because the columns of V are orthonormal, the square of
the 2-norm of a general solution always equals or exceeds that of my

n
I3 = llm:[53+ Y o > [Imqlf3 (3.34)
i=p+1

where we have equality only if all of the «; are zero. The generalized inverse solution
is thus a minimum length least squares solution.
We can also write this solution in terms of G and G

—1y+T
m; =V,$'U/d (3.35)
T —2¢ 1T
=V,8,U, U,8,”U,d (3.36)
T —2¢1T
=G'(U,8,7U,))d (3.37)
=GTGG" 4. (3.38)

In practice it is better to compute a solution using the SVD than to use (3.38) because
of numerical accuracy issues.

. n=pand p < m. N(G) is trivial but N(GT) is nontrivial. Because p<m, R(G) is a

subspace of R™. Here
Gm; =U,S,V,V,S,'U/d (3.39)
=U,U, d. (3.40)
The product UpUpTd gives the projection of d onto R(G). Thus Gmy is the point
in R(G) that is closest to d, and my is a least squares solution to Gm = d. Only if d
is actually in R(G) will m; be an exact solution to Gm = d.

We can see that this solution is exactly that obtained from the normal equations
because

(G'G)™'=(V,8,U,U,sS, V)" (3.41)
_ 2x7T\—1
= (VpS,V,) (3.42)
—2x7T
=V,S,°V, (3.43)
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and
m;=G'd (3.44)
—1y1T
=v,s,'U/d (3.45)
—2~7T T
=V,S,°V/V,8,U’d (3.46)
=G'e)"'c'a. (3.47)

This solution is unique, but cannot fit general data exactly. As with (3.38), it is
better in practice to use the generalized inverse solution than to use (3.47) because
of numerical accuracy issues.

4. p<m and p < n. Both N(GT) and N(G) are nontrivial. In this case, the generali-
zed inverse solution encapsulates the behavior of both of the two previous cases,
minimizing both [|[Gm —d||> and ||ml>.

As in case 3,
Gm; =U,S,V,V,S.'U/d (3.48)
=U,U, d (3.49)

Thus my is a least squares solution to Gm = d.

As in case 2 we can write the model and its norm using (3.33) and (3.34). Thus
my is the least squares solution of minimum length.

We have shown that the generalized inverse provides an inverse solution (3.22) that
always exists, is both least squares and minimum length, and properly accommodates
the rank and dimensions of G. Relationships between the subspaces R(G), N(GT),
R(GT), N(G), and the operators G and G', are schematically depicted in Figure 3.1.
Table 3.1 summarizes the SVD and its properties.

The existence of a nontrivial model null space (one that includes more than just the
zero vector) is at the heart of solution nonuniqueness. There are an infinite number of
solutions that will fit the data equally well, because model components in N(G) have

Model space,V Data space,U
(RGN ~Q ot {RG)}
{NG)} {N<GT>}

Figure 3.1 SVD model and data space mappings, where G"' is the generalized inverse. N(G”) and
N(G) are the data and model null spaces, respectively.
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Table 3.1 Summary of the SVD and its associated scalars and matrices.

Object Size Properties

p scalar rank(G) = p; Number of nonzero singular values
m scalar Dimension of the data space

n scalar Dimension of the model space

G m by n Forward problem matrix; G = USV' = UpSprT
U m by m Orthogonal matrix; U = [U,, Up]

S scalar ith singular value

S m by n Diagonal matrix of singular values; S;; = s;

A\ nbyn Orthogonal matrix; V = [V,,, Vo]

U, m by p Columns form a basis for R(G)

S, pbyp Diagonal matrix of nonzero singular values

v, nbyp Columns form an orthonormal basis for R(G™)
Uy mby m—p Columns form an orthonormal basis for N(GT)
Vo nby n—p  Columns form an orthonormal basis for N(G)
U.; m by 1 Eigenvector of GG with eigenvalue s?

V. nby 1 Eigenvector of GT G with eigenvalue 51»2

G' n by m Pseudoinverse of G; G = VPS;1U;7T

my m by 1 Generalized inverse solution; my = G'd

no effect on data fit. To select a particular preferred solution from this infinite set thus
requires more constraints (such as minimum length or smoothing constraints) than are
encoded in the matrix G.
To see the significance of the N(G7) subspace, consider an arbitrary data vector, do,
which lies in N(GT):
m

do= Y  BU.. (3.51)

i=p+1

The generalized inverse operating on such a data vector gives

m; =V,S. U/ d, (3.52)
n
=V,S,' Y BUU, =0 (3.53)
i=p+1

because the U.; are orthogonal. N(GT) is a subspace of R™ consisting of all vectors
dg that have no influence on the generalized inverse model, my. If p < n, there are an
infinite number of potential data sets that will produce the same model when (3.22) is
applied.
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3.2. COVARIANCE AND RESOLUTION OF THE GENERALIZED INVERSE
SOLUTION

The generalized inverse always gives us a solution, my, with well-determined properties,
but it is essential to investigate how faithful a representation any model is likely to be of
the true situation.

In Chapter 2, we found that under the assumption of independent and normally dis-
tributed measurement errors with constant standard deviation, the least squares solution
was an unbiased estimator of the true model, and that the estimated model parameters
had a multivariate normal distribution with covariance

Cov(mp,) =0*(G'G)™". (3.54)

We can attempt the same analysis for the generalized inverse solution my. The covari-
ance matrix would be given by

Cov(my) = G'Cov(d)(G")T (3.55)
=o2G'(GHT (3.56)
2 —2~x7T
=07V,S,°V, (3.57)
Povavlk

_ 2
-0 Z—Sz ) (3.58)

i=1 i

Since the s; are decreasing, successive terms in this sum make larger and larger contri-
butions to the covariance. If we were to truncate (3.58), we could actually decrease the
variance in our model estimate! This is discussed further in Section 3.3.

Unfortunately, unless p = n, the generalized inverse solution is not an unbiased esti-
mator of the true solution. This occurs because the true solution may have nonzero
projections onto those basis vectors in 'V that are unused in the generalized inverse solu-
tion. In practice, the bias introduced by restricting the solution to the subspace spanned
by the columns of V,, may be far larger than the uncertainty due to measurement error.

The concept of model resolution is an important way to characterize the bias of the
generalized inverse solution. In this approach we see how closely the generalized inverse
solution matches a given model, assuming that there are no errors in the data. We begin
with a model myye. By multiplying G times my,e, we can find a corresponding data
vector deye. If we then multiply G’ times dirue, We obtain a generalized inverse solution

m; = G' Gy (3.59)

We would obviously like to recover the original model, so that m' = M. How-
ever, because my,e may have had a nonzero projection onto the model null space
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N(G), m; will not in general be equal to m¢y,e. The model resolution matrix
that characterizes this effect is

R,=G'G (3.60)
=V,8,'U, U,V (3.61)
=V,V, . (3.62)

If N(G) is trivial, then rank(G) = p = n, and Ry, is the n by n identity matrix. In this
case the original model is recovered exactly and we say that the resolution is perfect.
If N(G) is a nontrivial subspace of R", then p =rank(G) < n, so that Ry, is not the
identity matrix. The model resolution matrix is instead a nonidentity symmetric matrix
that characterizes how the generalized inverse solution smears out the original model,
My, into a recovered model, my. The trace of Ry, is often used as a simple quantitative
measure of the resolution. If Tr(Ryy,) is close to n, then Ry, is relatively close to the
identity matrix.

The model resolution matrix can be used to quantify the bias introduced by the
pseudoinverse when G does not have full column rank. We begin by showing that the
expected value of my is Ryymye.

E[m;] = E[G'd] (3.63)
=G'E[d] (3.64)
= G Gmyye (3.65)
= Ry (3.66)

Thus the bias in the generalized inverse solution is

E[my] — myye = RyMyye — Miye (3.67)
= (R — Dmirge (3.68)
where
R, —1=V,v, —vVv’ (3.69)
=—VoVj. (3.70)

We can formulate a bound on the norm of the bias using (3.68) as
”E[mT] _mtrue” =< ”Rm_I””mtrue”- (3~71)

IRy —I|| thus characterizes the bias introduced by the generalized inverse solution.
However, the detailed effects of limited resolution on the recovered model will depend
on ||Myye||, about which we may have quite limited a priori knowledge.
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In practice, the model resolution matrix is commonly used in two different ways.
First, we can examine diagonal elements of Ry,. Diagonal elements that are close to
one correspond to parameters for which we can claim good resolution. Conversely, if
any of the diagonal elements are small, then the corresponding model parameters will
be poorly resolved. Second, we can multiply Ry, times a particular test model m to
see how that model would be resolved by the inverse solution. This strategy is called
a resolution test. One commonly used test model is a spike model, which is a vector
with all zero elements, except for a single entry which is one. Multiplying Ry, times a
spike model effectively picks out the corresponding column of the resolution matrix.
These columns of the resolution matrix are called resolution kernels. Such functions
are also similar to the averaging kernels in the method of Backus and Gilbert discussed
in Chapter 5.

We can multiply G™ and G in the opposite order from (3.62) to obtain the data
space resolution matrix, Ry

d: = Gm; (3.72)
=GG'd (3.73)
=Ryd (3.74)
where
Ry=U,S,V, VS 'Uf (3.75)
=U,U,. (3.76)

If N(GT) contains only the zero vector, then p =m, and Rq =1. In this case, dy = d,
and the generalized inverse solution my fits the data exactly. However, if N(GT) is
nontrivial, then p < m, and R4 is not the identity matrix. In this case m; does not
exactly fit the data.

Note that model and data space resolution matrices (3.62) and (3.76) do not depend
on specific data or models, but are exclusively properties of G. They reflect the physics
and geometry of a problem, and can thus be assessed during the design phase of an

experiment.

3.3. INSTABILITY OF THE GENERALIZED INVERSE SOLUTION

The generalized inverse solution my has zero projection onto N(G). However, it may
include terms involving column vectors in V,, with very small nonzero singular values.
In analyzing the generalized inverse solution it is useful to examine the singular value
spectrum, which is simply the range of singular values. Small singular values cause the
generalized inverse solution to be extremely sensitive to small amounts of noise in the
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data. As a practical matter, it can also be difficult to distinguish between zero singular
values and extremely small singular values. We can quantify the instabilities created by
small singular values by recasting the generalized inverse solution to make the effect
of small singular values explicit. We start with the formula for the generalized inverse
solution,

m; =V,S,'U/d. (3.77)

The elements of the vector UPT d are the dot products of the first p columns of U with d

[(U.)Td]
(U.»Td
U,/ d= : . (3.78)
| U.)7d]

When we left-multiply S;] times (3.78), we obtain
(U TdT

$1
(U.n’d
2

—1yyT 1 .
s;'upd=| | (3.79)

u.)Td
L Sp -

Finally, when we left-multiply V, times (3.79), we obtain a linear combination of the
columns of V,, that can be written as
P T
U'd
m; =V,$;'0/d=)" ——Vv.; (3.80)

5
i=1 !

In the presence of random noise, d will generally have a nonzero projection onto
each of the directions specified by the columns of U. The presence of a very small s; in
the denominator of (3.80) can thus give us a very large coefficient for the corresponding
model space basis vector V. ;, and these basis vectors can dominate the solution. In the
worst case, the generalized inverse solution is just a noise amplifier, and the answer is
practically useless.

A measure of the instability of the solution is the condition number. Note that
the condition number considered here for an m by n matrix is a generalization of the
condition number for an n by n matrix (A.107), and the two formulations are equivalent
when m = n.
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Suppose that we have a data vector d and an associated generalized inverse solu-
tion m+ = G'd. If we consider a slightly perturbed data vector d’ and its associated
generalized inverse solution mﬁr =G'd/, then

m; —m} =G'(d—d) (3.81)
and
[y —m |5 < IG [l211d — '] (3.82)

From (3.80), it is clear that the largest difterence in the inverse models will occur when
d — d’ is in the direction U, If

d—d =aU,, (3.83)
then
[d—d'[l>=a. (3.84)
We can then compute the effect on the generalized inverse solution as
, o
m; —m; = S—V.,p (3.85)
P
with
, o
iy —mi o = = (3.86)
p
Thus, we have a bound on the instability of the generalized inverse solution
1
[l — 12 < S—lld—d/llz- (3.87)

P

Similarly, we can see that the generalized inverse model is smallest in norm when d
points in a direction parallel to V. 1. Thus

1
lmi|l2 > ;lldllz- (3.88)

Combining these inequalities, we obtain

lmy —mlll> g |d—d||,
< —

Ilmill2 s (12

(3.89)

The bound (3.89) is applicable to pseudoinverse solutions, regardless of what value of
p we use. If we decrease p and thus eliminate model space vectors associated with small
singular values, then the solution becomes more stable. However, this stability comes at
the expense of reducing the dimension of the subspace of R" where the solution lies.
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As a result, the model resolution matrix for the stabilized solution obtained by decreasing
p becomes less like the identity matrix, and the fit to the data worsens.
The condition number of G is the coefficient in (3.89)

cond(G) = - (3.90)
Sk

where k= min(m, n). The MATLAB command cond can be used to compute (3.90).
If G is of full rank, and we use all of the singular values in the pseudoinverse solution
(p = k), then the condition number is exactly (3.90). If G is of less than full rank, then the
condition number is effectively infinite. As with the model and data resolution matrices
((3.62) and (3.76)), the condition number is a property of G that can be computed in
the design phase of an experiment before any data are collected.

A condition that insures solution stability and arises naturally from consideration of
(3.80) is the discrete Picard condition [67]. The discrete Picard condition is satisfied
when the dot products of the columns of U and the data vector decay to zero more
quickly than the singular values, s;. Under this condition, we should not see instability
due to small singular values. The discrete Picard condition can be assessed by plotting
the ratios of UEd to s; across the singular value spectrum.

If the discrete Picard condition is not satisfied, we may still be able to recover a useful
model by truncating the series for my (3.80) at term p’ < p, to produce a truncated
SVD, or TSVD solution. One way to decide where to truncate the series is to apply
the discrepancy principle. Under the discrepancy principle, we choose p’ so that the
model fits the data to a specified tolerance, §, that is,

[Gym —d, |2 <9, (3.91)

where G, and d,, are the weighted system matrix and data vector, respectively.

How should we select §? We discussed in Chapter 2 that when we estimate the solu-
tion to a full column rank least squares problem, |G, mr, — dw||§ has a x? distribution
with m — n degrees of freedom, so we could set § equal to m — n if m > n. However,
when the number of model parameters n is greater than or equal to the number of data
m, this formulation fails because there is no x? distribution with fewer than one degree
of freedom. In practice, a common heuristic is to require |G, m — dw||§ to be smaller
than m, because the approximate median of a x? distribution with m degrees of freedom
1s m (Figure B.4).

A TSVD solution will not fit the data as well as solutions that include the model space
basis vectors with small singular values. However, fitting the data vector too precisely
in ill-posed problems (sometimes referred to as over-fitting) will allow data noise to
control major features, or even completely dominate, the model.
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The TSVD solution is but one example of regularization, where solutions are
selected to sacrifice fit to the data in exchange for solution stability. Understanding the
trade-off between fitting the data and solution stability involved in regularization is of
fundamental importance.

3.4. ARANK DEFICIENT TOMOGRAPHY PROBLEM

A linear least squares problem is said to be rank deficient if there is a clear distinction
between the nonzero and zero singular values and rank(G) is less than n. Numerically
computed singular values will often include some that are extremely small but not quite
zero, because of round-oft errors. If there is a substantial gap between the largest of
these tiny singular values and the first truly nonzero singular value, then it can be easy to
distinguish between the two populations. Rank deficient problems can often be solved in
a straightforward manner by applying the generalized inverse solution. After truncating
the effectively zero singular values, a least squares model of limited resolution will be
produced, and stability will seldom be an issue.

®
Example 3.1

Using the SVD, let us revisit the straight ray path tomography example that we con-
sidered earlier in Examples 1.6 and 1.12 (Figure 3.2). We introduced a rank deficient
system in which we were constraining an # = 9-parameter slowness model with m =8
travel time observations. We map the two-dimensional grid of slownesses into a model

B I N - S S

A2 28y
o ls

B TS -~ 2 TN - S S S
A \ \ "y
t1 t2 t3 t7

Figure 3.2 A simple tomography example (revisited).
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vector by using a row-by-row indexing convention to obtain

"1 0 0 1 0 0 1 0 o7[™
0 100 1 001 0 s12
0O 010 0 100 1 513
1 110 0 000 0 521
Gm=1 9 401 1 100 o]]|™
0O 000 0 011 1 523
V2 0 0 0 V2 0 0 0 2| |7
0 000 0 00 0 2|
L33 _|
The eight singular values of G are, numerically evaluated,
73.180 7]
2.000
1.732
. 1.732
diagS) = | | 73,
1.607
0.553
[ 1.429 x 1071€ |

5]
1)
13
14
f5
te
t7
18

(3.92)

(3.93)

The smallest singular value, sg, is nonzero in numerical evaluation only because of
round-oft errors in the SVD algorithm. It is zero in an analytical solution and is eftec-
tively zero in numerical computation relative to the other singular values. The ratio of

the largest to smallest of the other singular values is about 6, and the generalized inverse
solution (3.80) will thus be stable in the presence of noise. Because rank(G) =p =7 is
less than both m and n, the problem is both rank deficient and will in general have no

exact solution. The model null space, N(G), is spanned by the two orthonormal vectors
that form the 8th and 9th columns of V. An orthonormal basis for the null space is

[—0.0620
—0.4035
0.4655
0.4035
Vo=[V.s Vo|]=]| 0.0620
—0.4655
—0.3415
0.3415
0.0000

—0.4035

0.0620
0.3415
—0.0620
0.4035
—0.3415
0.4655
—0.4655

0.0000 |

(3.94)
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To obtain a geometric appreciation for the two model null space vectors in this exam-
ple, we can reshape them into 3 by 3 matrices corresponding to the geometry of the
blocks (e.g., by using the MATLAB reshape command) to plot their elements in proper
physical positions. Here, we have

[—0.0620 —0.4035  0.4655 |
reshape(V g, 3,3) = | 0.4035  0.0620 —0.4655 (3.95)
—0.3415  0.3415  0.0000 |

[—0.4035  0.0620  0.3415 |
reshape(V o, 3, 3)' = | —0.0620  0.4035 —0.3415 (3.96)
0.4655 —0.4655  0.0000 |

(Figures 3.3 and 3.4).

Recall that if mg is in the model null space, then (because Gmgy = 0) we can add
such a model to any solution and not change the fit to the data (3.33). When mapped
to their physical locations, three common features of the model null space basis vector
elements in this example stand out:

1. The sums along all rows and columns are zero.

2. The upper left to lower right diagonal sum is zero.

3. There is no projection in the mg = s33 model space direction.

The zero sum conditions (1) and (2) arise because paths passing through any three
horizontal or vertical sets of blocks can only constrain the sum of those block values. The
condition (3) that mg = 0 occurs because that model element is uniquely constrained by
the 8th ray, which passes exclusively through the s3 3 block. Thus, any variation in mg

0.5
1
~ 2 0
3
-0.5
1 2 3
J

Figure 3.3 Image of the null space model V 3.
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Figure 3.4 Image of the null space model V_o.

will clearly affect the predicted data, and any vector in the model null space must have a
value of zero in my.
The single basis vector spanning the data null space in this example is

C—0.408
—0.408
—0.408

0.408

Up=Us=| .l (3.97)

0.408

0.000

0.000 |

This indicates that increasing the times 1, >, and 3 and decreasing the times f4, f5, and
fe by equal amounts will result in no change in the pseudoinverse solution.

Recall that, even for noise-free data, we will not recover a general mgqe in a rank
deficient problem using (3.22), but will instead recover a “smeared” model R;,m,
Because Ry, for a rank deficient problem is itself rank deficient, this smearing is irre-

true *

versible. The full Ry, matrix dictates precisely how this smearing occurs. The elements
of Ry, for this example are shown in Figure 3.5.

Examining the entire n by n model resolution matrix becomes cumbersome in large
problems. The n diagonal elements of Ry, can be examined more easily to provide
basic information on how well recovered each model parameter will be. The reshaped
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Figure 3.6 Diagonal elements of the resolution matrix plotted in their respective geometric model
locations.

diagonal of R, from Figure 3.5 is

0.833 0.833 0.667
reshape(diag(Ry,), 3, 3)' =] 0.833 0.833 0.667 |. (3.98)
0.667 0.667 1.000

These values are plotted in Figure 3.6.
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Figure 3.6 and (3.98) tell us that mg is perfectly resolved, but that we can expect loss
of resolution (and hence smearing of the true model into other blocks) for all of the
other solution parameters.

We next assess the smoothing effects of limited model resolution by performing a
resolution test using synthetic data for a test model of interest, and assessing the recovery
of the test model by examining the corresponding inverse solution. Consider a spike
model consisting of the vector with its 5th element equal to one and zeros elsewhere
(Figure 3.7). Forward modeling gives the predicted data set for myeg

0
1
0
0
diest = GMmiee = 1 (3.99)
0
V2
L 0
and the corresponding (reshaped) generalized inverse model is the fifth column of Ry,
which is
0.167 0 —-0.167
reshape(my, 3, 3) = 0 0.833 0.167 (3.100)
—0.167 0.167 0

Figure 3.7 A spike test model.
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Figure 3.8 The generalized inverse solution for the noise-free spike test.

(Figure 3.8). The recovered model in this spike test shows that limited resolution causes
information about the central block slowness to smear into some, but not all, of the
adjacent blocks even for noise-free data, with the exact form of the smearing dictated by
the model resolution matrix.

It is important to reemphasize that the ability to recover the true model in practice
is affected both by the bias caused by limited resolution, which is a characteristic of the
matrix G and hence applies even to noise-free data, and by the mapping of any data
noise into the model parameters. In specific cases one effect or the other may dominate.

3.5. DISCRETE ILL-POSED PROBLEMS

In many problems the singular values decay gradually toward zero and do not show
an obvious jump between nonzero and zero singular values. This happens frequently
when we discretize Fredholm integral equations of the first kind as in Chapter 1. In
particular, as we increase the number of points in the discretization, we typically find
that G becomes more and more poorly conditioned. We will refer to these as discrete
ill-posed problems.

The rate of singular value spectrum decay can be used to characterize a discrete
ill-posed problem as mildly, moderately, or severely ill-posed. If s; = O(;~%) for « <1
(where O means “on the order of”) then we call the problem mildly ill-posed. If s; =
O(j%) for a > 1, then the problem is moderately ill-posed. If s; = O(e™*) for some
o > 0, then the problem is severely ill-posed.
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In discrete ill-posed problems, singular vectors V.; associated with large singular
values are typically smooth, while those corresponding to smaller singular values are
highly oscillatory [67]. The influence of rough basis functions becomes increasingly
apparent in the character of the generalized inverse solution as more singular values and
vectors are included. When we attempt to solve such a problem with the TSVD in the
presence of data noise, it is critical to decide where to truncate (3.80). If we truncate the
sum too early, then our solution will lack details that require model vectors associated
with the smaller singular values for their representation. However, if we include too
many terms, then the solution becomes dominated by the influence of the data noise.

®
Example 3.2

Consider an inverse problem where we have a physical process (e.g., seismic ground
motion) recorded by a linear instrument of limited bandwidth (e.g., a vertical seis-
mometer; Figure 3.9). The response of such a device is commonly characterized by an
instrument impulse response, which is the response of the system to a delta function
input. Consider the instrument impulse response

) gote T (12 0)
g = 0 (t <0). (3.101)

Figure 3.9 shows the displacement response of a critically damped seismometer with a
characteristic time constant T and gain, gp, to a unit area (1 m/ 2. s) impulsive ground
acceleration input.

0.8}
0.6 |-
>
04}
0.2}
0 0 20 40 60
Time (s)

Figure 3.9 Example instrument response; seismometer output voltage in response to a unit area
ground acceleration impulse (delta function).
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Assuming that the displacement of the seismometer is electronically converted to
output volts, we conveniently choose gy to be Toe™! V/m -5 to produce a 1-V maximum
output value for the impulse response, and Tp = 10 s.

The seismometer output (or seismogram), v(f), is a voltage record given by the
convolution of the true ground acceleration, myye(f), with (3.101)

oo

v(t) = f (T — Omyrye(T)dT. (3.102)

—0o0

We are interested in the inverse deconvolution operation that will remove the smooth-
ing effect of ¢(f) in (3.102) and allow us to recover the true ground acceleration

mtrue‘
Discretizing (3.102) using the midpoint rule with a time interval A¢, we obtain

d=Gm (3.103)
where

1)~ =)/ To . )
ti—t)e” W—DIToAr (>t
Gy=1 Y =5 (3.104)
J
0 (tr < ).

The rows of G in (3.104) are time-reversed, and the columns of G are non—time-
reversed, sampled representations of the impulse response ¢(f), lagged by i and j,
respectively. Using a time interval of [—5, 100] s, outside of which (3.101) and any
model, m, of interest are assumed to be very small or zero, and a discretization interval
of At=0.5s, we obtain a discretized m by n system matrix G with m = n = 210.
The singular values of G are all nonzero and range from about 25.3 to 0.017, giving
a condition number of X1480, and showing that this discretization has produced a
discrete system that is mildly ill-posed (Figure 3.10). However, adding noise at the level
of 1 part in 1000 will be sufficient to make the generalized inverse solution unstable.
The reason for this can be seen by examining successive rows of G, which are nearly but
not quite identical, with
Gi.G/, .
1G: 121G,

This near-identicalness of the rows of G makes the system of equations nearly singular,

~ 0.999. (3.105)

hence resulting in a large condition number.
Now, consider a true ground acceleration signal that consists of two acceleration
pulses with widths of 0 = 2's, centered at t =8 sand r =255

Mirye (1) = e_(t_8)2/(202) + 0-53_0_25)2/(202)- (3106)
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Figure 3.10 Singular values for the discretized convolution matrix.

We sample mye(f) on the time interval [—5, 100] s to obtain a 210-element vector
Mye, and generate the noise-free data set

dtruc = Gmyrye (3107)

and a second data set with independent N (0, (0.05 V)?) noise added. The data set with
noise is shown in Figure 3.12.

The recovered least squares model from the full (p =210) generalized inverse
solution,

m=VS U dye (3.108)

is shown in Figure 3.13. The model fits its noiseless data vector, diye, perfectly, and is
essentially identical to the true model (Figure 3.11).
The least squares solution for the noisy data vector, diye + 1,

m = VS~'UT (dyue + 1) (3.109)

is shown in Figure 3.14.

Although this solution fits its particular data vector, dye + 1, exactly, it is worthless
in divining information about the true ground motion. Information about my.. is over-
whelmed by the small amount of added noise, amplified enormously by the inversion
process.

Can a useful model be recovered by the TSVD? Using the discrepancy principle
as our guide and selecting a range of solutions by varying p/, we can in fact obtain
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Figure 3.11 The true model.
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Figure 3.12 Predicted data from the true model plus independent N (0, (0.05 V)?) noise.

an appropriate solution when we use just p’ = 26 columns of V to obtain a solution
(Figure 3.15).

Essential features of the true model are resolved in the solution of Figure 3.15, but
the solution technique introduces oscillations and loss of resolution. Specifically, we see
that the widths of the inferred pulses are somewhat wider, and the inferred amplitudes
somewhat less, than those of the true ground acceleration. These effects are both hall-
marks of limited resolution, as characterized by a nonidentity model resolution matrix.
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Figure 3.13 Generalized inverse solution using all 210 singular values for the noise-free data.
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Figure 3.14 Generalized inverse solution using all 210 singular values for the noisy data of Figure 3.12.

An image of the model resolution matrix in Figure 3.16 shows a finite-width central
band and oscillatory side lobes.

A typical (80th) column of the model resolution matrix displays the smearing of
the true model into the recovered model for the choice of the p = 26 inverse operator
(Figure 3.17). The smoothing is over a characteristic width of about 5 s, which is why
our recovered model, although it does a decent job of rejecting noise, underestimates
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Figure 3.15 TSVD solution using p’ = 26 singular values for the noisy data shown in Figure 3.12.

20 03
40
0.25
60
80 02
_ 100 0.15
120 0.1
140
0.05
160
180
200 -0.05
50 100 150 200

i
Figure 3.16 The model resolution matrix elements, Ry,;;, for the TSVD solution including p’ =26
singular values.

o

the amplitude and narrowness of the pulses in the true model (Figure 3.11). The oscil-
latory behavior of the resolution matrix is attributable to our abrupt truncation of the
model space.

Each of the n columns of V is an oscillatory model basis function, with j — 1 zero
crossings, where j is the column number. In truncating (3.80) at 26 terms to stabilize
the inverse solution, we place a limit on the most oscillatory model space basis vectors
that we will allow. This truncation gives us a model, and model resolution, that contain
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Figure 3.17 The (80th) column of the model resolution matrix, R,,, for the TSVD solution including
p' = 26 singular values.

oscillatory structure with up to around p — 1 = 25 zero crossings. We will examine this
perspective further in Chapter 8, where issues associated with oscillatory model basis
functions will be revisited in the context of Fourier theory.

®
Example 3.3

Recall the Shaw problem from Examples 1.6 and 1.10. Figure 3.18 shows the singular
value spectrum for the corresponding G matrix with n = m = 20, which is characterized
by very rapid singular value decay to zero.

This is a severely ill-posed problem, and there is no obvious break point above which
the singular values can reasonably be considered to be nonzero and below which the
singular values can be considered to be 0. The MATLAB rank command gives p’ = 18,
suggesting that the last two singular values are effectively 0. The condition number of
this problem is enormous (larger than 10'4).

The 18th column of V, which corresponds to the smallest nonzero singular value,
is shown in Figure 3.19. In contrast, the first column of V, which corresponds to the
largest singular value, represents a much smoother model (Figure 3.20). This behavior is
typical of discrete ill-posed problems.

Next, we will perform a simple resolution test. Suppose that the input to the system
1s given by

1 i=10
i = {O otherwise. (3.110)
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Figure 3.18 Singular values of G for the Shaw example (n = m = 20).
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Figure 3.19 V. ;5 for the Shaw example problem.

(Figure 3.21). We use the model to obtain noise-free data and then apply the gener-
alized inverse (3.22) with various values of p to obtain TSVD inverse solutions. The
corresponding data are shown in Figure 3.22. If we compute the generalized inverse
from these data using MATLAB’s double-precision algorithms, we get fairly good recov-
ery of (3.110), although there are still some lower amplitude negative intensity values
(Figure 3.23).
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Figure 3.20 V._; for the Shaw example problem.
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Figure 3.21 The spike model.

However, if we add a very small amount of noise to the data in Figure 3.22, things
change dramatically. Adding N (0, (107%)2) noise to the data of Figure 3.22 and com-
puting a generalized inverse solution using p’ = 18 produces the wild solution of Figure
3.24, which bears no resemblance to the true model. Note that the vertical scale in
Figure 3.24 is multiplied by 10°! Furthermore, the solution includes negative intensities,
which are not physically possible. This inverse solution is even more sensitive to noise
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Figure 3.22 Noise-free data predicted for the spike model.
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Figure 3.23 The generalized inverse solution for the spike model, no noise.

than that of the previous deconvolution example, to the extent that even noise on the
order of 1 part in 10° will destabilize the solution.

Next, we consider what happens when we use only the 10 largest singular values
and their corresponding model space vectors to construct a TSVD solution. Figure 3.25
shows the solution using 10 singular values with the same noise as Figure 3.24. Because
we have cut off a number of singular values, we have reduced the model resolution.
The inverse solution is smeared out, but it is still possible to conclude that there is some
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Figure 3.24 Recovery of the spike model with N(0, (10~%)?) noise using the TSVD method (' = 18).
Note that the intensity scale ranges from —4 x 10° to 4 x 10°.
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Figure 3.25 Recovery of the spike model with noise using the TSVD method (' = 10).

significant spike-like feature near = 0. In contrast to the situation that we observed
in Figure 3.24, the model recovery is not visibly affected by the noise. The trade-oft is
that we must now accept the imperfect resolution of this solution and its attendant bias
towards smoother models.

What happens if we discretize the problem with a larger number of intervals? Figure
3.26 shows the singular values for the G matrix with n = m = 100 intervals. The first 20
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Figure 3.26 Singular values of G for the Shaw example (n = m = 100).
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Figure 3.27 Recovery of the spike model with noise using the TSVD method (n = m = 100, p’ = 10).

or so singular values are apparently nonzero, while the last 80 or so singular values are
effectively zero.

Figure 3.27 shows the inverse solution for the spike model with n =m = 100 and
p = 10. This solution is very similar to the solution shown in Figure 3.24. In general,
discretizing over more intervals does not hurt as long as the solution is appropriately
regularized and the additional computation time is acceptable.
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Figure 3.28 Singular values of G for the Shaw example (n = m = 6).

What about a smaller number of intervals? Figure 3.28 shows the singular values of
the G matrix with n =m = 6. In this case there are no terribly small singular values.
However, with only 6 elements in the model vector, we cannot hope to resolve the
details of a source intensity distribution with a complex structure. This is an example of
regularization by discretization (see also Exercise 1.3).

This example again demonstrates a fundamental dilemma. If we include small sin-
gular values in the series solution (3.80), then our solution becomes unstable in the
presence of data noise. If we do not include these terms, our solution is less sensitive to
data noise, but we sacrifice resolution and introduce bias.

3.6. EXERCISES

1. The pseudoinverse of a matrix G was originally defined by Moore and Penrose as
the unique matrix G' with the properties
a. GG'G=G.
b. G'GG'=G".
c. (GGNHT=GG".
d. (G'6)"=G'G.
Show that GT as given by (3.20) satisfies these four properties.

2. Another resolution test commonly performed in tomography studies is a checker-
board test, which consists of using a test model composed of alternating positive
and negative perturbations. Perform a checkerboard test on the tomography problem
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in Example 3.1 using the test model,

-1 1 -1
mee=| 1 -1 1]. (3.111)
-1 1 -1

Evaluate the difference between the true (checkerboard) model and the recovered
model in your test, and interpret the pattern of differences. Are any block val-
ues recovered exactly? If so, does this imply perfect resolution for these model
parameters?

. Using the parameter estimation problem described in Example 1.1 for determining

the three parameters defining a ballistic trajectory, construct synthetic examples that

demonstrate the following four cases using the SVD. In each case, display and inter-

pret the SVD components U, V, and S in terms of the rank, p, of your forward

problem G matrix. Display and interpret any model and data null space vector(s) and

calculate model and data space resolution matrices.

a. Three data points that are exactly fit by a unique model. Plot your data points
and the predicted data for your model.

b. Two data points that are exactly fit by an infinite suite of parabolas. Plot your data
points and the predicted data for a suite of these models.

c. Four data points that are only approximately fit by a parabola. Plot your data
points and the predicted data for the least squares model.

d. Two data points that are only approximately fit by any parabola, and for which

there are an infinite number of least squares solutions. Plot your data points and
the predicted data for a suite of least squares models.

. Alarge north-south by east-west—oriented, nearly square plan view, sandstone quarry

block (16 m by 16 m) with a bulk compressional wave seismic velocity of approx-
imately 3000 m/s is suspected of harboring higher-velocity dinosaur remains. An
ultrasonic tomography scan is performed in a horizontal plane bisecting the boul-
der, producing a data set consisting of 16 E—>W, 16 N—S, 31 NE—SW, and 31
NW —SE travel times (see Figure 3.29). The travel time data (units of s) have statisti-
cally independent errors, and the travel time contribution for a uniform background
model (with a velocity of 3000 m/s) has been subtracted from each travel time
measurement.

The MATLAB data files that you will need to load containing the travel time data
follow: rowscan.mat, colscan.mat, diaglscan.mat, and diag2scan.mat. The
standard deviations of all data measurements are 1.5 x 107> 5. Because the travel time
contributions for a uniform background model (with a velocity of 3000 m/s) have
been subtracted from each travel time measurement, you will be solving for slowness
and velocity perturbations relative to a uniform slowness model of 1/3000 s/m. Use
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Figure 3.29 Tomography exercise, showing block discretization, block numbering convention, and
representative ray paths going east-west (a), north-south (b), southwest-northeast (c), and northwest-
southeast (d).

a row-by-row mapping between the slowness grid and the model vector (e.g., Exam-
ple 1.12). The row format of each data file is (x1, y1, x2, y2, ) where the starting
point coordinate of each source is (x1, y1), the end point coordinate is (x2, y2), and
the travel time along a ray path between the source and receiver points is a path
integral (in seconds).

Parameterize the slowness structure in the plane of the survey by dividing the
boulder into a 16 x 16 grid of 256 1-m-square, north-by-east blocks and construct
a linear system for the forward problem (Figure 3.29). Assume that the ray paths
through each homogeneous block can be represented by straight lines, so that the
travel time expression is

t=/ s(x)de (3.112)
¢

= Z Sblock * Alblock, (3.113)
blocks

where Alylock 1 1 m for the row and column scans and /2 m for the diagonal scans.
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Use the SVD to find a minimum-length/least squares solution, my, for the 256

block slowness perturbations that fit the data as exactly as possible. Perform two

inversions in this manner:

1.
2.

Use the row and column scans only.
Use the complete data set.

For each inversion:

a.

b.

Note the rank of your G matrix relating the data and model.

State and discuss the general solution and/or data fit significance of the elements
and dimensions of the data and model null spaces. Plot and interpret an element
of each space and contour or otherwise display a nonzero model that fits the
trivial data set Gm = d = 0 exactly.

Note whether there are any model parameters that have perfect resolution.
Produce a 16 by 16 element contour or other plot of your slowness perturbation
model, displaying the maximum and minimum slowness perturbations in the
title of each plot. Interpret any internal structures geometrically and in terms of
seismic velocity (in m/s).

Show the model resolution by contouring or otherwise displaying the 256
diagonal elements of the model resolution matrix, reshaped into an appropriate
16 by 16 grid.

Describe how one could use solutions to Gm = d = 0 to demonstrate that very
rough models exist that will fit any data set just as well as a generalized inverse
model. Show one such wild model.

. Consider the data in Table 3.2 (also found in the file ifk.mat).

The function d(y), 0 < y < 1, is related to an unknown function m(x), 0 < x <1,

by the mathematical model

a.

1
d(y) =/ xe Ym(x)dx. (3.114)
0

Using the data provided, discretize the integral equation using simple collocation
to create a square G matrix and solve the resulting system of equations.

Table 3.2 Data for Exercise 3.5.

y

0.0250 0.0750 0.1250 0.1750 0.2250 0.2750 0.3250 0.3750 0.4250 0.4750

d(y) 0.2388 0.2319 0.2252 0.2188 0.2126 0.2066 0.2008 0.1952 0.1898 0.1846

y

0.5250 0.5750 0.6250 0.6750 0.7250 0.7750 0.8250 0.8750 0.9250 0.9750

d(y) 0.1795 0.1746 0.1699 0.1654 0.1610 0.1567 0.1526 0.1486 0.1447 0.1410
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b. What is the condition number for this system of equations? Given that the data
d(y) are only accurate to about four digits, what does this tell you about the
accuracy of your solution?

c. Use the TSVD to compute a solution to this problem. You may find a plot of the
Picard ratios UE-d/ si to be especially useful in deciding how many singular values
to include.

3.7. NOTES AND FURTHER READING

The Moore-Penrose generalized inverse was independently discovered by Moore in
1920 and Penrose in 1955 [110, 129]. Penrose is generally credited with first showing
that the SVD can be used to compute the generalized inverse [129]. Books that discuss
the linear algebra of the generalized inverse in more detail include [10, 23].

There was significant early work on the SVD in the 19th century by Beltrami, Jor-
dan, Sylvester, Schmidt, and Weyl [151]. However, the singular value decomposition in
matrix form is typically credited to Eckart and Young [41]. Some books that discuss the
properties of the SVD and prove its existence include [53, 109, 152]. Lanczos presents
an alternative derivation of the SVD [93]. Algorithms for the computation of the SVD
are discussed in [38, 53, 164]. Books that discuss the use of the SVD and truncated SVD
in solving discrete linear inverse problems include [65, 67, 108, 153].

Resolution tests with spike and checkerboard models as in Example 3.1 are com-
monly used in practice. However, Leveque, Rivera, and Wittlinger discuss some serious
problems with such resolution tests [97]. Complementary information can be acquired
by examining the diagonal elements of the resolution matrix, which can be efficiently
calculated in isolation from off-diagonal elements even for very large inverse problems
[9, 103] (Chapter 6).

Matrices like those in Example 3.2 in which the elements along diagonals are con-
stant are called Toeplitz matrices [74]. Specialized methods for regularization of
problems involving Toeplitz matrices are available [66].

It is possible to effectively regularize the solution to a discretized version of a con-
tinuous inverse problem by selecting a coarse discretization (e.g., Exercise 1.3 and
Example 3.3). This approach is analyzed in [45]. However, in doing so we lose the
ability to analyze the bias introduced by the regularization. In general, we prefer to
use a fine discretization that is consistent with the physics of the forward problem and
explicitly regularize the resulting discretized problem.
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CHAPTER FOUR

Tikhonov Regularization

Synopsis

The method of Tikhonov regularization for stabilizing inverse problem solutions is intro-
duced and illustrated with examples. Zeroth-order Tikhonov regularization is explored,
including its resolution, bias, and uncertainty properties. The concepts of filter factors
(which control the contribution of singular values and their corresponding singular vec-
tors to the solution) and the discrepancy and L-curve criteria (strategies for selecting the
regularization parameter) are presented. Higher-order Tikhonov regularization tech-
niques and their computation by the generalized singular value decomposition (GSVD)
and truncated GSVD are discussed.

4.1. SELECTING GOOD SOLUTIONS TO ILL-POSED PROBLEMS
We saw in Chapter 3 that, given the SVD of G (3.1), we can express a generalized

inverse solution by a series (3.81)
p T
U'd
m; =V,$, U d=)" —

S
i=1 !

V.. (4.1)

B

We also saw that the generalized inverse solution can become extremely unstable when
one or more of the singular values, s;, is small. One approach for dealing with this
difficulty, the truncated singular value decomposition (TSVD), was to truncate the series
to remove singular vectors, V. ;, associated with smaller singular values, s;. This stabilized,
or regularized, the solution in the sense that it made the result less sensitive to data
noise. The cost of this stabilization approach is that the regularized solution had reduced
resolution and was no longer unbiased.

In this chapter we will introduce and discuss Tikhonov regularization, a very widely
applied and easily implemented technique for regularizing discrete ill-posed problems.
We will show a series formula for the Tikhonov solution that is a modified version of
the generalized inverse series (3.81). The Tikhonov series solution has coefficients that
are functions of the regularization parameter controlling the degree of regularization
and which give greater weight to model elements associated with larger singular values.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00004-5
(© 2013 Elsevier Inc. All rights reserved.
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For a general linear least squares problem there may be infinitely many least squares
solutions. If we consider that the data contain noise, and that there is no point in fit-
ting such noise exactly, it becomes evident that there can be many solutions that can
adequately fit the data in the sense that ||Gm — d||; is small enough.

In zeroth-order Tikhonov regularization, we consider all solutions with ||Gm —
d|» <6, and select the one that minimizes the norm of m

min|[m]|

IGm — d|2< 5. *2)

The fundamental motivation for minimizing the norm of m is to arrive at a solution
that contains just sufficient feature complexity, as quantified by a norm measure, to
adequately fit the data. Note that as § increases, the set of feasible models expands, and
the minimum value of ||m||» decreases. In other words, as we allow a poorer fit to the
data, a smaller norm model will suffice to fit the data. We can thus trace out a curve of
minimum values of |m||, versus § (Figure 4.1). It is also possible to trace out this curve
by considering problems of the form

min |Gm — d|)»

Imll> < e. #-3)

As € decreases, the set of feasible solutions becomes smaller, and the minimum value of
IGm — d||2 increases. Again, as we adjust € we trace out the curve of optimal values of
lml> and ||Gm — d||» (Figure 4.2).

A third option is to consider the damped least squares problem

min |Gm — d|3 + o ||m]3, (4.4)

which arises when we apply the method of Lagrange multipliers to (4.2), where o is
a regularization parameter. It can be shown that for appropriate choices of §, €,
and o, the three problems (4.2), (4.3), and (4.4) yield the same solution [65]. We will

Solution norm ||m||,

)
Residual norm [|Gm-d||,

Figure 4.1 A particular misfit norm, §, and its position on the trade-off curve between residual misfit,
|Gm — d||», and model norm, |m||».
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a2}

Solution norm ||ml||,

Residual norm [|Gm-d||,

Figure 4.2 A particular model norm, ¢, and its position on the trade-off curve between residual misfit,
|Gm — d||», and model norm, |m||5.

concentrate on solving the damped least squares form of the problem (4.4). Solutions to
(4.2) and (4.3) can be obtained using (4.4) by adjusting the regularization parameter o
until the constraints are just satisfied.

When plotted on a log—log scale, the curve of optimal values of ||m]|, versus
|[Gm — d||» often takes on a characteristic “L” shape in linear problems. This happens
because ||ml|5 is a strictly decreasing function of @ and ||Gm — d||2 is a strictly increa-
sing function of . The sharpness of the “corner” varies from problem to problem, but
it is frequently well-defined. For this reason, the curve is called an L-curve [63]. In
addition to the discrepancy principle, another popular criterion for picking the value of
o is the L-curve criterion, in which the value of « that gives the solution closest to
the corner of the L-curve is selected.

4.2. SVD IMPLEMENTATION OF TIKHONOV REGULARIZATION

The damped least squares problem (4.4) is equivalent to the ordinary least squares prob-
lem obtained by augmenting the least squares problem for Gm = d in the following

MENH

As long as o is nonzero, the last n rows of the augmented matrix in (4.5) are obviously
linearly independent. Equation (4.5) is thus a full rank least squares problem that can be
solved by the method of normal equations, that is,

[GT  oI] [0(4;1] m=[G" o] [ﬁ]. (4.6)

Equation (4.6) simplifies to

manner:

2
(4.5)

min

2

(GTG+ e’ HIm=G'd, (4.7)
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which is the set of constraint equations for a zeroth-order Tikhonov regularization
solution of Gm = d.
Employing the SVD of G, (4.7) can be written as
(vsTuTusv’ +’Dm=G"d (4.8)
vs'sv! + o’ m =vs'u’a. (4.9)
A simple substitution diagonalizes this system of equations and makes it straightforward

to write out the solution. Let x = VI'm and m = Vx. Since VV! =1, we can write
(4.9) as

(vsTsvT +o?>vvT)m =vsTu'a. (4.10)
visTs+e’Dvim=vsTu’d (4.11)
(sTs+ao’nx=sTu’a. (4.12)

The matrix on the left-hand side of this equation is diagonal, so it is trivial to solve the
system of equations,

U, (4.13)
X = — . .
l 7 +a?
Since m = VX, we obtain the solution
k T
S,‘U, id
my, = —V.; 4.14
o ; TV (4.14)

where k = min(m, n) so that all of the nonzero singular values and vectors are included.
To relate this formula to (4.1), we can rewrite it slightly as

L2 uld

m, = L > V.. 4.15
o ;5%0[2 =V (4.15)
or
k T
U'd
my=Y fi——V.,. (4.16)
i=1 Si
Here, the filter factors
fim ot (4.17)
t 51.2 + a2 ’

control the contribution to the sum from different terms. For s; > «, fi & 1, and for
si<a, fi~0. For singular values between these two extremes, as the s; decrease,
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the f; produce a monotonically decreasing contribution of corresponding model space
vectors, V. ;.
A related method called the damped SVD method [65] uses the filter factors
Si
sito ’

fi= (4.18)

This has a similar effect to using (4.17), but transitions more slowly with the index i.

®
Example 4.1

We revisit the severely ill-posed Shaw problem, which was previously introduced in
Examples 1.6 and 1.10, and was analyzed using the SVD in Example 3.3. The true
model in this synthetic example is a spike of unit amplitude in the 10th model element,
and independent N(O, (107°)2) noise has been added to the data vector. We begin by
computing the L-curve at 1000 points and finding its corner by estimating the point of
maximum curvature. Figure 4.3 shows the L-curve. The corner of the curve corresponds
to o ~6.40 x 107°.

Next, we compute the Tikhonov regularization solution corresponding to this value
of . This solution is shown in Figure 4.4. Note that this solution is much better than
the wild solution obtained by the TSVD with p’ = 18 (Figure 3.24).

Alternatively, we can use the discrepancy principle to find an appropriate & to obtain
a Tikhonov regularized solution. Because independent N(O, (1 x 107%)?) noise was
added to these m = 20 data points, we search for a solution for which the square of the

108 [ 1

104 b

Solution norm ||m||,

102 [ 1

100 [ b

1074 102
Residual norm |[|Gm-d||,

Figure 4.3 Zeroth-order Tikhonov regularization L-curve for the Shaw problem, with corner estimated
using maximum functional curvature.
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Figure 4.4 Recovery of the spike model with noise, zeroth-order Tikhonov solution (& = 6.40 x 107°
determined from the L-curve corner).
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Figure 4.5 Recovery of the spike model with noise, zeroth-order Tikhonov solution (o = 4.29 x 107>
determined from the discrepancy principle).

norm of the residuals is 20 x 10~'2, which corresponds to a residual norm ||Gm — d||»
of /20 x 1070 ~ 4.47 x 107°.

The discrepancy principle results in a somewhat larger value of the regularization
parameter, o = 4.29 x 107>, than that obtained using the L-curve technique above.
The corresponding solution, shown in Figure 4.5, thus has a smaller model norm, but
the two models are quite close.
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Figure 4.6 Picard plot for the Shaw problem of Example 4.1.

It is interesting to note that the norm of the residual of the true (spike) model in
this particular case, 3.86 x 107°, is actually slightly smaller than the tolerance that we
specified via the discrepancy principle (4.47 x 107°). The discrepancy principle method
did not recover the original spike model because the spike model has a norm of 1, while
the solution obtained by the discrepancy principle has a norm of only 0.67.

Plotting the singular values s;, the values of |(U. ;) Td|, and the ratios |(U. ) Td|/si
allows us to examine the discrete Picard condition for this problem (Figure 4.6).
[(U.)) Td| reaches a noise floor of about 1 x 107° after i =11. The singular values
continue to decay. As a consequence, the ratios increase rapidly. It is clear from this
plot that we cannot expect to obtain useful information from the singular values beyond
i =11. The 11th singular value is ~5.1 x 107°, which is comparable to the values of &
in Figures 4.4 and 4.5.

4.3. RESOLUTION, BIAS, AND UNCERTAINTY IN THE TIKHONOV
SOLUTION

As in our earlier TSVD approach, we can compute a model resolution matrix for the
Tikhonov regularization method. Using equation (4.7) and the SVD, the solution can
be written as

my = (GTG+o’D)'GTd
=G*d (4.19)
=VES'uTq,
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where F is an n by n diagonal matrix with diagonal elements given by the filter factors f;
of (4.17), and ST is the pseudoinverse of S. G¥ is a generalized inverse matrix that can be
used to construct model and data resolution matrices as was done for the SVD solution
in (3.63) and (3.77). The resolution matrices are

R,, = G'G=VFV' (4.20)
and
Ry = GG’ =UFU"’. (4.21)

Note that the resolution matrices are dependent on the particular value of @ (4.19).

®
Example 4.2

In Example 4.1, with & = 4.29 x 107> as selected using the discrepancy principle, the
model resolution matrix for zeroth-order Tikhonov regularization has the following
diagonal elements:

diag(Ryy) ~ [0.91, 0.49, 0.45, 0.39, 0.42, 0.41, 0.43, 0.44, 0.44, . . .
0.45, 0.45, 0.44, 0.44, 0.43, 0.41, 0.42, 0.39, 0.45, 0.49, O.91]T (4.22)

indicating that most model parameters are not well resolved. Figure 4.7 displays the effect
of this limited resolution by applying Ry, to the (true) spike model (3.63) or, equiva-
lently, inverting noise-free spike model data using (4.6) for the regularization parameter

0.5 T T T

04} .

0.3

0.2} i

Intens ty

0.1 i

Figure 4.7 Resolution test using the spike model (o = 4.29 x 10~> determined from the discrepancy
principle). Note that this model is nearly equivalent to that shown in Figure 4.5.
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5 10 15 20
J

Figure 4.8 Resolution matrix for the Shaw problem, « = 4.29 x 107>. Note that the noise-free inver-
sion of a spike model ¢; will produce the ith column or row of R, (e.g., Figure 4.7 is a plot of the 10th
column/row).

value estimated using the discrepancy principle. Note that the result of limited reso-
lution is that the true model “leaks” or “smears” into adjacent model parameters and
is reduced in its maximum amplitude in the recovered model. In this example, the
noise-free spike model recovery obtained in this resolution test is nearly identical to
the recovery from the noisy spike model data using zeroth-order Tikhonov regulariza-
tion (Figure 4.5), indicating that noise has only a very slight effect on model recovery
accuracy. Thus, the differences between the true and recovered models here are essen-
tially entirely due to the regularization that was necessary to stabilize the solution, rather
than from noise propagation from data to model (see Example 4.3). Figure 4.7 displays
just a single row or column from the (symmetric) Ry,, but effects of limited resolu-
tion can be examined more comprehensively by imaging the entire resolution matrix
(Figure 4.8).

As in Chapter 2, we can compute a covariance matrix for the estimated model
parameters using (B.65). Since

m, = G*d, (4.23)
the model covariance is

Cov(myg) = G*Cov(d)(GHT. (4.24)
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Figure 4.9 Tikhonov solution and confidence intervals for the Shaw problem, estimated using (4.24),
where the true model is a spike and the data noise is independent and N(0, (1 x 107°)2). The reg-
ularization parameter o = 4.29 x 107> was chosen using the discrepancy principle. The confidence
interval is barely visible at this scale because inaccuracy in the model recovery is dominated by limited
resolution.

Note that, as with the TSVD solution of Chapter 3, the Tikhonov regularized solution
will generally be biased, and difterences between the regularized solution values and the
true model may actually be much larger than the confidence intervals obtained from the
covariance matrix of the model parameters. Rather, the confidence intervals reflect the
difference between my and Ryymye. See Figure 4.9.

[ 4
Example 4.3

Recall our earlier example of the Shaw problem with the true spike model. Figure 4.9
shows the true model, the solution obtained using & = 4.29 x 107> chosen using the
discrepancy principle, and 95% confidence intervals for the estimated parameters. Note
that the confidence intervals are extremely tight, and that very few of the true model
parameters are included within the confidence intervals. In this case, the regularization
bias, which is not estimated by the covariance matrix, is far larger than the propagated
data uncertainty. In other words, the inaccuracy in model recovery in this case is dom-
inated by limited resolution rather than by noise propagation from data to model. The
solution shown in Figure 4.9 is essentially identical to the product of Ry, and myqe
shown in Figure 4.7 or the 10th column of the resolution matrix of Figure 4.8.
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4.4. HIGHER-ORDER TIKHONOV REGULARIZATION

So far in our discussions of Tikhonov regularization we have minimized an objective
function involving ||m||,. In many situations, we would prefer to obtain a solution that
minimizes some other measure of m, expressed as Lm, such as the norm of the first or
second derivative of m, reflecting a preference for a “flat” or “smooth” model. We then
solve the regularized least squares problem

min |Gm — d||3 + o?||Lm|3. (4.25)
As with (4.5), this can be rewritten as a standard linear least squares problem:
2
. G d
min |:0¢L:| m — |:0] . (4.26)

For example, if we have discretized our problem using simple collocation and our
model is one-dimensional, then we can approximate, to a multiplicative constant, the
first derivative of the model by a finite-difference operation Lym, where

—1
-1 1

L= . (4.27)

-1 1
-1 1

The matrices that are used to differentiate m for the purposes of regularization are
commonly referred to as roughening matrices. In (4.27), Lim is a finite-difference
approximation that is proportional to the first derivative of m. By penalizing |Liml|2,
we will favor solutions that are relatively flat (i.e., in the limit, constant). Note that
IL1m)||> is a seminorm because it is zero for any constant model, not just for m = 0.

In applying second-order Tikhonov regularization to a one-dimensional prob-
lem, we use a roughening matrix of the form

L, = , (4.28)

Here, Lom is a finite-difference approximation that is proportional to the second deriva-
tive of m, and the seminorm term |[Loml||> in (4.25) penalizes solutions that are rough
in a squared second derivative sense. We will refer to regularization strategies of the
form of (4.25) that use L1 and L, roughening matrices as first- and second-order
Tikhonov regularization, respectively.
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If our model is higher dimensional (e.g., two or three dimensions), then the rough-
ening matrices described here would not be appropriate. In such cases, second-order
Tikhonov regularization is often implemented using a finite-difference approximation
to the Laplacian operator of appropriate dimensionality (see Exercise 4.3).

To ensure that the least squares problem (4.26) has a unique solution, we will require
that the matrix

G
A= [aL} (4.29)

has full column rank or equivalently that N(G) N N(L) = {0}.

We have already seen how to apply zeroth-order Tikhonov regularization to solve
(4.25), with L =1, using the singular value decomposition (4.16). To solve and analyze
higher-order Tikhonov regularization problems, we employ the generalized singu-
lar value decomposition, or GSVD [54, 62, 65]. The GSVD enables the solution
(4.25) to be expressed as a sum of filter factors times generalized singular vectors in a
manner that is analogous to the series representation of the generalized inverse solution
(4.16).

Unfortunately, the definition of the GSVD and associated notation are not presently
standardized. In the following, we will adhere to the conventions used by the MATLAB
gsvd command where G is an m by # matrix and L is a p by n matrix. Although
MATLAB’s implementation of the GSVD can handle matrices G and L that have over-
lapping null spaces, we assume in the following derivation that the matrix in (4.29) has
full column rank so that the solution to (4.26) will be unique. To further simplify the
derivation we will also assume that rank(L) = p. This is certainly true for the L matrices
in (4.27) and (4.28). In general we can eliminate redundant rows from L to make L have
full row rank.

Under the above assumptions there exist matrices U, V, X, A, and M with the
following properties and relationships:

* U is m by m and orthogonal.

* Vs p by p and orthogonal.

* X is n by n and nonsingular.

* A is an m by n matrix with diagonal entries that may be shifted from the main
diagonal of the matrix. The diagonal entries are

O<Atpt1 <Aoo=+ =ZAppyrm=1 (4.30)

where k=0 when m > n, and k =n— m when m < n.
* Mis a p by n diagonal matrix with

Mg =Mp>-+->=My, >0, (4.31)
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and
M'M+ATA =1L (4.32)
* The matrices G and L can be written as
G =UAX" (4.33)
and
L=VMX', (4.34)
The generalized singular values of G and L are
— (4.35)
i
where
A =,/diag(ATA) (4.36)
and

w=,/diag(MTM). (4.37)

These definitions may seem somewhat odd, since the diagonal elements of AT A and
MM are simply squares of the diagonal elements of A and M. The issue here is that
the diagonals of A and M are not of the same length. The effect of these definitions is
to create vectors A and p that are of length n, padding with zeros as needed.

Because of the ordering of A and u, the generalized singular values appear in
ascending order with

M=V =":" "=V (438)

Also note that if u; = 0, then the corresponding generalized singular value y; is infinite
or undefined.

Letting Y = X~ (the inverse transpose), we can apply (4.33) and the orthogonality
of U to show that

Y'GTGY =ATA. (4.39)

A= ,/YEGTGY.,i = GY.i|>. (4.40)

Whenever A; is 0, this means that the corresponding column of Y is in N(G). How-

Note that

ever, when A; is nonzero, the corresponding column of Y is not in N(G). Since Y is
nonsingular, the columns of Y are linearly independent. If we pick r so that A, = 0, but
Ar+1 7# 0, then r is the dimension of N(G), and the vectors Y. 1, Y.5, . . ., Y., form
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a basis for N(G). Note that because rank(G) + dim(N(G)) = n, we have determined
that rank(G) = n—r.
Similarly, it is easy to use (4.34) and the orthogonality of V to show that
Y'L'Ly =m'Mm. (4.41)

Since rank(L) = p, the dimension of the null space of Lis n — p. Thus Hpt1s Kpt2s + -
Wy are 0, and the vectors Y. p11, Y. pt2, . . ., Y., form a basis for N(L). Note that the
columns of Y are not generally orthogonal, so we have not found orthonormal bases for
the null spaces of G and L.

The GSVD may be computationally expensive (or intractable for very large prob-
lems) to evaluate. However, as with the SVD, once the decomposition matrices are
computed, solutions to least squares problems may be calculated very easily. We begin
by introducing the change of variables

Yx=m. (4.42)
With this substitution, the normal equations for (4.26) become
(G"G+e’L'L) Yx=G'd. (4.43)
Using (4.33) and (4.34), and Y =X~ T, we have
(Y "ATUTUAY '+ o2y TMIVIVMY ) Yx=Y TATUTd,  (4.44)
(Y TATAY ' +e2Y "M'MY ) Yx=Y TATUTd, (445
and, finally,
(ATA+e’M'M) x=A"U"d. (4.46)

The matrix on the left-hand side of this system of equations is diagonal. Multiplying
both sides by the inverse of this diagonal matrix gives the solution

T
)‘iU-,i+kd

= DIk 4.47

Xi
where, as in (4.30), k=0 when m > n, and k=n—m when m < n. In terms of the
generalized singular values, this can be written as

2 T
Y U~,i+kd
yi+a® A

Xi

(4.48)

Substituting this expression for x; into m = Yx, we obtain the summation formula

T
- V,'2 U~,i+led

my | = Y.J (449)
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where

V{2

"= yrra

(4.50)
are GSVD filter factors that are analogous to the filter factors obtained in the series
expression for the zeroth-order Tikhonov regularized solution (4.17). In evaluating this
sum, we sometimes encounter situations in which y; is infinite. In those cases, the filter
factor f; should be set to 1. Similarly, there are situations in which A; =0 and y; =0,
producing an expression of the form 0?/0 in the sum. These terms should be treated as 0.

When G comes from a Fredholm integral equation of the first kind, the GSVD
typically has two properties that were also characteristic of the SVD. First, the m nonzero
generalized singular values ¥, Yu—1, Vu—m+1 from (4.35) trend toward zero without any
obvious break. Second, the vectors U.;, V.;, X.;, and Y.; tend to become rougher as
y; decreases.

®
Example 4.4

We return to the vertical seismic profiling example previously discussed in Examples 1.3
and 1.9. Here, consider a 1-km deep borehole experiment discretized using m = n =50
observation and model points, corresponding to sensors every 20 m, and 20 m thick,
constant-slowness model layers. Figure 4.10 shows the test model that we will try to
recover. A synthetic data set was generated with N(0, (2 x 10™*s)?) noise added.
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0 200 400 600
Depth (m)

Figure 4.10 A smooth test model for the VSP problem.
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The discretized system of equations Gm = d has a small condition number (64). This
happens in part because we have chosen a very coarse discretization, which effectively
regularizes the problem by discretization. Another reason is that the vertical seismic pro-
filing problem is only mildly ill-posed [45]. Figure 4.11 shows the least squares solution,
together with 95% confidence intervals.

From the statistical point of view, this solution is completely acceptable. However,
suppose that from other information, we believe the slowness should vary smoothly
with depth. We will next apply higher-order Tikhonov regularization to obtain smooth
solutions to this problem.

Figure 4.12 shows the first-order Tikhonov regularization L-curve for this problem.
The L-curve has a distinct corner near o & 122. Figure 4.13 shows the corresponding
solution. The first-order regularized solution is much smoother than the least squares
solution, and is much closer to the true solution.

Figure 4.14 shows the L-curve for second-order Tikhonov regularization, which has
a corner near @ ~ 1965. Figure 4.15 shows the corresponding solution. This solution
1s smoother still compared to the first-order regularized solution. Both the first- and
second-order solutions depart most from the true solution at shallow depths where the
true slowness has the greatest slope and curvature. This happens because the first- and
second-order Tikhonov regularized solutions are biased towards flatness and second—
derivative smoothness, respectively.

Figure 4.16 shows filter factors corresponding to these first- and second-order solu-
tions. Higher-order terms in (4.49) are severely downweighted in both cases, particularly

0.36
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0.28

0.26
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0.24

0.22
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Figure 4.11 Least squares solution for the VSP problem, with 95% confidence intervals.
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Figure 4.12 L-curve and corner for the VSP problem, first-order regularization.
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Figure 4.13 Tikhonov solution for the VSP problem, first-order regularization, « = 122, shown in
comparison with the true model (Figure 4.10).

in the second-order case. Because of the smoothness of the true model, the model
seminorms can be reduced considerably through the selection of relatively large regular-
ization parameters, ¢, without large data misfit increases. In this example the 2-norms
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Figure 4.14 L-curve and corner for the VSP problem, second-order regularization.

0.34 T T T

\
0.32
0.30

0.28

Slowness (s/km)

0.26

0.24

0 200 400 600 ¢
Depth (m)

Figure 4.15 Tikhonov solution for the VSP problem, second-order regularization, « = 2341, shown in
comparison with the true model (Figure 4.10).

of the difference between the first- and second-order solutions and the true model
(discretized into 50 values) are approximately 1.2 x 107> s/km and 1.0 x 107> s/km,
respectively.



4.5. Resolution in Higher-order Tikhonov Regularization

111

100 T T T
10711 o
o
o
o
1storder  _o0°°
102 ¢ 500%°
» 00
o 5000
% oooooooooooooooooo
£ 1073
o *
[0 *
= *
L * *
104 F «*
*
» *
*
10-5L o 2nd orde
*
¥
¥ *
ttttttt"’“.‘
1076 1 I 1
0 10 20 30

Index, i

Figure 4.16 Filter factors (4.17) for optimal first- and second-order Tikhonov solutions to the VSP
problem shown in Figures 4.13 and 4.15.

4.5. RESOLUTION IN HIGHER-ORDER TIKHONOV REGULARIZATION

As with zeroth-order Tikhonov regularization, we can compute a resolution matrix for
higher-order Tikhonov regularization. For a particular roughening matrix L and value
of o, the Tikhonov regularization solution can be written as

m, ; = G*d (4.51)
where

G'=G'G+e’L'L)'GT. (4.52)

Using the GSVD, we can write this expression as

G = XATUTUAXT +o?’(xXMTVIvVvMXT) "I xXATUT (4.53)
=XATAXT +o?>xMm'mx ")) 'xATu”T (4.54)
=XATA +*M"MXH)'xXATUT (4.55)
=X TATA+*M"™M)'ATUT. (4.56)
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The model resolution matrix is then

R,, = GG (4.57)
=X TATA+o>M"M)"ATUTUAXT (4.58)
=xX"TrxT, (4.59)
where
F=(ATA+a®M™M) "' ATA (4.60)

is a diagonal matrix of GSVD filter factors (4.50).

@
Example 4.5

To examine the resolution of the Tikhonov regularized inversions of Example 4.4, we
perform a spike test using (4.59). Figure 4.17 shows the effect of multiplying R;,, times
a unit amplitude spike model (at depth 500 m) under first- and second-order Tikhonov
regularization using o values of 122 and 2341, respectively. These curves can equiv-
alently be conceptualized as rows/columns of the full resolution matrix at the index
corresponding to 500 m. The spike test results indicate that these Tikhonov regularized
solutions are smoothed versions of the spike model. Under first- or second-order regu-
larization, the resolution of various model features will depend critically on how smooth
or rough these features are in the true model. In Figures 4.13 and 4.15, the higher-order
solutions recover the true model better because the true model is smooth. Conversely,
the spike model is not well recovered because of its rapid variation.
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Figure 4.17 The model resolution matrix R,,, multiplied times the spike model for the first- and
second-order regularized solutions of Example 4.4.
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4.6. THE TGSVD METHOD

In the discussion of the SVD in Chapter 3, we examined the TSVD method of regulari-
zation, which rejects model space basis vectors associated with smaller singular values.
Equivalently, this can be thought of as a damped SVD solution in which filter factors
of one are used for basis vectors associated with larger singular values, and filter factors
of zero are used for basis vectors associated with smaller singular values. This approach
can be extended to the GSVD solution (4.49) to produce a truncated generalized
singular value decomposition or TGSVD solution. In the TGSVD solution we
simply assign filter factors (4.50) of one to the ¢ largest generalized singular values terms
in the sum to obtain
. ul,.d
myr = > ,\—MY (4.61)
i=n—q+1

®
Example 4.6

Applying the TGSVD method to the VSP problem, we find L-curve corners near ¢ = 8
in the first-order case shown in Figure 4.18, and ¢ = 7 in the second-order case shown in
Figure 4.19. Examining the filter factors obtained for the corresponding Tikhonov solu-
tions shown in Figure 4.16, we find that they decay precipitously with decreasing index
near these locations. Figures 4.20 and 4.21 show the corresponding TGSVD solutions.
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Figure 4.18 TGSVD L-curve for the VSP problem as a function of g for first-order regularization with
the ¢ = 8 solution indicated.
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Figure 4.19 TGSVD L-curve for the VSP problem as a function of ¢ for second-order regularization with
the ¢ = 7 solution indicated.
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Figure 4.20 TGSVD solution of the VSP problem, g = 8, first-order regularization, shown in comparison
with the true model.

The model recovery is comparable to that obtained with the Tikhonov method. The
2-norms of the difference between the first- and second-order solutions and the true
model are approximately 1.0 x 1072 s/km and 7.1 x 1073 s/km, respectively, which are
similar to the Tikhonov solutions in Example 4.4.
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Figure 4.21 TGSVD solution of the VSP problem, ¢ = 7, second-order regularization.

4.7. GENERALIZED CROSS-VALIDATION

Generalized cross-validation (GCV) is an alternative method for selecting a regulariza-
tion parameter, ¢, that has a number of desirable statistical properties.

In ordinary or “leave-one-out” cross-validation, we consider the models that are
obtained by leaving one of the m data points out of the fitting process. Consider the
modified Tikhonov regularization problem in which we ignore a data point dg,

min ) ((Gm); —d)* + o’ [Lm|;3 (+.62)
ik
Call the solution to this problem mge’JL, where the superscript indicates that di, was left

k]

out of the computation. Ideally, the model m([x ;. would accurately predict the missing
data value dj. In the leave-one-out approach, we select the regularization parameter o
so as to minimize the predictive errors for all k:

m

1
min g(o) = > (G@ml) ) —d?. (4.63)
k=1

Unfortunately, computing g(a) involves solving m problems of the form (4.62). Gene-
ralized cross-validation is a way to speed up this computation.
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First, let

k ,
~ (Gm&y]L)k i=k

di = (4.64)
di i # k.
(k] \ (k]
Note that because (Gma,]_)k =dp, m, also solves
min((Gm);, — d)” + ) _((Gm); — d)* + o’ ||[Lm][3, (4.65)
ik
which is equivalent to
min |Gm — d|} + | Lm|3. (4.66)
This result is known as the leave-one-out lemma. By this lemma,
ml) = G*d. (4.67)
We will use (4.67) to eliminate m([f:]L from (4.63), because
GG"d), — (GG d),.
(GG D= (GG _ g, (4:68)

d, — dp,

where (GG?) k.l are the diagonal elements of the data resolution matrix (4.21). Subtrac-
ting both sides of the equation from 1 gives

d, — dp, — (GG*d), + (GG d),

. =1—(GG")ps. 4.69
4, (4.69)

Since (GG'd) = (Gmg, i, (GGFd),=dj, and (Gmly)) =di, equation (4.69)
simplifies to

(Gmy 1) — dg

7 =1—(GG")p. (4.70)
(Gmy, ) — di

Rearranging this formula and substituting into (4.63), we obtain

1 ((Gmy ) — )
gle) =~ > (W) . “.71)

k=1
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We can simplify the formula further by replacing the (GG*);,, with the average value
1
(GGH)pp ~ —Tr(GGY), (4.72)
m

which gives an expression for the (4.63) that can be evaluated as a function of a:

(Gmy 1) — di)?

1 4.73

g(a) " ]; (L (m — Tr(GGH)))? o
- 2

B m||Gmyg, 1 —d||5 (4.74)

Tr(I — GG¥)2

It can be shown that under reasonable assumptions regarding the noise and smooth-
ness of Myye, the value of @ that minimizes (4.74) approaches the value that minimizes
E[Gmy | — dirye] as the number of data points m goes to infinity, and that under the
same assumptions, E[||mgue —myg ]2] goes to 0 as m goes to infinity [36, 170]. In
practice, the size of the data set is fixed in advance, so the limit is not directly applicable.
However, these results provide a theoretical justification for using the GCV method to
select the Tikhonov regularization parameter.

®
Example 4.7

Figures 4.22 and 4.23 show g(a) for the VSP test problem, using first- and second-order
Tikhonov regularization, respectively. Respective GCV function (4.74) minima occur

9(®)

10 F

100 10° 102 108 104
o

Figure 4.22 GCV curve for the VSP problem and its minimum, first-order regularization.
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o

Figure 4.23 GCV curve for the VSP problem and its minimum, second-order regularization.
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Figure 4.24 GCV solution for the VSP problem, first-order, « = 76.3, shown in comparison with the
true model.



4.8. Error Bounds

119

0-34 T T T T

0.32

0.30

0.28

Slowness (s/km)

0.26

0.24

1 1 1 1
0 200 400 600 800 1000
Depth (m)

Figure 4.25 GCV solution for the VSP problem, second-order, @ = 981, shown in comparison with the
true model.

near ¢ = 76.3 and o = 981, which are somewhat smaller than the « values estimated
previously using the L-curve (Example 4.4). The corresponding models (Figures 4.24
and 4.25) thus have somewhat larger seminorms.

4.8. ERROR BOUNDS

We next present two theoretical results that help to address the accuracy of Tikhonov
regularization solutions. We will present these results in a simplified form, covering only
zeroth-order Tikhonov regularization.

The first question is whether for a particular value of the regularization parameter,
o, we can establish a bound on the sensitivity of the regularized solution to the noise
in the observed data d and/or errors in the system matrix G. This would provide a
sort of condition number for the inverse problem. Note that this does not tell us how
far the regularized solution is from the true model, since Tikhonov regularization has
introduced a bias in the solution. Under Tikhonov regularization with a nonzero o, we
would not obtain the true model even if the noise was 0.

The following theorem gives a bound for zeroth-order Tikhonov regularization
[65]. A slightly more complicated formula is available for higher-order Tikhonov
regularization [65].
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Theorem 4.1 Suppose that the problems

min |Gm — d|5 +a*m|3 4.75)
and

min [|Gm —d|)3 + */m|3 (4.76)

are solved to obtain my, and my. Then

[mg —my|f2 < Ka_ (26 n llell2 s ”rcx”Z) “477)
Mg |2 1 — ek llde I llde I
where
G
7, = G2 4.78)
o
E=G-G (4.79)
e=d—d (4.80)
E
¢ = IEl (4.81)
IGll2
dy = Gmy (4.82)
and
te =d—dg. (4.83)

In the particular case when G =G, and the only difference between the two

problems is e = d — d, the inequality becomes even simpler

Imy —mgll2 _ _ lell2
——— < Ky .
Mg |2 llde [l

(4.84)

The condition number k is inversely proportional to . Thus increasing o will decrease
the sensitivity of the solution to perturbations in the data. Of course, increasing o also
increases the error in the solution due to regularization bias and decreases resolution.

The second question is whether we can establish any sort of bound on the norm of
the difference between the regularized solution and the true model. This bound would
incorporate both sensitivity to noise and the bias introduced by Tikhonov regulariza-
tion. Such a bound must of course depend on the magnitude of the noise in the data.
It must also depend on the particular regularization parameter chosen. Tikhonov devel-
oped a beautiful theorem that addresses this question in the context of inverse problems
involving IFKs [161]. More recently, Neumaier has developed a version of Tikhonov’s
theorem that can be applied directly to discretized problems [116].
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Recall that in a discrete ill-posed linear inverse problem, the matrix G commonly
has a smoothing effect, in that when we multiply Gm, the result is smoother than
m. Similarly, if we multiply Gm by G', the result will be even smoother than Gm.
This smoothing in such problems is a consequence of the fact that the singular vectors
corresponding to the larger singular values of G are smooth. Note, however, that this is
not a universal property of all matrices; for example, if G is a matrix that approximates
the differentiation operator, then Gm will be rougher than m.

For discrete ill-posed problems, models in the range of GT will form a relatively
smooth subspace of all possible models in R". Models in this subspace can be written
using the range of G as a basis as m = G”w, using the coefficients w. Furthermore,
models in the range of G'G form a subspace of R(GT), since any model in R(GTG)
can be written as m = G’ (Gw), which is a linear combination of columns of GT.
Because of the smoothing effect of G and G”, we would expect these models to be
even smoother than the models in R(GT). We could construct smaller subspaces of R"
that contain even smoother models, but it turns out that with zeroth-order Tikhonov
regularization these are the only subspaces of interest.

There is another way to see that models in R(GT) will be relatively smooth. Recall
that the vectors V.1, V.5, ..., V., from the SVD of G form an orthonormal basis
for R(GT). For discrete ill-posed problems, we know from Chapter 3 that these basis
vectors will be relatively smooth, so linear combinations of these vectors in R(GT)
should be smooth.

The following theorem gives a bound on the total error including bias due to reg-
ularization and error due to noise in the data for zeroth-order Tikhonov regularization
[116].

Theorem 4.2 Suppose that we use zeroth-order Tikhonov regularization with regularization
parameter o to solve Gm = d, and that My can be expressed as one of the following distinct
cases, for some w, and as parameterized by p,

G'w p=1
Mypye = T (485)
G 'Gw p=2
and that
|Gmyrye — dl2 < Afw]|2 (4.86)

for some A > 0. Then

A
Imgrye — G¥d|l2 < (ﬁ + Votp) Iwll2, (4.87)
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where
172 p=1
, )2 r=t (4.88)
1 p=2
Furthermore, if we begin with the bound
”Gmtrue - d||2 = 5a (489)
we can let
)
= . (4.90)
[wll2
Under this condition the optimal value of o is
R A 1
a= (—) = O(APr?). (4.91)
2yp
With this choice of o,
A =2y parT! (4.92)
and the error bound simplifies to
N p
My — GLdll2 < ¥ (p+ D@ Iwll> = O(AFT). (4.93)

Theorem 4.2 tells us that the error in the Tikhonov regularization solution depends
on both the noise level § and on the regularization parameter «. For larger values of
o, the error due to regularization in recovering the true model will be dominant. For
smaller values of &, the error due to noise in the data will be dominant. We seek the
optimal value of & that best balances these effects. Using the optimal ¢, (4.93) indicates
that we can obtain an error bound of O(A2/3) if p =2, and an error bound of O(A/2)
ifp=1.

Of course, the above result can only be applied when our true model lives in the
restricted subspace of R(GT). In practice, even if the model does lie in R(GT), the
vector w could have a very large norm, making the bound uninformative.

Thus, applying this theorem in a quantitative fashion 1s typically impractical. How-
ever, the theorem does provide some useful insight into the ability of Tikhonov
regularization to recover a true model. The first point is that the accuracy of the regu-
larized solution depends very much on the smoothness of the true model. If myy. is not
smooth, then Tikhonov regularization simply will not give an accurate solution. Fur-
thermore, if the model mye is smooth, then we can hope for an error in the Tikhonov



4.8. Error Bounds

123

regularized solution which is O(8'/2) or O(8*/%). Another way of saying this is that we
can hope at best for an answer with about two thirds as many correct significant digits as
the data.

®
Example 4.8

Recall the Shaw problem previously considered in Examples 4.1 and 4.3. Because G is
a nonsingular matrix, the spike model should lie in R(GT). However, GT is numerically
singular due to the ill-posedness of the problem, and the spike model thus lies outside of
the effective range of GT. Any unregularized attempt to find w produces a meaningless
answer due to numerical instability. Because the spike model does not lie in R(GT),
Theorem 4.2 does not apply.

Figure 4.26 shows a smooth model that does lie in the range of G'. For this model
we constructed a synthetic data set with noise as before at 8§ =4.47 x 107°. Equa-
tion (4.93) suggests using o = 8.0 x 10™*. The resulting error bound is 8.0 x 107,
while the actual norm of the model error is 6.6 x 10™*. Here the data were accurate
to roughly six digits, while the solution was accurate to roughly four digits. Figure 4.27
shows the reconstruction of the model with N(0, (1.0 x 107°)2) noise added to the data
vector, showing that the solution is well recovered. This example once again demon-
strates the importance of smoothness in the true model in determining how accurately
it can be reconstructed with Tikhonov regularization.

0.35 T T T

0.30 b

0.25 i

0.20

Intensity

0.15 i

0.10 - i

0.05 b

0
-2 -1 0 1 2

Figure 4.26 A smooth modelin R(GT).
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Figure 4.27 Reconstruction of the smooth model with N(0, (1.0 x 107%)2) noise.

4.9. EXERCISES

1. Use the method of Lagrange multipliers (Appendix C) to derive the damped least
squares problem (4.4) from the discrepancy principle problem (4.2), and demonstrate
that (4.4) can be written as (4.5).

2. Consider the integral equation and data set from Problem 3.5. You can find a copy
of this data set in the file ifk.mat.

a. Discretize the problem using simple collocation.

b. Using the data supplied, and assuming that the numbers are accurate to four
significant figures, determine a reasonable bound § for the misfit.

c. Use zeroth-order Tikhonov regularization to solve the problem. Use GCV,
the discrepancy principle, and the L-curve criterion to pick the regularization
parameter.

d. Use first-order Tikhonov regularization to solve the problem. Use GCV, the
discrepancy principle, and the L-curve criterion to pick the regularization
parameter.

e. Use second-order Tikhonov regularization to solve the problem. Use GCV,
the discrepancy principle, and the L-curve criterion to pick the regularization
parameter.

f. Analyze the resolution of your solutions. Are the features you see in your
inverse solutions unambiguously real? Interpret your results. Describe the size
and location of any significant features in the solution.
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3. Consider the following problem in cross-well tomography. Two vertical wells

are located 1600 m apart. A seismic source is inserted in one well at depths of

50, 150, . . ., 1550 m. A string of receivers is inserted in the other well at depths

of 50 m, 150 m, . . ., 1550 m. See Figure 4.28. For each source-receiver pair, a

travel time is recorded, with a measurement standard deviation of 0.5 ms. There are

256 ray paths and 256 corresponding data points. We wish to determine the velocity

structure in the two-dimensional plane between the two wells.

Discretizing the problem into a 16 by 16 grid of 100 meter by 100 meter blocks
gives 256 model parameters. The G matrix and noisy data, d, for this problem
(assuming straight ray paths) are in the file crosswell.mat. The order of parameter
indexing from the slowness grid to the model vector is row by row (e.g., Example
1.12).

a. Use the TSVD to solve this inverse problem using an L-curve. Plot the result.

b. Use zeroth-order Tikhonov regularization to solve this problem and plot your
solution. Explain why it is difficult to use the discrepancy principle to select the
regularization parameter. Use the L-curve criterion to select your regularization
parameter. Plot the L-curve as well as your solution.

c. Use second-order Tikhonov regularization to solve this problem and plot your
solution. Because this is a two-dimensional problem, you will need to implement
a finite-difference approximation to the Laplacian (second derivative in the
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J11T12[13[
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o n
N
©
8 800
° _
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(,) -
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Figure 4.28 Cross-well tomography problem, showing block discretization, block numbering conven-
tion, and one set of straight source-receiver ray paths.
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horizontal direction plus the second derivative in the vertical direction) in
the roughening matrix. The L matrix can be generated using the following
MATLAB code:

L=zeros(14%14,256);
k=1;
for i=2:15,
for j=2:15,
M=zeros(16,16);
M(i,3)=-4;
M(i,j+1)=1;
M(i,j-1)=1;
M(i+1,j)=1;
M(i-1,3)=1;
L(k,:)=reshape(M,256,1)";
k=k+1;
end
end

What, if any, problems did you have in using the L-curve criterion on this
problem? Plot the L-curve as well as your solution.
d. Discuss your results. If vertical bands appeared in some of your solutions, can you
explain why?

4. Apply second-order Tikhonov regularization to solve the problem of finding a
smooth curve that approximately fits a set of noisy data points. Write a MAT-
LAB program to find a function specified at the 191 points x =1, 1.1, 1.2, . . ., 20
that approximately fits the 20 data points specified at x=1, 2, 3, . . ., 20 given
in the file interpdata.mat. Construct an appropriate 20 by 191 G matrix, and
use the library function get1 rough to obtain the necessary second-order rough-
ening matrix, L. Produce solutions for regularization parameter values of o =
0.2, 0.4, 0.6, ..., 10 and show the tradeoff curve between 2-norm data misfit and
model seminorm on a linear-linear plot. If the data noise is independent and nor-
mally distributed with a standard deviation of 0.3, use the discrepancy principle to
find and plot an optimal interpolated curve along with the data points. What is the
%2 value of this solution? Is it reasonable?

5. In some situations it is appropriate to bias the regularized solution toward a particular
model myg. In this case, we would solve

min ||Gm —d||5 4 o || L(m — my)|}3. (4.94)

Worite this as an ordinary linear least squares problem. What are the normal
equations? Can you find a solution for this problem using the GSVD?
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4.10. NOTES AND FURTHER READING

Hansen’s book [65] is a very complete reference on the linear algebra of Tikhonov
regularization. Arnold Neumaier’s tutorial [116] is also a very useful reference. Two
other surveys of Tikhonov regularization are [44, 45]. Vogel [169] includes an extensive
discussion of methods for selecting the regularization parameter. Hansen’s MATLAB
Regularization Tools [64] is a collection of software for performing regularization within
MATLAB.

The GSVD was first defined by Van Loan [101]. References on the GSVD and
algorithms for computing the GSVD include [3, 53, 62, 65].

Selecting the regularization parameter is an important problem in both theory and
practice. Much of the literature on functional analytic approaches assumes that the noise
level is known. When the noise level is known, the discrepancy principle provides a
scheme for selecting the regularization parameter for ill-posed problems that is conver-
gent in the sense that, in the limit as the noise level goes to zero, the regularized solution
goes to Myye [45].

In practice, the noise level is often unknown, so there has been a great deal of interest
in schemes for selecting the regularization parameter without its prior knowledge. The
two most popular approaches are the L-curve method and GCV. The L-curve method
was introduced by Hansen [63, 65]. GCV was introduced by Craven and Wahba [36,
170]. The formula for GCV given here is very expensive to compute for large problems.
A GCV algorithm for large-scale problems is given by Golub and von Matt [54]. Vogel
has shown that the L-curve method can fail to converge [168]. It can be shown that no
scheme that depends only on noisy data without knowledge of the noise level can be
convergent in the limit as the noise level goes to zero [45].

‘Within statistics, poorly conditioned linear regression problems are said to suffer from
“multicollinearity” A method called “ridge regression,” which is identical to Tikhonov
regularization, is often used to deal with such problems [40]. Statisticians also use a
method called “principal components regression” (PCR), which is identical to the
TSVD method [113].
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CHAPTER FIVE

Discretizing Problems Using Basis
Functions

Synopsis

Techniques for discretizing continuous inverse problems characterized by Fredholm inte-
gral equations of the first kind using continuous basis functions are discussed, both for
general basis functions and for representers. The Gram matrix is defined and used in
analyzing these problems. The method of Backus and Gilbert is also introduced.

5.1. DISCRETIZATION BY EXPANSION OF THE MODEL

To this point, we have discretized continuous inverse problems using the collocation
scheme discussed in Chapter 1. In this chapter, we discuss an alternative approach in
which we expand the unknown model m(x) in terms of a set of basis functions.

We begin with a Fredholm integral equation of the first kind,

b
d() = f o, Eym(E) d. 6.1)

Note from Section A.11 that we can generalize linear algebra, including the concepts
of linear independence, dot products, orthogonality, and the 2-norm, to spaces defined
by functions. We will assume that our model m(x) lies in the space Ly (a, b) of functions
that are square integrable on [a, b].

In Ly (a, b), the dot product of two functions f(x) and g(x) is defined as

b

(), o)) = / F)e) d, 52)

a

the 2-norm of f(x) is

b

@l = / F? d, 5.3

a

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00005-7
(© 2013 Elsevier Inc. All rights reserved.
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and the distance between two functions under this norm is

b
1FG) — gl = /U@—Amﬁx 5.4)

Ideally, we could try to solve the Tikhonov regularization problem

min [|m(x)|l2
b

/g(x, E)mE) d& —d(x)| < A.

a 2

(5.5)

However, in practical cases, we do not fully know d(x) in the sense that we normally
have a finite number of data points di = d(x1), do = d(x2), . . ., dy, = d(x,,) arranged
in a vector d. An appropriate approach is thus to minimize the model norm ||m(x)|2
subject to a constraint on the misfit at the data points:

min |[m(x)]|2

lg(m(x)) —dll2 <8, (5.6)
where
-, _
[ g(xt, &)m(g) dg
b
d
o) = afg(xz, Eym(&) d& 5

b
[ g, §)m(§) d§

Consider a finite dimensional subspace H of Ly (a, b), with the basis

h1(x), ha(x), . . ., hy(x) (5.8)

so that any model m(x) in the subspace H can be written uniquely as

n
m(x) = Bi(x). (5.9)
=1
We will seek the model m(x) in H that has minimum norm and adequately fits the data.
Substituting (5.9) into (5.1), and considering only those points x; where we have
data, we obtain
b

d(xi)zfg(xi,é) DOBhE) | dE i=1,2,...,m (5.10)

J=1

a
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To simplify the notation, let

g€&)=g9(x, &) i=1,2,...,m (5.11)
and
di=dx) i=1,2,...,m. (5.12)
We interchange the integral and sum to get
" b
=Y B / GOh(x) dx i=1,2,. .., m (5.13)
Jj=1 a
If we let G be the m X n matrix with entries
b
GiJ=/gi(x)hj(x) dx, (5.14)

a

then the discretized inverse problem can be written as
GB =d, (5.15)

which can be solved to find the functional expansion coefficients B in (5.9) to construct
the desired model.

Because of noise in the data, we do not normally desire, nor will we be generally
able, to solve (5.15) exactly. Furthermore, we typically need to regularize our solution
to the inverse problem. We could try to solve

min || 8|2
IGB —dl2 = 4.

However, ||B]2 is generally not proportional to ||m(x)||2. Instead, note that

(5.16)

b

Im() 2 = / m(x)? dx

b

= f (Z ,Bihi(x)> Z Bihi(x) | dx (5.17)
i=1 j=1

a

n n b
- Z Z BiBj / hi(x) hi(x) dox.

i=1 j=1 /
If we let H be the n by n matrix with
b
Hij= / hi(x)hi(x) dx, (5.18)

a
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then
lm(x)[13 = BHB. (5.19)

The matrix H is called the Gram matrix of the functions h;(x). It is relatively easy
to show that H is a symmetric and positive definite matrix, and thus has a Cholesky

factorization
H=R'R, (5.20)
so that
lm@)15=B"R'RB
, (5.21)
= IRl
We can write the Tikhonov regularization problem as
min [RB|2
5.22
1GB —dl2 < 5. 22

We can use the Lagrange multiplier technique (Appendix C) to turn this into an
unconstrained minimization problem

min |GB —d|3 + o |IRBII3, (5.23)

where the regularization parameter « is selected so that we obtain a solution that ade-
quately fits the data. This problem can easily be solved using the Cholesky factorization
of the normal equations, the generalized singular value decomposition, or iterative
methods discussed in Chapter 6.

Note that if we choose an orthonormal basis of functions, then

b
H= f i) () dxz{l = (5.24)
0 i#j

a

or H=R =1, and the minimization problem simplifies to (5.16).
To minimize a model derivative norm (e.g., ||m” (x)||» instead of ||m(x)||2), note that
because

'’ (x) =Y Bl (x), (5.25)

j=1
we can simply use the second derivative Gram matrix
b
H;;j= / I ()b (x) doc (5.26)

a

instead of (5.18).
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The simple collocation scheme described in Chapter 1 can also be thought of as a
special case of this approach, in which the h;(x) basis functions are “boxcar” functions
centered at the measurement points x;. A variety of other bases have been used in
practice. For example, sine and cosine functions can be used to produce solutions that are
Fourier series, and, for problems involving spherical symmetries, the spherical harmonic
functions are often used. In recent years, many researchers have investigated the use of
wavelet bases in the solution of inverse problems.

The choice of the finite dimensional subspace H and its basis is critical to the success
of this method in solving practical problems. As we have seen, the method finds the
model m(x) in the subspace H that minimizes ||m(x)||2 subject to fitting the data. There
is no guarantee that the model we obtain will actually have the minimum norm over the
entire space Ly (a, b). However, if the subspace includes a sufficiently large class of func-
tions, the resulting solution may be an adequate approximation to the solution of (5.6).

5.2. USING REPRESENTERS AS BASIS FUNCTIONS

A particularly interesting choice of basis is to use the representers (1.33) themselves as
the basis functions. This approach results in a solution that does effectively minimize
[lm(x)||2 over the entire space Lp(a, b).

Consider the space G spanned by the representers

@) =g(x, &) j=1,2,...,m (5.27)

Let G* be the perpendicular complement of G. G* consists of the functions f(x) in
L>(a, b) such that

b
/f(x)gj(x) dx=0 j=1,2,...,m (5.28)

Thus every function f(x) in G* is in the null space of the forward operator. Every
function m(x) in Ly(a, b) can be written uniquely as

m(x) = my (x) + ma(x) (5.29)
where mi (x) is in G and m»(x) is in GT. By the Pythagorean theorem,
lmGII3 = llmi (I3 + Im2 () 13- (5.30)

Since any nonzero function my(x) would have no effect on the fit to the data but
would increase ||m(x)|2, the optimal norm-minimizing solution to (5.6) will always
have mp(x) = 0. This means that minimizing ||m(x)|l2 over our subspace G will be
equivalent to minimizing ||m(x)||» over all of Ly (a, b).
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The Gram matrix of the representers, I', has entries
b

Fg=/&@&@ﬁm (5.31)

a

In terms of this matrix,

Im(x)|15=B'TB, (5.32)

so that the discretized Tikhonov regularization problem (5.22) becomes

min [|RB|2

ITB —d|> <6, (5.33)

where R is the Cholesky factorization of T'.

Can we extend this approach to minimizing a derivative-based model roughness
measure (e.g., ||m”(x))|| as we did in (5.26)? It is still true that adding a nonzero func-
tion my(x) from GT to m(x) will have no effect on the fit to the data. Unfortunately,
derivatives of models in G and G will no longer generally satisfy the orthogonality
relationship (5.30), that is,

" )13 7 1l ()15 + Il () 113, (5.34)

because orthogonality of two functions f(x) and g(x) does not imply orthogonality of
f"(x) and ¢"(x). Because adding a nonzero function ms(x) from G might actually
decrease ||m” (x)||2, minimizing ||m” (x)||> over our subspace G in this case will not be
equivalent to minimizing over Ly (a, b).

5.3. THE METHOD OF BACKUS AND GILBERT

The method of Backus and Gilbert [2, 126] is applicable to continuous linear inverse
problems of the form

b
d(x) = / g(x, &)m(§) d§, (5.35)
a
where we have observations at points x1, x2, . . ., x,. Let
di=dx) j=1,2,...,m (5.36)

and

§&) =g, &) j=1,2,...,m (5.37)
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Using (5.35), we can write the d; in terms of the true model, mye, as

b

4= / o), E) e €) dE

a

. (5.38)

= f gj(g)mtrue(g) d§ .
a
The Backus and Gilbert method estimates #qye () at some point X, given the m data
values d;. The method produces model estimates that are linear combinations of the data

elements

m

m= Z dej A Migrye (X) (5.39)
J=1

where the coefficients ¢ are to be determined.
Combining (5.37) and (5.38) gives

b

= / G e (x) doc
=1y
b m
= [ {2 a0 | oo s (5.40)
a =1
b

=/ A(x)mtrue(x) d.’X‘,

where
Alx) = Z Gigi(x). (5.41)

=1

The function A(x) is called an averaging kernel. Ideally, we would like the averaging
kernel to closely approximate a delta function

A(x) =8(x — %) (5.42)

because, assuming exact data, (5.40) would then produce exact agreement between the
true and estimated model (1 = mye(X)). Since this is not possible, we will instead select
the coefficients so that the area under the averaging kernel is one, and so that the width
of the averaging kernel around X is as small as possible.
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In terms of the coefficients ¢, the unit area constraint can be written as

b b " b
/ Ax) dx:/ D g de=)" g fgj(x) dx | =1. (5.43)
f a J=1 J=1 a
Letting
b
q= / gi(x) dx, (5.44)
the unit area constraint (5.43) can be written as
qlc=1. (5.45)

Averaging kernel widths can be usefully characterized in a variety of ways [126]. The
most commonly used measure is the second moment of A(x) about x:

b
w= / A2 (x—%)? dx. (5.46)
In terms of the coefficients ¢, this can be written using (5.43) as
w=c Hc (5.47)
where
b
o= [ o= 57 i (5.48)

a

Now, the problem of finding the optimal coefticients can be written as

: T
H
e e (5.49)
cq=1,
which can be solved using the Lagrange multiplier technique.
In practice, the data may be noisy, and the solution may thus be unstable. For mea-
surements with independent errors, the standard deviation of the estimate is given by

m
Var(i) = ) _ o/, (5.50)
_]':1

where 07 is the standard deviation of the jth observation.
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The solution can be stabilized by adding a constraint on the variance to (5.49)

min ¢ He
qfc=1
n (5.51)
pera )
i
=1

Again, this problem can be solved by the method of Lagrange multipliers. Smaller values
of § decrease the variance of the estimate, but restrict the choice of coefficients so that
the width of the averaging kernel increases. There is thus a trade-off between stability
of the solution and the width of the averaging kernel.

The method of Backus and Gilbert produces a model estimate at a particular point X.
It is possible to use the method to compute estimates on a grid of points x1, x2, . . ., x,.
However, since the averaging kernels may not be well localized around their associated
grid points, and may vary and overlap in complicated ways, this is not equivalent to
the simple collocation method of model representation introduced in Chapter 1. Fur-
thermore, such an approach requires the computationally intensive solution of (5.51) for
each point. For these reasons, the method does not receive wide use.

[ 4
Example 5.1

For a spherically symmetric Earth model, the mass M, and moment of inertia I, are
determined by the radial density p(r), where

R,
M, = / (477%) p(r) dr (5.52)
0

and

€

e
I
S— %

8 4
37‘[1/ p(r) dr. (5.53)

Using R, = 6.3708 x 10° m as the radius of a spherical Earth, and supposing that from
astronomical measurements we can infer that M, = 5.973 £ 0.0005 x 10%* kg and I, =
8.0240.005 x 1037 kg-m?, we will estimate the density of the Earth in the lower
mantle (e.g., at r = 5000 km), and core (e.g., at r = 1000 km).

Equations (5.52) and (5.53) include terms that span an enormous numerical range.
Scaling so that

P=r/R, p=p/1000 I =1/10 M,=M,/10**
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gives
1
M, = 0.2586 / (477%) p(7) 7 (5.54)
0
and
1
I, = 1.0492 / (gn;“) () dr. (5.55)
0

Applying (5.49) for r = 5000 km gives the coefficient values ¢! = [1.1809, —0.1588]
and a corresponding model density of 5.8 g/cm?®. This is a fairly accurate estimate of
density for this radius, where standard earth models estimated using seismological methods
[96] infer densities of approximately 5 g/cm?®. The associated standard deviation (5.50) is
0.001 g/cm?, so there is very little sensitivity to data uncertainty.

At r = 1000 km, we obtain the coefficients ¢! = [2.5537, —1.0047], and a corre-
sponding density estimate of 7.2 g/cm?. This is not an accurate estimate for the density
of the inner core, where standard earth models have densities of around 13 g/cm?®. The
corresponding standard deviation is just 0.005 g/cm?, so this inaccuracy is not related to
instability in the inverse problem.

Figure 5.1 shows the averaging kernels corresponding to these model element esti-
mates, and explains both the successful mantle and failed core density estimates. In
the mantle case, the averaging kernel has much of its area near the targeted radius of
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Figure 5.1 Averaging kernels for target radii of 1000 and 5000 km.
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5000 km. In the core case, however, the averaging kernel has most of its area at much

greater r, and little area near the target radius of 1000 km. The fundamental reason for

this situation is that both the mass and moment of inertia are relatively insensitive to the

density of the innermost earth.

5.4. EXERCISES

1.

Consider the earth density estimation problem of Example 5.1. Apply the generalized

inverse to estimate the density as a function of radius, using the given values of mass

and moment of inertia. Obtain a density model composed of 20 spherical shells of

equal thickness, and compare your results to a standard model.

Use the Gram matrix technique to discretize the integral equation from Example 5.1.

a. Solve the resulting linear system of equations, and plot the resulting model.

b. What was the condition number of I'? What does this tell you about the accuracy
of your solution?

Show that if the representers g;(f) are linearly independent, then the Gram matrix I’

is nonsingular.

Show that if the basis functions in (5.9) are orthonormal, then ||m(x)]2 = |B]l2.

Hint: Expand ||m(x) ||§ using (5.3), and then simplify using the orthogonality of the

basis functions.

Recall the polynomial regression problem from Exercise 2.5. Instead of using the

polynomials 1, x, . . ., X', we will use the basis of Legendre polynomials, which

are orthogonal on the interval [—1, 1]. These polynomials are generated by the

recurrence relation

(2n+ Dxpu(x) — npp—1(x)

put1(x) = g : (5.56)
starting with
po(x) =1 (5.57)
and
p1(x) =x. (5.58)

The next two Legendre polynomials are py(x) = (BaZ—1) /2 and p3(x) = (5x% —
3x)/2. This recurrence relation can be used both to compute coefficients of the
Legendre polynomials and to compute values of the polynomials for particular values
of x.

Use the first 20 Legendre polynomials to fit a polynomial of degree 19 to the
data from Exercise 2.5. Express your solution as a linear combination of the Legendre
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polynomials and also as a regular polynomial. How well-conditioned was this system

of equations? Plot your solution and compare it with your solution to Exercise 2.5.
6. Construct specific examples of functions mj (x) and ma(x) in Ly(—1, 1), such that

m(x) = my (x) +ma(x), m1(x) L ma(x), but [m” ()13 7 Im] ()15 + llm5 ()3

5.5. NOTES AND FURTHER READING

Techniques for discretizing integral equations are discussed in [45, 126, 166, 172]. A
variety of basis functions have been used to discretize integral equations including sines
and cosines, spherical harmonics, B-splines, and wavelets. In selecting the basis func-
tions, it is important to select a basis that can reasonably represent likely models. The
basis functions must be linearly independent, so that a function can be written in terms
of the basis functions in exactly one way, and (5.9) is thus unique. As we have seen, the
use of an orthonormal basis has the further advantage that ||B||2 = ||m(x)||2.

The selection of an appropriate basis for a particular problem is a fine art that requires
detailed knowledge of the problem as well as of the behavior of the basis functions.
Beware that a poorly selected basis may not adequately approximate the solution, result-
ing in an estimated model m(x) that is very wrong. The choice of basis can also have a
very large effect on the condition number of the discretized problem, potentially making
it very ill-conditioned.

An important theoretical question is whether the solutions to discretized versions of
a continuous inverse problem with noise-free data will converge to a solution of the
continuous inverse problem. Engl, Hanke, and Neubauer provide an explicit example
showing that nonconvergence of a discretization scheme is possible [45]. They also
provide conditions under which convergence is guaranteed. For Fredholm integral equa-
tions of the first kind, the Gram matrix approach using representers can be shown to be
convergent [45].
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Iterative Methods

Synopsis

We present several methods for solving linear inverse problems that may be far too large
for the methods previously discussed to be practical. These methods are iterative, in
that a sequence of trial solutions is generated that converges to a final solution. Kacz-
marz’s algorithm and the related ART and SIRT methods form one class, while methods
based on conjugate gradients form a second class. When the method of conjugate gra-
dients is applied to the normal equations, the resulting conjugate gradient least squares
(CGLS) method regularizes the solution to the inverse problem. Methods for estimat-
ing model resolution for very large model spaces are described. Illustrative examples
involving tomography and image deblurring are given.

6.1. INTRODUCTION

Singular value decomposition (SVD)-based pseudoinverse and Tikhonov regularization
solutions become impractical when we consider larger problems in which G has, for
example, tens of thousands of rows and columns. Storing all of the elements in such
a large G matrix can require a great deal of computer memory. If many of the ele-
ments in the G matrix are zero, as for example in ray-theory tomography, then G is a
sparse matrix, and we can obviate this problem by storing only the nonzero elements
of G and their locations. The density of G is the percentage of nonzero elements in the
matrix. MATLAB can store sparse matrices and most built-in MATLAB functions oper-
ate efficiently on sparse matrices. Dense matrices contain enough nonzero elements
that sparse storage schemes are not efficient.

Methods for the solution of linear systems of equations based on matrix factorizations
such as the Cholesky factorization, QR factorization, or SVD do not tend to work well
with sparse matrices. The problem is that the matrices that occur in the factorization of
G are often more dense than G itself. In particular, the U and V matrices in the SVD
and the Q matrix in the QR factorization are orthogonal matrices, which typically
make these matrices dense.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00006-9
(© 2013 Elsevier Inc. All rights reserved.
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The iterative methods discussed in this chapter do not require the storage of large
dense matrices. Instead, they work by generating a sequence of models m that converge
to an optimal solution. Steps in these algorithms typically involve multiplying G and G*
times vectors, which can be done without additional storage. Because iterative methods
can also take advantage of the sparsity commonly found in the G matrix, they are often
used for very large problems.

For example, consider a two-dimensional tomography problem where the model
is of size 256 by 256 (65,536 model elements) and there are 100,000 ray paths. Each
ray path will pass through less than 1% of the model cells, so the vast majority of the
elements (e.g., more than 99%) in G will be zero. If we stored G as a full matrix, it
would require about 50 gigabytes (GB) of storage. Furthermore, if we wished to apply
the SVD, the U matrix would require 80 GB of storage, and the V matrix would require
about 35 GB. Because of the extreme sparsity of G, such a matrix can be stored in less
than 1 GB using sparse storage.

At the time this book was written, computers with several gigabytes of main memory
were common, while only computers classified as supercomputers would have hundreds
or thousands of gigabytes of main memory. The point at which it becomes necessary
to use sparse matrix storage depends on the computer that we are using. Although the
memory capacity of computers has been increasing steadily for many years, it is safe to
say that there will always be problems for which sparse matrix storage will be required.
Furthermore, programs that use sparse matrix storage often run much faster than
programs that do not take advantage of sparsity. Thus it is a good idea to consider using
sparse storage even in cases where sufficient memory is available to store the full matrix.

6.2. ITERATIVE METHODS FOR TOMOGRAPHY PROBLEMS

We will concentrate in this section on Kaczmarz’s algorithm and its ART and SIRT
variants. These algorithms were originally developed for tomographic applications and
are particularly effective for such problems.

Kaczmarz’s algorithm is an easy-to-implement algorithm for solving a linear system
of equations Gm = d. To understand the algorithm, note that each of the m equations
G, m = d; defines an n-dimensional hyperplane in R"™. Kaczmarz’ algorithm starts with
an initial solution m¥, and then moves to a solution m) by projecting the initial
solution onto the hyperplane defined by the first row in G. Next m(! is similarly
projected onto the hyperplane defined by the second row in G, and so forth. The
process is repeated until the solution has been projected onto all m hyperplanes defined
by the system of equations. At that point, a new cycle of projections begins. These cycles
are repeated until the solution has converged sufficiently. Figure 6.1 shows an example
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y=x-1

Figure 6.1 Kaczmarz's algorithm on a system of two equations.

in which Kaczmarz’s algorithm is used to solve the system of equations

r=1

—x +y=-—1 6.1

To implement the algorithm, we need a formula to compute the projection of a
vector onto the hyperplane defined by equation i. Consider the hyperplane defined
by Gi+1.m = di;1. Because the vector G£_1 _is perpendicular to this hyperplane, the

update to m"” from the constraint due to row i 4 1 of G will be proportional to GZH;'

m™ =m® + pG], . (6.2)

Using the fact that Gi+1,.m(i+1) = di41 to solve for B, we obtain
Gi+1,-<m(i) + ,BGZH,.> = dit1 (6.3)
Gip.mW —diy = —,3Gi+1,-G,-L,. (6.4)

Gt .m® —diy g
T
(;F%1¢(;p+1¢

p=- (6.5)
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Thus the update formula is

) 0 _ 4.
M+ = m® — ng,-m;;T dig1 GT, . (6.6)
i+1,- Y41

It can be shown that if the system of equations Gm = d has a unique solution,
then Kaczmarz’s algorithm will converge to this solution. If the system of equations has
many solutions, then the algorithm will converge to the solution that is closest to the
point m) In particular, if we start with m® =0, we will obtain a minimum length
solution. If there is no exact solution to the system of equations, then the algorithm will
fail to converge, but will typically bounce around near an approximate solution.

A second important question is how quickly Kaczmarz’s algorithm will converge to a
solution. If the hyperplanes described by the system of equations are nearly orthogonal,
then the algorithm will converge very quickly. However, if two or more hyperplanes
are nearly parallel to each other, convergence can be extremely slow. Figure 6.2 shows
a typical situation in which the algorithm zigzags back and forth without making much
progress towards a solution. As the two lines become more nearly parallel, the problem
becomes worse. This problem can be alleviated by picking an ordering of the equations
such that adjacent equations describe hyperplanes that are nearly orthogonal to each
other. In the context of tomography, this can be done by ordering the equations so that
successive equations do not share common model cells.

y=(1/3)x

Figure 6.2 Slow convergence occurs when hyperplanes are nearly parallel.
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®
Example 6.1

Consider a tomographic reconstruction problem with the same geometry used in Exer-
cise 4.4, in which the slowness structure is parameterized in homogeneous blocks of
size | by I. The true model is shown in Figure 6.3. Synthetic data were generated, with
normally distributed random noise added. The random noise had a standard deviation
of 0.01. Figure 6.4 shows the TSVD solution. The two anomalies are apparent, but it is
not possible to distinguish the small hole within the larger of the two.

10
12
14

16

Figure 6.3 True model.

5 10 15

Figure 6.4 Truncated SVD solution.
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Figure 6.5 Kaczmarz's algorithm solution.

Figure 6.5 shows the solution obtained after 200 iterations of Kaczmarz’s algorithm.
This solution is extremely similar to the TSVD solution, and both solutions are about
the same distance from the true model.

The algebraic reconstruction technique (ART) is a version of Kaczmarz’s algorithm
that has been modified especially for the tomographic reconstruction problem. In (6.6),
the updates to the solution always consist of adding a multiple of a row of G to the
current solution. The numerator in the fraction is the difference between the right-hand
side of equation i+ 1 and the value of the i4 1 component of Gm. The denominator
in (6.6) is simply the square of the norm of Gi11... Effectively, Kaczmarz’s algorithm is
determining the error in equation i+ 1, and then adjusting the solution by spreading
the required correction over the elements of m that appear in equation i+ 1.

Algorithm 6.1 Kaczmarz's Algorithm

Given a system of equations Gm = d.

1. Leem@ =0.

2. Fori=0,1,...,m—1,let

Gip1.mV —di

GL, . 6.7)
Git1,. G}y o

3. If the solution has not yet converged, return to step 2.

mHD = @ _
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A crude approximation to the Kaczmarz update, used in ART, is to replace all of the
nonzero elements in row i 4 1 of G with ones. We define

Git1 = > m;! 6.8)

cell j in ray path i+ 1

as an approximation to the travel time along ray path i + 1, where [ is the cell dimension.
The difference between ¢i+1 and di41 is roughly the residual for the predicted travel time
of ray i+ 1.

Examining (6.6) for the ART-modified G, we see that ART simply takes the total
travel time misfit for ray i+ 1 and divides it by / times the number of cells in the ray
path, Nit1. This correction factor is then multiplied by a vector that has ones in cells
along ray path i+ 1. This procedure has the effect of smearing the needed correction in
travel time equally over all of the cells in the ray path.

The ART approximate update formula can thus be written as

(+1) _

INi+1
m; =

) _ git1—dig1 . :
m;’ — H—"= cell j in ray path i+ 1
{ I (6.9)

m}i) cell j not in ray path i4 1.

The approximation can be improved by taking into account that the ray path
lengths actually will vary from cell to cell. If Ly is the length of ray path i4 1, the
corresponding improved update formula from (6.6) for the tomography problem is

) | dipr it 1 . ,
, m + = cell j in ray path i+ 1
mj("f'l) _ J(i) Liy1  INm . (6.10)
m; cell j not in ray path i+ 1.

The main advantage of ART is that it saves storage. We need only store informa-
tion about which rays pass through which cells, and we do not need to record the
length of each ray in each cell. A second advantage of the method is that it reduces
the number of floating-point multiplications compared to that required by Kaczmarz’s
algorithm. Although in current computers floating-point multiplications and additions
require roughly the same amount of time, during the 1970s, when ART was first
developed, multiplication was slower than addition.

Algorithm 6.2 ART

Given a system of equations Gm = d arising from a tomography problem:

1. Letm® =0.

2. Fori=0,1, ..., m, let N;be the number of cells traversed by ray path i.
3. Fori=0,1, ..., m, let L; be the length of ray path i.




148 Chapter 6 Iterative Methods

Algorithm 6.2 (Continued)

4. Fori=0,1,...,m—=1,7=1,2,...,n,let
(i) | di qi .. .
e+ _ " —l—ﬁ—ﬁ cell j in ray path i 41 6.11)
! m'? cell j not in ray path i 4 1.

J

5. If the solution has not yet converged, let m® =m and return to step 4.
Otherwise, return the solution m = m.

One problem with ART is that the resulting tomographic images tend to be noisier
than images produced by Kaczmarz’s algorithm (6.7). The simultaneous iterative recon-
struction technique (SIRT) is a variation on ART that gives slightly better images in
practice, at the expense of a slightly slower algorithm. In the SIRT algorithm, all (up to
m nonzero) updates using (6.10) are computed for each cell j of the model, for each ray
that passes through cell j. The set of updates for cell j are then averaged before updating
the corresponding model element m;.

Algorithm 6.3 SIRT

Given a system of equations Gm = d arising from a tomography problem:

1. Leem©® =0.
2. Forj=0,1, ..., n let K; be the number of ray paths that pass through cell ;.
3. Fori=0,1, ..., m,let L; be the length of ray path i.
4. Fori=0,1, ..., m,let N;be the number of cells traversed by ray path i.
5. Let Am(tD) =0.
6. Fori=0,1,...,m—1,j=1,2,...,n,let
di gi y '
A0 = A D 4 ﬁ—ﬁ cell j in ray path i 41 6.12)
! ! 0 cell j not in ray path i4 1.
7. Forj=1,2,...,n,let
(i+1)
. . Am;
(+1) _  (+1) J
mp=m A+ —KJ . (6.13)

8. If the solution has not yet converged, return to step 5. Otherwise, return the current
solution.
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®
Example 6.2

Returning to our earlier tomography example, Figure 6.6 shows the ART solution
obtained after 200 iterations. Again, the solution is very similar to the TSVD solution.

1.0
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Figure 6.6 ART solution.
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Figure 6.7 shows the SIRT solution for our example tomography problem after 200
iterations. This solution is similar to the TSVD, Kaczmarz’s, and ART solutions.
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Figure 6.7 SIRT solution.
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6.3. THE CONJUGATE GRADIENT METHOD

We next consider the conjugate gradient (CG) method for solving a symmetric and
positive definite system of equations Ax =b. We will later apply the CG method
to solving the normal equations for Gm = d. Consider the quadratic optimization
problem,

1
min ¢ (x) = EXTAX —b'x, (6.14)

where A is an n X n symmetric and positive definite matrix. We require A be positive
definite so that the function ¢ (x) will be convex and have a unique minimum. We can
calculate V¢ (x) = Ax — b and set it equal to zero to find the minimum. The minimum
occurs at a point x that satisfies the equation

Ax—b=0 (6.15)
or
Ax=b. (6.16)

Thus solving the system of equations Ax = b is equivalent to minimizing ¢ (x).

The conjugate gradient method approaches the problem of minimizing ¢(x) by
constructing a basis for R" in which the minimization problem is extremely simple. The
basis vectors po, P1, - - - » Pu—1 are selected so that

p/Ap,=0 wheni#j]. (6.17)

A collection of vectors with this property is said to be mutually conjugate with respect
to A. We express x in terms of these basis vectors as

n—1
x=) ap; (6.18)
i=0

so that

n—1

T n—1 n—1
1
¢((¥) = 5 (Z O[ipl) A Z adip; | — bT<Z Oll'pl). (6.19)
i=0 j=0 i=0

The product x T Ax can be written as a double sum, so the equation becomes

n—1 n—1 n—1
=5 Y 3 wap Ap, —bT<Z aip,). (6.20)

i=0 j=0 i=0
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Since the vectors are mutually conjugate with respect to A, this simplifies to

n—1 n—1
1
AOES) a?p?Api—bT(E :aipf> (6.21)
i=0 i=0

or

n—1

1
p@ = ) (ofp/ Api—2b"p)). (6.22)
i=0

Equation (6.22) shows that ¢ (&) consists of n terms, each of which is independent
of the other terms. Thus we can minimize ¢ (&) by selecting each @; to minimize the
ith term,

ofp! Api —2a;b"p.. (6.23)

Differentiating with respect to «; and setting the derivative equal to zero, we find that
the optimal value for ¢; is

bTPi
o= :
" plAp;

(6.24)

This shows that if we have a basis of vectors that are mutually conjugate with respect
to A, then minimizing ¢ (x) is very easy. We have not yet shown how to construct the
mutually conjugate basis vectors.

Our algorithm will actually construct a sequence of solution vectors x;, residual
vectors r; = b — Ax;, and basis vectors p;. The algorithm begins with xg =0, ro = b,
po = ro, and &g = (rl'r0) /(p! Apo).

Suppose that at the start of iteration k of the algorithm, we have constructed xo,
X1, - - ., X}, Y0, ¥1, « . ., Tk, PO, P1> - - - » Pk and @, &1, . . ., &. We assume that
the first k4 1 basis vectors p; are mutually conjugate with respect to A, the first k4 1
residual vectors ¢; are mutually orthogonal, and that rl-T p; =0 when i #j.

We let

Xptr1 = Xk + QkPk- (6.25)
This eftectively adds one more term of (6.18) into the solution. Next, we let

it =t — CpApL. (6.26)
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This correctly updates the residual, because

rer1 =b — AXpqg (6.27)
=b — A(x, + pr) (6.28)
= (b — Axy) — arLApe (6.29)
=r, — LAPE. (6.30)
We let
et 113 T Ta
Br+1 = = (6.31)
lleell5 r, g
and
Pi+1 = Tet1 + B+ 1Pk (6.32)
In the following calculations, it will be useful to know that prk = rkTr;e. This is
shown by
b pi = (re+ Ax) "y (6.33)
=, pe+x; Apy (6.34)
=r/pr+pl Axi (6.35)
=r] (ri+ Bpr—1) + piL Axp (6.36)
=r/1e+ Ber) pe—1 +pL A(opo+ - - -+ —1pr—1) (6.37)
=rlt,+0+0 (6.38)
=t/ (6.39)

We will now show that 11 is orthogonal to r; for i < k. For every i < k,

r,eTHri = (r; — oLApr) Tr,' (6.40)
=rlt;— ap/ Ar; (6.41)
=r/t;— or] Apy. (6.42)

Since ry, is orthogonal to all of the earlier ¢; vectors,
rkTHr, =0— akkaArk. (6.43)
Also, since p; = t; + Bipi—1,

T
i ti=0—au(pi— Bpi—1) Aps. (6.44)
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Both p; and p;—1 are conjugate with pj. Thus

T —
re 1t =0.

We also have to show that r/;F_i_lr/e =0:

T T
1tk = (rp — apApr) 1k

T T
=1, 1, — ayp, Arg

=r} 1, — arp{ A(pr — Brpr—1)

=)t — ap(pr — Bepi—1) Ape

=r/ 1, — arp! Apr+ i Brp_ Apk

T T
=1, T, — ¥, rp + o B0

=0.

Next, we will show that rp41 is orthogonal to p; for i < k.

f/<T+1Pz’ = r/;r+1 (ti + Bipic1)

T T
=TI, i+ ,Bir/e+1pi—1

=0+ ﬂirkT+1Pi—1

= Bi(r. — O‘IeAPle)TPi—l

= Bi(r} pi1 — oupL | Apr)
= Bi(0—0)=0.

Finally, we need to show that ka_HAp; =0fori<k. Fori<k,

Pir1Ap;

= (tpt1 + Ber1pr) L Ap;

T T
=1, 1Ap; + Br+1p;, Api
= 1'1eT+1APi +0

1
= f/eT+1 (;(ri - 1'i+1)>

1
T T

= ;(l’k+1ri — rk+1ri+1)
1

=0.

(6.45)

(6.46)
(6.47)
(6.48)
(6.49)
(6.50)
(6.51)
(6.52)

(6.53)
(6.54)
(6.55)
(6.56)

(6.57)
(6.58)

(6.59)
(6.60)
(6.61)

(6.62)

(6.63)

(6.64)
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For i =k,
T T 1
Prt1ApPr = (et + ﬂk—l—lpk) a—k(rk — Tpt1) (6.65)

1 T T

= oTk (ﬂk+1 (rle + ,kale—l) T =Y r;e+1> (6.66)
1

= oTk(ﬁkHrkTrk + IBIe—Hﬁ/eP/Z_ﬂ'k - r,eTHrkH) (6.67)

_ L T

= OTk(fk+1rk+1 + Bt 1 B0 — 1 Tht1) (6.68)

=0. (6.69)

We have now shown that the algorithm generates a sequence of mutually conju-
gate basis vectors. In theory, the algorithm will find an exact solution to the system of
equations in # iterations. In practice, due to round-off errors in the computation, the
exact solution may not be obtained in # iterations. In practical implementations of the
algorithm, we iterate until the residual is smaller than some tolerance that we specify.
The algorithm can be summarized as follows.

Algorithm 6.4 Conjugate Gradient Method

Given a positive definite and symmetric system of equations Ax =b, and an initial
solution xq, let B_1 =0, p_1 =0, ro =b — Axg, and k= 0.

1. Letpr = —l'lej‘ﬂk—lpk—l-
[zl
2. Letap=—F—=2.
et ok p Ap

3. Let Xp+1 =X + AkPpe-

4. Let rp41 =1, + 0pApe.
_lireal3

5. Let fo= " 12

6. Letbk=Fk+1.

7.

Repeat the previous steps until convergence.

A major advantage of the CG method is that it requires storage only for the vectors
Xk, Pk> Tk, and the symmetric matrix A. If A is large and sparse, then sparse matrix
techniques can be used to store A more efficiently. Unlike factorization methods such
as QR, SVD, or Cholesky factorization, there will be no fill-in of the zero elements in
A at any stage in the solution process. Thus it is possible to solve extremely large systems
using CG in cases where direct factorization would require far too much storage. In fact,
the only way in which the algorithm uses A is in one multiplication of Apy, for each
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iteration. In some applications of the CG method, it is possible to perform these matrix
vector multiplications without explicitly constructing A.

6.4. THE CGLS METHOD

The CG method by itself can only be applied to positive definite systems of equations,
and is thus not directly applicable to general least squares problems. In the conjugate
gradient least squares (CGLS) method, we solve a least squares problem,

min ||Gm —d||5, (6.70)
by applying CG to the normal equations,
G'Gm=G"d. (6.71)

In implementing this algorithm it is important to avoid round-off errors. One impor-
tant source of error is the evaluation of the residual, GTGm — GTd. It turns out that
this calculation is more accurate when we factor out G’ and compute G'(Gm—d).
We will use the notation s, = Gmy —d, and r, = G's,. Note that we can compute
Sk+1 recursively from sy as follows

se+1 =Gmypp —d (6.72)
= G(my +agpr) —d (6.73)
= (Gmy — d) + a1 Gpi (6.74)
= s, + o, Gpr. (6.75)

With this trick, we can now state the CGLS algorithm.

Algorithm 6.5 CGLS

Given a least squares problem min ||Gm —d||2, let k=0, my =0, p_1 =0, f_1 =0,

so = —d, and rp = GTs.
1. Letpr=—r1p+ ,Bkglpk—l-
r
2. Letap = %
(. G (Gpr)
3. Let mpy = my + appe.
4. Let sp+1 = s+ arGpe.
5. Let Yitr1 = GTSk+1.
2
I
o e Ml
lIrell3
7. Letk=k+1.
8. Repeat the previous steps until convergence.
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Note that this algorithm only requires one multiplication of Gpy and one multiplica-
tion of GT's;1 1 per iteration. We never explicitly compute G’ G, which might require
considerable time, and which might have far more nonzero elements than G itself.

The CGLS algorithm has an important property that makes it particularly useful for
ill-posed problems. It can be shown that, for exact arithmetic, ||myg||2 increases mono-
tonically and ||Gmy, — d||» decreases monotonically with increasing iterations [61, 65].
We can use the discrepancy principle together with this property to obtain a regularized
solution. Simply stop the CGLS algorithm as soon as ||Gmy — d||» < 8. In practice, this
algorithm typically gives good solutions after a very small number of iterations.

An alternative way to use CGLS is to solve the Tikhonov regularization problem

(4.4) by applying CGLS to
G o d
aL 0

For nonzero values of the regularization parameter o, this least squares problem should

2
min

(6.76)

2

be reasonably well-conditioned. By solving this problem for several values of ¢, we can
compute an L-curve. The disadvantage of this approach is that the number of CGLS
iterations for each value of @ may be large, and we need to solve the problem for several
values of @. Thus the computational effort is far greater.

Example 6.3 @
A commonly used mathematical model of image blurring involves the two-dimensional
convolution of the true image Iyye(x, y) with a point spread function, W(u, v) [14]:

o0 o0
Iolurred (%, y) = / / Trge(x —u, y — )W (1, v) du dv. (6.77)
—00 —00
Here the point spread function shows how a point in the true image is altered in the
blurred image. A point spread function that is commonly used to represent the blurring
that occurs because an image is out of focus is the Gaussian point spread function

u2+u2

W (u, v) =e 202 . (6.78)

Here the parameter o controls the relative width of the point spread function. In prac-
tice, the blurred image and point spread function are discretized into pixels. In theory,
W is nonzero for all values of # and v. However, it becomes small quickly as u and v
increase. If we set small values of W to 0, then the G matrix in the discretized problem
will be sparse.
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Figure 6.8 Blurred image.

Figure 6.8 shows an image that has been blurred and also has a small amount of
added noise. This image is of size 200 pixels by 200 pixels, so the G matrix for the
blurring operator is of size 40,000 by 40,000. Fortunately, the blurring matrix G is
quite sparse, with less than 0.1% nonzero elements. The sparse matrix requires about
12 MB of storage. A dense matrix of this size would require about 13 GB of storage.
Using the SVD approach to Tikhonov regularization would require far more storage
than many current computers have. However, CGLS works quite well on this problem.

Figure 6.9 shows the L-curve for the solution of this problem by CGLS without
explicit regularization and by CGLS with explicit regularization. The line with circles
shows the solutions obtained by CGLS without explicit regularization. For the first 30
or so iterations of CGLS without explicit regularization, ||Gm — d||, decreases quickly.
After that point, the improvement in misfit slows down, while ||m]|»> increases rapidly.

Figure 6.10 shows the CGLS solution without explicit regularization after 30 iter-
ations. The blurring has been greatly improved. Note that 30 iterations is far less
than the size of the matrix (n = 40,000). Unfortunately, further CGLS iterations do
not significantly improve the image. In fact, noise builds up rapidly, both because of
the accumulation of round-oft errors and because the algorithm is converging slowly
towards an unregularized least squares solution. Figure 6.11 shows the CGLS solution
after 100 iterations. In this image the noise has been greatly amplified, with little or no
improvement in the clarity of the image.

We also computed CGLS solutions with explicit Tikhonov regularization for 22
values of . For each value of a, 200 iterations of CGLS were performed. The resulting
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Figure 6.9 L-curves for CGLS deblurring.
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Figure 6.10 CGLS solution after 30 iterations, no explicit regularization.

L-curve is shown in Figure 6.9 with “x” markers for each regularized solution that
was obtained. This L-curve is slightly better than the L-curve from the CGLS solution
without explicit regularization in that the values of ||ml||> and ||[Gm — d||, are smaller.
However, it required 40 times as much computational effort. The corner solution for
a =7.0 x 107* is shown in Figure 6.12. This solution is similar to the one shown in
Figure 6.10.
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Figure 6.11 CGLS solution after 100 iterations, no explicit regularization.
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Figure 6.12 CGLS solution, explicit regularization, o = 7.0 x 10™*,

We have focused on the CGLS method in this section because it is particularly
easy to derive and because of the implicit regularization effect of the CGLS method.
However, many other iterative methods have been developed for large-scale least squares
problems [5, 135]. An analysis of the implicit regularizing effects of these methods can be
found in Hanke [61]. The LSQR method of Paige and Saunders has been very widely
used in many geophysical applications [123, 124]. MATLAB has an efficient and robust
implementation of LSQR 1in its Isqr routine.
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6.5. RESOLUTION ANALYSIS FOR ITERATIVE METHODS

Analyzing the resolution of a regularized solution computed by the iterative methods
described in this chapter is a challenging problem. The formulas developed in Chapter 4
for the model resolution matrix under zeroth-order Tikhonov regularization were based
on the SVD of the G matrix, but as we have seen it is often unfeasible to compute the
SVD of a large matrix, and even when it is extremely sparse, the SVD is typically dense.
For higher-order regularization, we have formulas for the resolution matrix based on
the GSVD of the G matrix, such as (4.20), but it is also impractical to compute the
GSVD of very large matrices.

A brute force approach that offers some advantages over the computation of the
SVD or GSVD is to use (4.52) with Cholesky factorization of (GTG 4 «’LTL) [19].
Cholesky factorization is considerably faster in practice than computing the SVD. How-
ever, since the Cholesky factor of this matrix is typically dense, this is still a very
large-scale computation that would generally need to be performed in parallel on a
computer with sufficient memory to store a dense n by # matrix.

If we want to compute an individual column of the model resolution matrix, this can
be accomplished by solving an additional least squares problem. Applying the expression
for the least squares Tikhonov inverse operator G’ (4.52), the ith column of R, can be
expressed as

R i=Rye;
= G'Ge,
_ GG, (6.79)
— (GTG+oL'L) " GTG .
This is (4.26), a regularized least squares problem
e G. 1|’
min [aL :| R_’,'—|: 0 :| , (6.80)

that can be solved for R ; using CGLS, LSQR, or some other iterative method. We
could conceivably solve (6.80) to retrieve every column of the model resolution matrix
in this manner, but this would require the solution of n least squares problems.

A number of authors have considered iterative techniques for computing low-rank
approximations to the resolution matrix in combination with iterative least squares solu-
tion methods [12, 13, 174]. In such approaches, iterative methods are applied to compute
the largest k singular values of a matrix and the associated singular vectors. For a sparse

matrix, these methods are vastly more efficient than standard algorithms for computing
the SVD.
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Suppose that we obtain a low-rank (k singular values and vectors) approximation to
the SVD

G~ UL V] (6.81)

where Ly, is a k by k nonsingular matrix, and Uy, and V}, are matrices with k orthogonal
columns. The pseudoinverse of G is then approximately

G'~vL 'ul. (6.82)
Combining these approximations, we have
R, ~ V. V] (6.83)

Note that we would not want to explicitly multiply out Vng, creating a huge and
dense n by n resolution matrix. Rather, we could store the relatively small vector V}, and
use it to compute desired entries of the R, matrix as needed.

A more sophisticated version of this approach is to compute a low-rank approxima-
tion to the singular value decomposition of the augmented G matrix [173]. Consider an
augmented system of equations

A= [i] (6.84)
using truncated SVD approximations for A and its pseudoinverse, A,
A~ US V) (6.85)
and
AT~vs;'uf, (6.86)

where Uj and V}, are composed of the first k columns of U and V, and Sy, is a square
k by k matrix diagonal matrix of the largest k singular values.

U, = [UG}, (6.87)

where Ug and Up contain the rows of U corresponding to those of G and oL,

It is convenient to write Uy as

respectively, in A. We can thus partition (6.85) using

G~ UGS V{. (6.88)
Given (6.88) and (6.86), we can calculate an approximation of the model resolution
matrix
T
R, =A" [ﬂ ~ VS, [ULU]] [UGSOM ] (6.89)
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which simplifies to
R, ~ V.S, 'Uluss,v]. (6.90)
Using the identity
vulug=1-U/U; (6.91)
we can alternatively write (6.90) as
R, ~ V, (I - s,jU{ULs,e)va. (6.92)

Depending on the relative sizes of Ug and Uy, one or the other of (6.90) or (6.92)
might be more easily evaluated. Again, we would probably not want to, or be able to,
explicitly multiply out the matrices to obtain the entire dense n by # model resolution
matrix for a large problem, but could instead use (6.90) or (6.92) to compute specific
desired elements of the resolution matrix.

In practice, it may not be feasible for very large problems to compute, or even store,
a sufficient number of singular values and vectors to adequately approximate the model
resolution matrix using low-rank, SVD-based approximations [37]. We will thus con-
sider an alternative stochastic approach based on [9] that estimates solely the resolution
matrix diagonal, but which is not limited by low-rank matrix approximations.

Consider a sequence of s random vectors from R", vy, . . ., v, with independent
elements drawn from a standard normal distribution. The sth corresponding estimate
for the diagonal of an n by n square matrix A is given by

qs = |:Z Vi ®AV1<j| @ |:Z Vi @vk:| (6.93)
k=1

k=1
where © denotes element-wise multiplication and @ denotes element-wise division
of vectors. Note that the only way in which A is used within this algorithm is in
matrix-vector multiplications, so as long as we have a function that can implement the
matrix vector multiplication, then we can implement the algorithm. As we have already
seen, the multiplication of a large matrix with a vector can be effected by solving a least
squares problem (6.80). Specifically, to solve for the kth product y =R, we solve [103]

L L]

It is necessary to solve s least squares systems of equations (6.94) to calculate (6.93). In

2

min

(6.94)

2

practice, relatively small values of s in (6.93) (e.g., 100 to 1000) are adequate even when
there are tens or hundreds of thousands of model parameters [103].

The stochastic algorithm (6.93) can also be used to implement generalized
cross-validation. In (4.74), the most difficult computation is evaluation of the trace of
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I — GG*. Computing this matrix explicitly and then evaluating the trace would require
excessive time and storage. Using (6.93) and evaluating the necessary G* matrix-vector
multiplications by solving an associated least squares problem using an iterative method
such as LSQR or CGLS makes it tractable to compute an approximation to the GCV
function (4.74), where we solve s least squares problems for each value of o [103].

®
Example 6.4

We will examine the solution to a large-scale tomography problem involving 30,000
rays passing through a cubic volume discretized into a 30 by 30 by 30 model of 27,000
cells (Figure 6.13).

Figure 6.13 A 30 by 30 by 30 block tomography model interrogated by 30,000 ray paths.

Ray path start and end points are uniformly randomly distributed across the sides of
the volume with 10,000 rays passing between each pair of parallel sides. The correspond-
ing G matrix is 30,000 by 27,000, but only 0.2% of its entries are nonzero. Synthetic
travel time data (with travel time perturbation values between approximately —20 and
30 time units) were generated from a zero-mean smooth model with N (0, (0.5)%) noise
added. We implemented second-order Tikhonov regularization with a small amount of
additional zeroth-order regularization to regularize the solution.

Figure 6.14 shows the L-curve for this problem. Figure 6.15 shows a plot of the GCV
function (4.74) computed using stochastic estimates of the diagonal of I — GG*. The
L-curve corner and GCV minimum both occur at about o = 0.5. For the solution
obtained using o = 0.5, we computed a stochastic estimate of the diagonal of the reso-
lution matrix using (6.93). For comparison, we also computed exact resolution matrix
diagonal element values for 100 randomly selected indices using (6.79). Figure 6.16
shows a scatter plot of the stochastic estimates compared with corresponding exact deter-
minations, and indicates that the stochastic estimates are accurate to a few percentage
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Figure 6.14 L-curve for the tomography example of Figure 6.13 and its corner near « = 0.5.
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Figure 6.15 GCV plot for the tomography example of Figure 6.13 and its minimum near « = 0.5.

points. It is common to use counts of the number of rays transecting each cell as a proxy
for assessing the diagonal of the resolution matrix in tomographic problems. In general,
the association between ray density and resolution in a tomography problem will depend
on the specific ray path geometry. Figure 6.17 shows a scatter plot of the ray densities
versus the accurately computed values of the diagonal elements of R, for the 100 ran-
dom indices plotted in Figure 6.16. The relationship shows a nonlinear trend between
ray density and the resolution diagonal element values, and there are also anomalously
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Figure 6.17 Comparison of ray densities and resolution.

well-resolved outliers in the plot with resolution diagonal element values greater than
0.9. Further examination shows that the anomalously well-resolved outliers correspond
to cells that reside on the model exterior and are thus constrained by two-dimensional
ray path geometries.
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6.6. EXERCISES

1. Consider the cross-well tomography problem of Exercise 4.3.
a. Apply Kaczmarz’s algorithm to this problem.
b. Apply ART to this problem.
c. Apply SIRT to this problem.
d. Comment on the solutions that you obtained.
2. A very simple iterative regularization method is the Landweber iteration [67]. The
algorithm begins with m® = 0, and then follows the iteration,

m* D = m® _ 6 (Gm® — d). (6.95)

To ensure convergence, the parameter @ must be selected so that 0 < w < 2/5%,
where s; is the largest singular value of G.

In practice, the CGLS method generally works better than the Landweber itera-
tion. However, it is easier to analyze the performance of the Landweber iteration. It
can be shown that the kth iterate of the Landweber iteration is exactly the same as
the SVD solution with filter factors of

O = 1-(—wdt (6.96)

a. Implement the Landweber iteration and apply it to the Shaw problem from
Example 4.3.

b. Verify that m!?) from the Landweber iteration matches the SVD  solution with
filter factors given by (6.96).

c. Derive (6.96).

3. The Landweber iteration described in the previous exercise converges under the
condition that 0 < w < 2/5%, where s1 is the largest singular value of G (or equiva-
lently, s1 = ||G||2). As a practical matter we typically cannot compute the full SVD of
G. However, it is possible to rapidly estimate this quantity using an iterative method
that we will derive in this exercise. Recall from Appendix A that ||G|l2 = s1 is the
square root of the largest eigenvalue of the matrix GT G.

a. Using (A.77), diagonalize the matrix A = GTG and use the diagonalization to
show that

A"=PA"P!. (6.97)

Assume that the eigenvalues of A are sorted so that Ay > Ay > - - - > A, > 0.
b. Take an arbitrary vector x in R", and write it in terms of the eigenvectors of A as

X=avi+- - - +a,v,. (6.98)
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Then show that
Afx = by +- -t anby, (6.99)

c. Starting with a random vector xp, and assuming that a1 #%0 (a reasonable
assumption for a random vector xy), show that

Akx,
”k—10”2 = A1 (6.100)
k—oo [|A*Ix0]2
This leads to a simple iterative algorithm for estimating s; = 4/A1. Start with a
random vector Xq. In each iteration, let
GT(Gxy)

Xiep1 = ————2 (6.101)
1%l

and let

pe =V IGT(Gxp)]l>- (6.102)

The sequence pj converges to s1. This function is implemented in MATLAB as the
normest function. Write your own implementation of this function and compare
the results you obtain with normest.

4. Use the Landweber iteration discussed in Exercise 6.2 to deblur the image from
Example 6.3. In order to use the Landweber iteration, you will need to estimate
s1 = ||Gl|2, which can be done using the normest command discussed in Exercise
6.3.

5. In Example 6.3 we have included a function blur that computes the system matrix
for the problem of deblurring an image that has been blurred by a Gaussian point
spread function. The file blur.mat contains a blur-inducing sparse G matrix and a
data vector d, where the 100 by 100 pixel gray-scale image is mapped into d using a

column-by-column indexing convention.

a. How large is the G matrix? How many nonzero elements does it have? How
much storage would be required for the G matrix if all of its elements were
nonzero? How much storage would the SVD of G require?

b. Plot the raw image.

c. Using the MATLAB cgls algorithm with 100 iterations, deblur the image by
solving Gm = d and interpret the evolution of your solutions with increasing
iterations.

6. Show that if po, p1, - - - , pu—1 are nonzero and mutually conjugate with respect to
an n X n symmetric and positive definite matrix A, then the vectors are also linearly
independent. Hint: Use the definition of linear independence.

7. Recall the iteratively reweighted least squares method introduced in Chapter 2. The
system of equations (2.92) solved in each iteration of the IRLS algorithm might well
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be dense, even if the matrix G is sparse. However, this system of equations can also be
thought of as the normal equations for a particular least squares problem that will be
sparse when G is sparse. Write down this least squares problem. Write a MATLAB
function that uses the Isqr routine to solve these least squares problems in an IRLS
scheme to minimize ||Gm — d||;. Hint: Use the fact that R is a diagonal matrix with
positive elements; you can take its square root.

6.7. NOTES AND FURTHER READING

[terative methods for the solution of linear systems of equations are an important topic
in numerical analysis. Some basic references include [5, 87, 135, 142].

Iterative methods for tomography problems including Kaczmarz’s algorithm, ART,
and SIRT are discussed in [84, 115, 163], and parallel algorithms based on these method-
ologies are discussed in [30]. These methods are often referred to as row action
methods because they access only one row of the matrix at a time, which makes them
relatively easy to implement in parallel processing. In practice, the conjugate gradient
and LSQR methods generally provide better performance than the row action meth-
ods. There are some interesting connections between SIRT and the conjugate gradient
method discussed in [120, 146, 147].

Hestenes and Stiefel are generally credited with the invention of the conjugate gra-
dient method [72]. However, credit is also due to Lanczos [92]. The history of the
conjugate gradient method is discussed in [55, 71]. Shewchuk’s technical report [142]
provides an introduction to the conjugate gradient method with illustrations that help
to make the geometry of the method very clear. Filter factors for the CGLS method
similar to those in Exercise 2 can be determined. These are derived in [65]. The LSQR
method of Paige and Saunders [65, 123, 124] is an alternative way to apply the CG
method to the normal equations. The resolution of LSQR solutions is discussed in
[12, 13]. Schemes have been developed for using CGLS with explicit regularization and
dynamic adjustment of the regularization parameter o [85, 86, 106]. This can poten-
tially remove the computational burden of solving the problem for many values of «.
An alternative approach can be used to compute regularized solutions for several val-
ues of @ at once [50]. The performance of the CG algorithm degrades dramatically on
poorly conditioned systems of equations. In such situations a technique called precon-
ditioning can be used to improve the performance of CG. Essentially, preconditioning
involves a change of variables X = Cx. The matrix C is selected so that the resulting
system of equations will be better conditioned than the original system of equations
[38, 53, 164]. The conjugate gradient method can also be generalized to nonlinear
minimization problems [58, 142].

Inverse problems in image processing are a very active area of research. Some books
on inverse problems in imaging include [14, 115].



CHAPTER SEVEN

Additional Regularization Techniques

Synopsis

Alternatives or adjuncts to Tikhonov regularization are introduced. Bounds constraints
allow the use of prior knowledge on the permissible range of parameter values. Sparsity
regularization selects solutions with the minimum number of nonzero model parame-
ters. A modification of the iteratively reweighted least squares algorithm presented in
Chapter 2 for 1-norm parameter estimation is introduced to solve these problems. In
compressive sensing, sparsity regularization is applied in association with a change of basis,
where the basis is chosen so that the desired model will be sparse (i.e., have only a few
nonzero coefficients in the model expansion). Total variation regularization uses a regu-
larization term based on the 1-norm of the model gradient that allows for discontinuous
jumps in the model to bias the solution towards piecewise-constant functions.

7.1. USING BOUNDS AS CONSTRAINTS

In many physical situations, bounds exist, or can be usefully estimated, on the maximum
and/or minimum values of model parameters. For example, the model parameters may
represent a physical quantity such as density that is inherently non-negative, establishing
a strict lower bound for model parameters of 0. The problem of solving for a least squares
solution that includes this constraint, referred to as non-negative least squares (NNLS),
can be expressed as

min ||Gm—d|,
m>0,

(7.1)

where m > 0 means that every element of the vector m must be non-negative. This
problem can be solved by an algorithm called non-negative least squares (NNLS)
that was originally developed by Lawson and Hanson [94]. MATLAB includes a
command, Isqnonneg, that solves the NNLS problem.

We might also declare a strict upper bound, so that model parameters may not exceed
some value, for example, a density 3500 kg/ m? for crustal rocks in a particular region.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00007-0
(© 2013 Elsevier Inc. All rights reserved.

169


http://dx.doi.org/10.1016/B978-0-12-385048-5.00007-0

170

Chapter 7 Additional Regularization Techniques

Given the lower and upper bound vectors 1 and u, we can pose the bounded variables
least squares (BVLS) problem:

min ||Gm —d||»
m>1 (7.2)
m < u.

Given a BVLS algorithm for solving (7.2), we can also perform Tikhonov regulariza-
tion with bounds by augmenting the system of equations (e.g., (4.5)) and then solving
the augmented system under bounding constraints. Stark and Parker [150] developed an
algorithm for solving the BVLS problem, which we employ here as a MATLAB func-
tion bvls.m. A similar algorithm is given in the 1995 edition of Lawson and Hanson’s
book [94].

A related optimization problem involves minimizing or maximizing a linear function
of the model for a set of n coefticients ¢, subject to bounds constraints and a constraint
on the misfit. This problem can be formulated as

min ¢'m
— <
|Gm —dJ> < 8 03
m>1
m <u.
@
Example 7.1

Recall the source history reconstruction problem of Example 1.7, where data are taken
in concentration units at spatial positions, x, at a particular time (assumed dimensionless
here), T. Figure 7.1 shows the true (smooth) source model used to generate the data,
and Figure 7.2 shows these data as a function of distance, x, at time T = 300, with
N(0,0.0012) noise added.

Figure 7.3 shows the least squares solution, which has the extremely large ampli-
tudes and oscillatory behavior characteristic of an unregularized solution to an ill-posed
problem. This solution is, furthermore, physically unrealistic in having negative con-
centrations. Figure 7.4 shows the non-negative least squares solution, which, although
certainly more realistic in having all of the concentration values nonnegative, consists
of high-amplitude spikes that do not accurately reconstruct the (smooth) true source
history. Suppose that the solubility limit of the contaminant in water is known to
be 1.1 units, thus providing a natural upper bound on model parameters. Figure 7.5
shows the corresponding BVLS solution, which exhibits spiky features similar to those
of Figure 7.4. Further regularization is indicated if we believe that the true model is
smooth.

E



7.1. Using Bounds as Constraints 171

1.4 T T T

121

0.6

Concentration

04

0.2}

0'00 50 100 150 2

Time

Figure 7.1 True source history.
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Figure 7.2 Concentration data as a function of position, x, taken at T = 300.

Figure 7.6 shows the L-curve for a second-order Tikhonov regularization solution
applied with bounds of 0 <m < 1.1 on the model vector elements. Figure 7.7 shows
the regularized solution for @ = 0.01. This solution correctly reveals the two major input
concentration peaks. As is typical for cases of non-ideal model resolution, the solution
peaks are somewhat lower and broader than those of the true model. This solution does
not, however, resolve the smaller subsidiary peak near f = 150.
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Figure 7.3 Least squares source history solution with true history (Figure 7.1) shown as a dashed curve.

Because the least squares solution has extremely large amplitudes, the true model appears as a flat line
at this scale.
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Figure 7.4 NNLS source history solution with true history (Figure 7.1) shown as a dashed curve.

We can additionally use (7.3) to establish bounds on linear combinations of the model
parameters. For example, we might want to establish bounds on the average concentra-
tion from ¢ = 125 to t = 150. These concentrations appear in positions 51 through 60 of
the model vector m. We let ¢; be zero in positions 1 through 50 and 61 through 100, and
let ¢; be 0.1 in positions 51 through 60 to form a 10-time-sample averaging function.
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Figure 7.5 BVLS source history solution (1 = 0, u = 1.1) with true history (Figure 7.1) shown as a dashed
curve.
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Figure 7.6 L-curve for the second-order Tikhonov solution with BVLS (1 = 0, u = 1.1) implementation,
cornerato = 0.01.

The value of ¢"m is the average of model parameters 51 through 60. The value of the

solution to (7.3) will then be a lower bound on the average concentration from ¢ = 125

T T

to t = 150. Similarly, by maximizing ¢’ m or equivalently by minimizing —c* m, we

can obtain an upper bound on the average concentration from ¢ = 125 to t = 150. Solv-

T T

ing the minimization problems for ¢’ m and —c’ m, we obtain, respectively, a lower
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Figure 7.7 Second-order Tikhonov regularization source history solution determined from the L-curve
of Figure 7.6, with true history (Figure 7.1) shown as a dashed curve.

bound of 0.36 and an upper bound of 0.73 for the average concentration during this
time period. The true concentration average over this interval (Figure 7.1) 1s 0.57.

7.2. SPARSITY REGULARIZATION

In some situations there are reasons to expect that many of the unknown model param-
eters will be zero. Rather than using Tikhonov regularization to minimize |m||,, we
may choose to minimize the number of nonzero entries in m to obtain a sparse model.

The notation |ml]|p is commonly used to denote the number of nonzero entries
in m (Note that this O-norm definition is nonstandard because it is inconsistent with
the definition of the p-norm in (A.85) and does not satisfy the requirements for a
vector norm in Section A.7.) We can formulate a corresponding regularized inverse
problem as

min |lmio

IGm —d|, <. 74

Unfortunately, these kinds of optimization problems can be extremely difficult to solve.

A surprisingly effective alternative to (7.4) is to instead find the least squares solution
that minimizes ||m]|1. To see that this is a reasonable approach, consider the set of mod-
els with |m||> = 1. Among the models with ||ml|, =1, it turns out that the models
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Figure 7.8 Two-dimensional demonstration of the use of model 1-norm minimization (7.5) to obtain
sparsity regularization. The square shaded area shows the region ||m||; < ¢, while the circle shows the
region with |m||> < ¢. An arbitrary constraint equation in this 2-dimensional model space, (Gm); —
d; = 0, defines a line. The minimum 2-norm residual model satisfying the constraint, my, will not gener-
ally be sparse. However, the minimum 1-norm model satisfying the constraint, m; = [0 ¢;], will tend
to be sparse due to the presence of corners in the 1-norm contour.

with precisely one nonzero entry of +1 or —1 have the smallest 1-norms (Figure 7.8).
Thus, regularizing a least squares problem to minimize its model 1-norm will tend to
produce sparse solutions. This tendency for 1-norm regularized models to be sparse
becomes even more prominent in higher dimensions. The heuristic approach of min-
imizing ||ml|; instead of ||ml|g works very well in practice, and recent work [21] has
demonstrated reasonable conditions under which the solution to the 1-norm regular-
ized problem is identical to or at least close to the solution of the 0-norm regularized
problem (7.4).
The L regularized least squares problem can be written as

min [lm]|y

IGm —d|, <. (7.5)

Using the standard approach of moving the constraint into the objective function, we
can select a positive regularization parameter, «, so that this is equivalent to

min [|Gm —d|3 +a|m]|;. (7.6)

This is a convex optimization problem that can be solved efficiently by many different
algorithms. We next present an iterative least squares solution method.
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7.3. USINGIRLS TO SOLVE L; REGULARIZED PROBLEMS

To solve problems of the form of (7.6) we extend the IRLS algorithm introduced in
Chapter 2 for L regression. Let

f(m) = |Gm —d||5 + «||Lm]|; (7.7)
and let
y =Lm. (7.8)

At points where any element of Lm is zero, f(m) is not differentiable because of the
nondifferentiability of the absolute values in the L; norm. However, at other points we
can easily compute the gradient of f.

m

Vf(m) =2G"Gm—2G"d+a Y _ Vyl. (7.9)
i=1
For y; nonzero,
dlyil
—— = Lik sgn(yi). (7.10)
amy,

m

Writing sgn(y;) as yi/|yil, and using ||Lml||; = Zi:1 lyil, we obtain

m

d||Lml]|4 Vi
L D P (7.11)
dmy, ; il
Let W be the diagonal matrix with elements
1
Wij=—. (7.12)
lyil
Then
V (ILm];) = LTWLm (7.13)
and
Vf(@m) =2G'Gm —2G'd +oL"WLm. (7.14)
Setting Vf(m) = 0, we obtain
(2G"G+aL"WL) m =2G"d. (7.15)

Because W depends on Lm, this is a nonlinear system of equations. Furthermore, W is
not defined at any point where Lm has a zero element.
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To accommodate the nondifferentiability of the 1-norm at the origin, as in
Chapter 2, we set a tolerance €, and let

il lyil =€
W, = 7.16
: {1/e yil <e. (7.16)

In the IRLS procedure, we solve (7.15), update W according to (7.16), and iterate
until the solution has converged.

The system of equations (7.15) can be seen as the normal equations for the least
squares problem,

min

(7.17)

i [

When G is large and sparse it can be extremely advantageous to apply LSQR to solve

2

the least squares problem (7.17) rather than solving the system of equations (7.15).

®
Example 7.2

Consider a deconvolution example in which a controlled surface source sends seismic
waves down into the earth. Seismic reflections will occur from abrupt material disconti-
nuities at various depths, and a seismogram of the reflected signals (which will generally
include multiple reflections) is recorded at the surface. Here, ¢(¢) is the known source
signal, d(f) is the recorded seismogram, and m(f) is the unknown reflection response
of the earth. We'd like to recover the times of these reflections to study the respon-
sible earth structure. This is a linear forward problem characterized by a convolution

(e.g., (1.11))

o

(1) = / gt —&) m(§) d§. (7.18)

—00

In this highly simplified reflection seismology example, we will assume a one-
dimensional structure with depth and consider upward- and downward-traveling plane
compressional seismic waves detected by a vertically oriented seismometer. In this case,
the presence of horizontally oriented seismic structural discontinuities in an otherwise
smooth medium will ideally be manifested in m(f) as a sequence of delta functions. As
in Chapter 1, we will discretize m(f) as a model vector m. We seek models where m
consists of an optimal sequence of spikes.

The source signal is a short pulse with a characteristic time of around 0.4 s:

g(1) = ¢ sin(10¢). (7.19)
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We’ll add independent normally distributed random noise to the corresponding
recorded data (7.18) and attempt to recover m(f) in regularized inversions. All time
series were sampled uniformly at 100 samples/s to create model and data vectors of
1000 points spanning 10-s time intervals. The true reflectivity model (Figure 7.9) is
the response of a single subsurface reflector with a coefficient of r = 0.4, located at a
depth corresponding to a two-way seismic travel time from the surface of T =1.5s.
This source signal g(f) begins at 0.55s, and the primary reflection and surface-reflector
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Figure 7.9 The target reflectivity model m(t).
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Figure 7.10 Data (7.18) with N (0, (0.002))2 noise added.



7.3. Using IRLS to Solve Ly Regularized Problems 179

multiples appear in Figure 7.9 as alternating-sign spikes at intervals of T with amplitudes
that decrease by a factor of r upon each reflection. Figure 7.10 shows the corresponding
data from (7.18) with N(0, (0.002%)) noise added. The noise and smoothing from the
convolution largely obscure the signal corresponding to the later impulses of Figure 7.9.

Figure 7.11 shows the L-curve for this problem with zeroth-order regularization,
using the frequency-domain techniques described in Chapter 8, and Figure 7.12 shows

40
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Figure 7.11 L-curve for zeroth-order Tikhonov solution with corner at « = 0.01.
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Figure 7.12 Zeroth-order Tikhonov solution.
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Figure 7.13 L-curve for the 1-norm regularized solution with corner ato = 2.4 x 10™*,
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Figure 7.14 1-norm regularized solutions corresponding to the range of regularization parameters
used to construct Figure 7.13. Model corresponding to the L-curve corner is shown in bold.

a corresponding solution. The impulses are broadened relative to the true model due
to the associated regularization bias, and there are noise-generated secondary peaks.
Figures 7.13, 7.14, and 7.15, however, show that using (7.5) produces excellent recovery
of m(f). Note that the spikes are correctly placed in time and that all are resolved save the
tiny pulse at 7.5's, which has an amplitude of only r° & 0.01, or just 1% of the amplitude
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Figure 7.15 1-norm regularized solution for o = 2.4 x 10~* from Figure 7.14.

of the source spike. The amplitude of the spikes is reduced and they are slightly broader
than they should be, but the model is vastly better than that obtained with Tikhonov
regularization.

In many situations, there is no reason to bias models to be sparse. If the true model
is not sparse, then sparsity regularization will of course produce poor model recovery.
However, it is possible in some cases to implement a change of variables so that the
coefficients of the model with respect to the new basis will be sparse, or can at least be
well approximated by a sparse model.

Recall from Appendix A that if a set of vectors wi, w», ..., w, form a basis for R",
then any vector m in R" can be written as a linear combination of the basis vectors with
n coefficients, x;:

m=x{wi +xwy+- - -+ x,wW,. (7.20)
In vector-matrix form, this can be written as
m = Wx (7.21)

where the basis vectors wi, wo, . .., w,, are the columns of W. We can also perform the
change of variables in the reverse direction as

x=W 'm. (7.22)
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In practice, linear transformation algorithms, such as the fast Fourier transform (FFT;
Chapter 8) or discrete cosine transtorm (DCT), are often used in place of the matrix-
vector multiplications of (7.21) and (7.22) to effect the corresponding forward and
inverse operations.

[
Example 7.3

Figure 7.16 shows the 40,000-pixel image from Example 6.3. If we were to zero
out any significant fraction of these pixels, the effect on the image would be quite
obvious. However, if instead we encode the image in terms of the discrete cosine
transform (DCT) of the pixel values, a sparser representation of the image is possi-
ble that closely approximates the original. Calculating the discrete cosine transform of
the two-dimensional image using MATLAB’s dct2 command produces a set of 40,000
coefticients. Of these 40,000 coefticients, the 16,000 coefficients (40% of the original
coefficients) that were smallest in absolute value were set to zero.

After inverting the DCT, we produced the image shown in Figure 7.17. This sec-
ond image appears to be very similar to the original image, yet 40% fewer coefficients
were used to represent the image in terms of the DCT basis. This is because the

BROWN HALL
Administration
New Moxico Institute of Mining and Technology

Figure 7.16 Image before discrete cosine transform threshholding.
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BROWN HALL
Administration
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Figure 7.17 Image after removing smallest 40% of DCT coefficients.

coefficients associated with the 16,000 unused basis vectors in the original image were
small.

The discrete cosine transform is the basis for the widely used JPEG standard for
image compression. Wavelet bases are also widely used in image processing, and thresh-
holding the wavelet transform produces similar results in compressing images. The newer
JPEG 2000 standard for image compression uses wavelets rather than the discrete cosine
transform.

In compressive sensing, we apply sparsity regularization using a basis chosen so that
the model can be represented by a linear combination of the basis vectors with a sparse set
of coefficients. The regularized problem can be written using (7.21) and (7.6) as

min |GWx —d||3 +a|x]|1, (7.23)

where G is called the measurement matrix.

The recovery of a sparse solution using (7.23) depends on the details and appropri-
ateness of the particular G and W used in (7.23). The analysis and implementation of
compressive schemes become relatively simple if the measurement matrix is random [27].
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[ 4
Example 7.4

Consider the recovery of a signal, m, shown in Figure 7.18. This 10-s long time series

of n=1001 time points, f;, is sampled at 100 samples/s and consists of two sine waves
at f{ =25 and b = 35 Hz:

m; = h; - (5 cos(mfit;) +2 COS(ZJszt,')) 1<i<n, (7.24)

where the signal envelope has also been smoothed with term-by-term multiplication by
a Hann taper function,

hi = % (I —cos@m(i—1)/n)) 1<i<n. (7.25)

In the standard basis, the signal (7.24), shown in Figure 7.18, is obviously not sparse.
However, because it is constructed from two cosine components, this model has a very
sparse representation in the DCT basis.

We use a random measurement matrix G that is m =100 by »n= 1001, with
entries chosen independently from N(0, 1) to generate a synthetic set of 100 data mea-
surements, d = Gm, and then add independent N(0, 25) noise. The matrix of basis
vectors, W, is constructed by applying the discrete cosine transform to standard basis
vectors for the model space R".

Figures 7.19 and 7.20 show solutions obtained by solving Gm = d using second-
order Tikhonov regularization. The highlighted solution (@ = 100) fits the data with a

m(t)

-8

Time (s)

Figure 7.18 A 1001-point signal consisting of 25- and 35-Hz cosines (7.24), multiplied by a Hann taper.
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Figure 7.19 Signal recovery using second-order Tikhonov regularization. Solution amplitudes are
normalized to improve legibility.
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Figure 7.20 A representative solution using second-order Tikhonov regularization that approximately
satisfies the discrepancy principle from Figure 7.19 (& = 10).

residual norm that approximately satisfies the discrepancy principle, so that ||[Gm —d||
~ 5 - /m = 50. However, this solution, and others across a wide range of « values, bear
essentially no resemblance to the true signal shown in Figure 7.18.
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An L-curve obtained by solving (7.23) for n DCT coefficients x, and subse-
quently constructing models Wx for various o« values, shows a very abrupt corner

near o = 10~ 11

. For very low levels of regularization beyond this corner, solutions
rapidly transition from excellent model recovery to essentially random noise. For o
values greater than a few hundred, on the other hand, solutions rapidly approach the
zero model. For a wide range of @ values between these extreme values, the recovered
signal Wx is stable and is quite close to the true signal (Figures 7.21 and 7.22).

It may seem paradoxical that we can recover a 1001-point signal so well from
only 100 random linear combination measurements, when the Nyquist sampling theo-
rem (8.40) suggests that at least 10s x 35Hz x 2 = 700 equally spaced samples should
be required to accurately represent it. This is possible in the current example because
the measured signal is sparse with respect to the DCT basis, and just a few cosine basis
functions are therefore necessary to represent it well. The corresponding sparse set of
coefficients is easily recovered when sparsity regularization is employed.

7.4. TOTAL VARIATION

Total variation (TV) regularization is appropriate for problems where we expect
there to be discontinuous jumps in the model. In the one-dimensional case, the TV
regularization function is

n—1

TVm) =) mi1 —mi| (7.26)
i=1

= [Liml];., (7.27)

where, for one-dimensional models, L=1L; (4.27). In higher-dimensional problems,
L is a discretization of the gradient operator.

In first- and second-order Tikhonov regularization, discontinuities in the model are
smoothed out and do not show up well in the inverse solution. This is because smooth
changes are penalized less by the regularization term than sharp ones. The particular
teature of (7.27) is that the regularization term imposes a constraint to keep the number
of discontinuous transitions to a minimum (i.e., keeping Lm sparse). We can insert
the TV regularization term (7.27) in place of ||Lm||% in the Tikhonov regularization
optimization problem to obtain

min |Gm —d||5 4+ «|Lm]||, (7.28)

which is a convex optimization problem in the form of (7.6) that imposes a higher-order
sparsity constraint.
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Figure 7.21 Signal recovery using compressive sensing with 100 signal measurements. Solution
amplitudes are normalized to improve legibility.
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Figure 7.22 A representative solution obtained from Figure 7.21 using compressive sensing with
a = 100 that approximately satisfies the discrepancy principle.

This approach has seen wide use in the problem of “denoising” a model [122].
Denoising is a linear inverse problem in which G =1I. In denoising, the general goal is
to remove features considered to be spurious from a signal, while still retaining other
key features, such as long-term trends and perhaps sharp discontinuities.
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[ 4
Example 7.5

Figure 7.23 shows a signal that is smooth with the exception of two discontinuous
jumps at 2 and 7s. Figure 7.24 shows the signal after N(0, 4) independent noise has

10 T T T T

-10
0
Time (s)

Figure 7.23 An otherwise smooth signal with two sharp discontinuities.
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Figure 7.24 The signal with N(0, 4) noise added.
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been added. Our goal is to remove this noise from the signal while optimally recovering

the discontinuities.

We first attempt to denoise the signal using second-order Tikhonov regularization
with L given by (4.28). The L-curve is shown in Figure 7.25, and the resulting solution is
shown in Figure 7.26. If the location of the large discontinuities is a feature that we wish

Figure 7.25 L-curve with second-order Tikhonov regularization with corner at « = 1000.

Figure 7.26 Second-order Tikhonov solution (@ = 1000) with the true model plotted as a dashed

curve.
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to recover, this solution obviously does not do a good job because the regularization
scheme biases the model based on smoothness.

We next apply TV regularization to solve the problem. Figure 7.27 shows the
L-curve trade-oft between |m —d||2 and |[Lml]|;, and the presence of a corner near

104 .
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102

Residual norm ||m-d||,

Figure 7.27 L-curve for TV regularization with corner at o« = 18.
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Figure 7.28 Signal recovered with TV regularization with model corresponding to the L-curve corner
shown in bold.
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Figure 7.29 Signal recovered with TV regularization for « = 18 from Figure 7.28 with the true model
plotted as a dashed curve.

o ~ 18. Figure 7.28 shows the corresponding models for various levels of regular-
ization, with the optimal one selected from the L-curve shown in Figure 7.29. This
pilecewise-constant recovery of the original signal reveals the large discontinuities at 2s
and 7 s quite well.

7.5. EXERCISES

1. Using the method of Lagrange multipliers, develop a formula that can be used to
solve

min ¢/m

|Gm —dJ» <35. 7.2
2. Noisy seismic travel time data (units of s) from equally spaced (every 20 m) seis-
mometers deployed in a 1000-m deep vertical seismic profile experiment (the same
geometry as in Example 4.4) are to be inverted to reveal the slowness of the earth
as a function of depth. Invert the data in vsp.mat using TV regularization with an
L-curve analysis and assess the presence of any likely discontinuities. Compare this s

with the least squares solution and with a direct finite-difference solution suggested
by (1.22).
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3. In many cases, it is valuable to implement multiple regularization constraints, such
as smoothness combined with bounds. Consider the gravity anomaly data in the
vector dn (units of m/s?) found in the file gdata.mat. The data are taken at the
surface above a 1000 m section of a partially debris-blocked buried pipe located with
its center at a depth of 25m. Use the methodology of Example 1.4 to invert these
data for subsurface density perturbations, assuming that the pipe has a cross-sectional
area of 1 m?. Anomalous density along the pipe relative to background density is
parameterized as point masses located at 100 equally spaced points along the section,
as specified by the vector rhox. The noisy surface gravity anomaly observations
contained in the vector dn are made at 500 points along the same 1000 m span as
the buried pipe section of interest at points specified in the vector x. Invert the data
for density perturbations along the buried pipe by assuming that all mass in each
segment can be concentrated at the points specified by rhox.

a. Invert for density perturbations along the pipe transect in kg/m?> using least
squares.

b. Invert for density perturbations along the pipe transect in kg/m> using second-
order Tikhonov regularization and an L-curve analysis.

c. Solve the problem using second-order Tikhonov regularization combined with
BVLS and an L-curve analysis. Employ the knowledge that density variations for
x <91 and x > 899 m are negligible, and that the density variations overall are
bounded by —150 kg/m> < 8p(x) < 150 kg/m?.

d. Compare and discuss your three solutions. Where are the prominent maxima and
minima located?

4. Returning to the problem in Exercise 3.1, solve for the density profile using total
variation regularization. How does your solution compare to the solutions obtained
in Exercise 3.1 and Exercise 4.4?

7.6. NOTES AND FURTHER READING

Methods for bounded variables least squares problems and minimizing a linear func-
tion subject to a bound on the misfit are given in [150]. Some applications of these
techniques can be found in [73, 125, 128, 148, 149]. There is a long history of sparsity
regularization in geophysical inverse problems. Claerbout and Muir were early advocates
of this approach [31]; however, there was little theoretical justification for this prior to
the work of Candes, Romberg, and Tao, which brought about a resurgence of interest
in this methodology [24, 25, 26]. In recent years there has been an explosion of interest
in compressive (or compressed) sensing, with applications in many areas of signal and
image processing and inverse problems. There are numerous surveys and tutorials on
compressive sensing, including [21, 27, 104]. Methods for total variation regularization
are discussed in [122, 169].



CHAPTER EIGHT

Fourier Techniques

Synopsis

The formulation of a general linear forward problem as a convolution is derived. The
Fourier transform, Fourier basis functions, and the convolution theorem are introduced
for continuous- and discrete-time systems. The inverse problem of deconvolution is
explored in the context of the convolution theorem. Water level and Tikhonov reg-
ularization in the frequency domain are employed to solve discrete deconvolution
problems.

8.1. LINEARSYSTEMS IN THE TIME AND FREQUENCY DOMAINS

A remarkable feature of linear time-invariant systems is that the forward problem can
generally be described by a convolution (1.11),

o0

d(t):/ m(t)g(t— 1) dt. (8.1)

—0o0

Inverse problems involving such systems can be solved by deconvolution. Here, the
independent variable ¢t is time, and the data d, model m, and system kernel ¢ are all
time functions. However, the results here are equally applicable to spatial problems (e.g.,
Example 8.1) and to higher dimensions. We will first overview the essentials of Fourier
theory in the context of performing convolutions and deconvolutions.

Consider a linear time-invariant forward operator, G, that maps an unknown model
function, m(t), into an observable data function, d(f),

d(t) = G[m(1)]. (8.2)

Because it is linear and time-invariant, (8.2) obeys the principles of superposition (1.5)
and scaling (1.6). It is possible to show that any such system can be cast in the form of
(8.1), by utilizing the sifting property of the impulse or delta function, 6(f). The
delta function can be conceptualized as the limiting case of a pulse as its width goes to
zero, its height goes to infinity, and its area stays constant and equal to one, for example,
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as the limiting case of a unit area Gaussian pulse centered on the origin,

8(f) = lim 2t/ (8.3)

o—0 ga/27

The sifting property of the delta function extracts the value of a function at a particular
point from within a definite integral

b
/f(t)a(t—to) dt = {f(t‘)) asto=b (8.4)

0 elsewhere,

for any f(¢) that is continuous at finite = fy. The impulse response, or Green’s
function, ¢(f), for a system where the model and data are related by an operator G, as
in (8.2), is defined as the system output (data) for a delta function input (model),

g0 = G[3(D]. (8.5)

The concept of the impulse response can be used to demonstrate our initial assertion
in this chapter that linear time-invariant forward problems can generally be expressed as
convolutions.

Theorem 8.1 We begin with a restatement of (8.2);
d(t) = G[m(1)]. (8.6)

m(t) can be written as a summation of impulse functions by invoking (8.4),

o0

m(t):/ m()8(t— 1) d, (8.7)

—0o0

and we can thus write

o0

() =G fm(‘r)c?(t—r) dr |. (8.8)

—00

Applying the definition of the integral as a limit of a sum of At-width rectangular areas as At goes
to zero, we have

d(t)chzTi@O > m(rﬂ)a(t—fﬂ)m}. (8.9)

n=—0oo

Because G is a linear and time-invariant operator, superposition allows us to move the operator
inside of the summation in (8.9). Furthermore, using the scaling relation, we can factor out the
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coefficients m(t,) from inside of the operator to obtain
o

dw = lim > m(m)GIS(t— 1) AT, (8.10)

n=—00
In the limit as At — 0 and substituting (8.5), (8.10) thus defines the integral

o0

d(t):/ m(t)g(t— 1) dt, (8.11)

—0o0

which is identical to (8.1), the convolution of m(t) and g(t).

Note that it is common to denote the convolution of two functions /() and hy(t)
simply as hy (f) % ha(f) = ha(f) * h1(f). The indicated reciprocity is easily demonstrated
from (8.11) with a change of variables.

Convolution can thus be used to describe the mapping of models to data for any
linear time-invariant system. Important examples include the mapping between a phys-
ical process and a set of observables that occurs in a forward problem, or the output of
a linear instrumentation system. For example, a perfect instrument that recorded some
model m(r) with perfect fidelity, but imposed a time delay fy, would have a time-delayed
delta function impulse response:

d(t) = m(t) * 8(t — to) (8.12)
= / m(T)é(t—ty— 1) dt (8.13)
= m(t — tp). (8.14)

We define the Fourier transform of a function, h(f), as

H(f) = Flh(®)] (8.15)
= / h(f)e™ 2™ gy, (8.16)

and the corresponding inverse Fourier transform as

h(t) = F M) (8.17)
N / H(He>™ df, (8.18)

where f has units of reciprocal time (frequency) and 1 is the square root of —1.
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The impulse response of a linear system, ¢(f) = G[d(f)], is commonly called the
time domain response of the system when the independent variable is time. Note,
however, that the impulse response concept and Fourier theory are trivially generaliz-
able to functions of space or other variables. The Fourier transform or spectrum of
the impulse response, F(g(t)), is variously referred to as the frequency response, or
transfer function of the system.

The Fourier transform (8.16) provides a formula for evaluating the spectrum. The
inverse Fourier transform (8.18) states that the time domain function g(f) can be exactly
reconstructed via a weighted integration of functions of the form ¢ where the
weighting is provided by the spectrum G( f). The essence of Fourier analysis expressed
in the transforms (8.16) and (8.18) is that general functions can be expressed and ana-
lyzed as a continuous weighted superposition of Fourier basis functions of the form
@2/t Note that this representation differs from the finite basis function sets considered
in Chapter 5 in that the sets of Fourier basis functions in (8.16) and (8.18) are infinite.
2t — cos(2rft) + 1sin(27 ), are complex, a
general real-valued function h(f) will have a corresponding spectrum, H( f), that can

Because the Fourier basis functions, ¢

be complex valued. |H(f)| is called the spectral amplitude. It is commonly very
convenient to express spectra in polar form,

H(f) = [HNID, (8.19)
where the angle that H( f) makes in the complex plane,

imag(G (/) )

weal(G(f)) (8:20)

0(f) = tan_1<
is called the spectral phase.

A useful feature of the Fourier transform is that it is length preserving for the
2-norm measure, in the sense that the 2-norm of a function and its Fourier transform
are identical. Consider a time domain norm of the form of (5.3) for a general complex
function h(t)

o0

1h(e) |3 = / W)™ (6) dt. (8.21)

—00

Expressing h(f) using the inverse Fourier transform (8.18) and applying complex con-
jugation (denoted by an asterisk) gives

o0 o0

(D)3 = / h(t) / H*(f)e 2 af | dr. (8.22)

—00
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Interchanging the order of integration and utilizing (8.16), we have

Ih(OIZ = f H () f W2 dt |
= [ wmon @ 3.23)

= IHNII3,

which is the 2-norm of the Fourier transform of h(f). Equation (8.23) is most commonly
referred to as Parseval’s theorem.

We have shown in (8.11) that the data produced by a linear time-invariant system for
a model, m(f), is the convolution of m(f) with the system impulse response. Evaluating
the Fourier transform of this convolution produces an especially important result.

Theorem 8.2

Flm(t) % g(H)] = / / m(t)g(t— 1) dt | e 2 dr. (8.24)

Reversing the order of integration gives

Flm(t) % g(£)] = / m(t) / gt —1)e 2 dr | dr. (8.25)
Introducing a change of variables, & =t — T, we obtain
Finoxgl = [ | [ a@e 0 e Jar
= / m(t)e 2T dr / (&)™ FIE g (8.26)
= M(NHG(Sf).

Equation (8.26), which applies to any pair of functions, is called the convolution
theorem. The theorem states that convolution of two functions in the time domain
corresponds to the multiplication of their Fourier transforms in the frequency domain.
When the two functions are a model, m(f), and an impulse response, g(f), in a forward
problem, (8.26) indicates that the corresponding data spectrum is simply the product of
the model and impulse response spectra.
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To examine the implications of the convolution theorem more explicitly, consider
the data produced by a linear time-invariant system, characterized by the spectrum
of the impulse response, G( f), for a model, m(¢), that is a Fourier basis function of
frequency fy,

mo(f) = 2", (8.27)

The spectrum of (8.27) is a delta function located at f = fo, §(f — fo). This can be seen
by constructing an inverse Fourier transform (8.18) that invokes the sifting property of
the delta function

o0

¢2h = / S(f — fo)e®™ df. (8.28)

The spectrum of the corresponding data is thus, by (8.26), a delta function at f = fy,
scaled by the spectrum of G(¢):

7 [G [elzw]] =7 [g(f )elznfot] =3(f —f)G(f)- (8.29)

The corresponding time domain response is, by (8.18),

/ g(f())S(f_ﬁ))etZJTft df=g(fo)e’2”f0’
—00 — |g(ﬁ))|619(f0)612nﬁ)t
=G ()P mo ().

Linear time-invariant systems thus transform the Fourier basis functions (8.27) to iden-

(8.30)

tical functions, altering only their amplitude and phase by frequency-dependent factors
1G(fo)]¢9U0) . Because the system is linear, the transformation for a general input function
is just the superposition of all such components at all frequencies, where the appropri-
ate functional weighting is G( /). Of particular relevance here when considering inverse
methods is the result that model basis function amplitudes at frequencies that are weakly
mapped to the data (frequencies where |G(f)] is small) in a forward problem, and/or are
obscured by noise, may be difticult or impossible to recover in an inverse problem.

The spectrum of the impulse response (transfer function) can be evaluated in a partic-
ularly useful analytical manner when we can express the forward problem d(f) = G[m(f)]
as a linear differential equation,

am® +a—m ™+ aym® 4 aom
= byd®@ 4 by 1 d TV b dD 4 hod, (8.31)

where the superscripts denote the order of time differentiation of m and d, and the a; and
b are constant coefticients. Because each term in (8.31) is linear (there are no powers or



8.2. Linear Systems in Discrete Time 199

other nonlinear functions of m, d, or their derivatives), and because differentiation is itself
a linear operation, (8.31) expresses a linear time-invariant system obeying superposition
and scaling.

If (8.31) operates on a model of the form m(f) = ¢2f(8.30) indicates that the
corresponding output will be d(f) = G(f Y2t Substituting this form of m(f) and dif-
ferentiating each term, each time derivative, m® and d®, will generate corresponding

multipliers (27r1f)*. Finally, dividing the resulting equation on both sides by ¢, and
solving for G( f) gives
D(f)
Gg(f) = —= (8.32)
D=3
S, bif) )
=== (8.33)

o @)Y
The transter function can thus be expressed as a ratio of two complex polynomials
in f for any system expressible in the form of (8.31). The ¢+ 1, generally complex,
frequencies f, for which the numerator of (8.33) is zero, are referred to as zeros of the
transfer function (8.33). The predicted data for the forward problem will thus be zero

27fet regardless of their amplitude. Any real-valued frequency,

127 fot

for inputs of the form ¢
f= =fo, corresponding to the Fourier model basis function ¢ will thus lie in the
model null space and be unrecoverable by any inverse methodology. The r+ 1, generally
complex, frequencies f, for which the denominator of (8.33) is zero, are called poles
of (8.33). The system will be unstable when excited by model basis functions €2,
Along with a scalar gain factor, the transfer function (and hence the response) of a general
linear system that is expressible in the form of (8.31) can be completely characterized
by tabulating the poles and zeros, along with a scalar gain factor. This characterization is

commonly employed in specifying instrument responses.

8.2. LINEAR SYSTEMS IN DISCRETE TIME

To implement Fourier methods numerically, a discrete theory is required with properties
that are analogous to the continuous transforms (8.16) and (8.18). This is achieved by
the discrete Fourier transform, or DFT. In its most basic formulation, the DFT
operates on a uniformly sampled (e.g., space or time) sequence with a specified number
of terms n. The frequency, f;, at which sampling occurs is called the sampling rate. The

forward discrete Fourier transform of an n-point sequence, m;, j=0, 1,...,n—1,1s
M}, = (DFT[m]), (8.34)
n—1
=Y e, (8.35)

J=0
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and its inverse 1s

m; = (DFT™! [M])j (8.36)
1 4
== ) My, (8.37)
" k=0

Equation (8.37) states that the sequence m; can be expressed as a linear combination of

the n basis functions 27/k/1

, where the complex weights in the linear combination are
the discrete spectral elements M|, (with an additional scaling factor of 1/n in (8.37)).
The DFT basis functions are orthonormal on an n-point interval in that, for any integers

[ and k:

n—1

1 ol —2mjem _ J1 1=k
- Z;e e =10 12k (8.38)
J:

The DFT operations (8.35) and (8.37) are also widely referred to as the FFT and
IFFT because a particularly efficient algorithm, the fast Fourier transform, is nearly
ubiquitously used for their evaluation. The transforms can be calculated in MATLAB
using the fft and ifft commands (note that FFT vectors and arrays in MATLAB, as
is standard, are indexed beginning with one instead of zero). The DFT expression of
Parseval’s theorem (8.23) is

n—1 1 n—1
D mlP == Ml (8.39)
=0 " =0

DFT spectra, My, are generally complex, discrete, and periodic, where the period
is n. There is an implicit assumption in DFT theory that the associated time domain
sequence, m;, is also periodic with period n. Because of these periodicities, DFT results
can be stored in complex vectors of length n without loss of information, although
(8.35) and (8.37) are valid for any integer index k. The DFT of a real-valued sequence
has Hermitian symmetry about k=0 and k = 1/2, as defined by M = M*_ (see
Exercise 8.2).

The mapping of the discrete spectrum index to specific frequencies is propor-
tional to the sampling rate f;. For n even, the positive frequencies, If;/n, where [ =
1, ..., n/2—1, correspond to indices k=1, . . ., n/2 — 1, and the negative frequen-
cies, —lf;/n, correspond to indices k =n/2+1, . . . , n— 1. The frequencies £f;/2 have
identical DFT wvalues and correspond to index k = n/2. For n odd, there is no integer k
corresponding to exactly half of the sampling rate. In this case, positive frequencies cor-
respond to indices 1 through (# — 1)/2 and negative frequencies correspond to indices
(n+1)/2 through n—1. Figure 8.1 displays the discrete spectrum index-frequency
mapping with respect to k for an n = 16-length DFT.
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Figure 8.1 Frequency and index mapping for the DFT of a real-valued sequence (n = 16) sampled
at ;. For DFT theory to accurately represent Fourier operations on a continuous time signal, f; must be
greater than or equal to the Nyquist frequency (8.40).

The Hermitian symmetry of the DFT implies that, for a real-valued sequence, the
spectral amplitude, |M|, is symmetric and the spectral phase is antisymmetric with
respect to k=0 and k= n/2. See Figure 8.1. For this reason it is customary to just
plot the spectral amplitude and phase for positive frequencies in depicting the spectrum
of a real signal.

For a uniformly sampled sequence to accurately represent a continuous function
that contains nonnegligible spectral energy up to some maximum frequency fuax, the
sampling rate, f;, must be at least as large as the Nyquist frequency, fy, so that

f; ZfN = _ﬁnax- (840)

Should (8.40) not be met, a nonlinear and generally irreversible distortion called alias-
ing occurs. Generally speaking, aliasing causes spectral energy at frequencies f > f;/2
to be “folded” and superimposed onto the DFT spectrum within the frequency range
—f/2=f <f/2.

Consider a model sequence m; of length n and an impulse response sequence g; of
length p, where both sequences are synchronously and uniformly sampled at f; = 1/At.
The discrete convolution of the two sequences can be performed in two ways.
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The first method is a serial convolution, which produces a sequence of length n+
p—1:

n—1

b= mg At =01, .. ntp—2. 8.41)
k=0

Serial convolution implements the discrete approximation to the convolution integral,
and is implemented in MATLAB by the conv command.

The second type of discrete convolution is a circular convolution. Circular convo-
lution is applicable to two sequences of equal length. If the lengths initially differ, they
may be equalized by padding the shorter of the two sequences with zeros. The result
of a circular convolution is as if each sequence is first expanded to be periodic (with
period #), and then serially convolved solely on the index interval j =0, 1, . . ., n—1.
A circular convolution can be implemented using the discrete counterpart of the
convolution theorem,

d = DFT"![DFT[m] © DFT|[g]]At

8.42
= DFT '[M O G|At, (5:42)

where M © G indicates element-by-element multiplication of the vectors M and G.

A very important practical consideration is that circular convolution implemented
using the discrete convolution theorem (8.42) is much more efficient than serial con-
volution invoked with simple summation as in (8.41). To avoid wrap-around effects
arising due to the implied n-length periodicity of m and g in the circular convolution,
and thus obtain a result that is indistinguishable from the serial convolution (8.41), it
may be necessary to pad one or both series with up to n zeros and apply (8.42) on the
extended sequences. Because of the factoring strategy used in the FFT algorithm, it is
also desirable for computational efficiency to pad m and g to lengths that are powers
of 2, or are at least have many small prime factors.

Consider the case where we have a theoretically known, or accurately estimated, sys-
tem impulse response, ¢(f), convolved with an unknown model, m(f). The continuous
forward problem is

b

d(t) = / g(t—1)m(7) dv. (8.43)

a

Uniformly discretizing this expression using simple collocation with a sampling rate,
fs = 1/ At, that is rapid enough to satisfy (8.40) and thus avoid aliasing, gives

d = Gm, (8.44)
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where d and m are m and n length sequences, respectively, and G is a matrix with m
rows of length n. Each row of G is a time-reversed and time-shifted representation of
the impulse response, scaled by At to approximate the convolution integral,

Gik = gi—kAt. (8.45)

This time domain representation of a forward problem convolution was previously
examined in Example 3.2.

An inverse solution using Fourier methods can be obtained by first padding d and g
appropriately with zeros so that they are of some equal and sufficient length, n, to render
moot any wrap-around artifacts associated with circular convolution. G then becomes
an n by n matrix. Applying the DFT and (8.26) allows us to cast the forward problem as
a complex-valued linear system,

D =GM. (8.46)
G in (8.46) is a complex-valued diagonal matrix with
Gk = Gi, (8.47)

where G is the discrete Fourier transform of the sampled impulse response g, D is the
discrete Fourier transform of the data vector d, and M is the discrete Fourier transform
of the model vector m. We can write (8.46) more simply using the element-by-element
multiplication operator as

D=GOM. (8.48)

Equation (8.46) suggests a solution by spectral division, where we first solve for
the Fourier transform of the model using the element-by-element division operation
(or equivalently, inverting the diagonal matrix G in (8.46)),

M=Dog, (8.49)

and then obtaining the model m = DFT~'[M].

Equation (8.49) is appealing in its simplicity and efficiency. The application of (8.26),
combined with the efficient FFT implementation of the DFT, reduces the necessary
computational effort from solving a potentially very large linear system of time domain
equations (8.44) to just three n-length DFT operations (taking the DFT of the data
and impulse response vectors, and then the inverse DFT of the element-by-element
quotient). If d and g are real, packing/unpacking algorithms also exist that allow DFT
operations to be further reduced to complex vectors of length n/2.

However, (8.49) does not avoid the instability that is potentially associated with
deconvolution if the reciprocal of any element in G is large. Equation (8.49) typically
requires regularization to be useful.
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8.3. WATER LEVEL REGULARIZATION

A straightforward and widely applied method of regularizing spectral division is water
level regularization. The water level strategy employs a modified impulse response
spectrum, G, in (8.49), where

Gi (1Gil > w)
Gw)i=w(Gi/1Gi) (0 <G| <w) (8.50)
w (Gi=0).

The water level regularized model estimate is then
m, =DFT™!' [DQG,] At. (8.51)

The colorful name for this technique arises from the construction of G, applying
the analogy of pouring water into the low-amplitude “holes” of G until the spectral
amplitude levels there reach w. The effect in (8.51) is to prevent undesirable noise
amplification from occurring at frequencies where ||G|| is small.

An optimal water level value, w, will reduce the sensitivity to noise in the inverse
solution while still recovering important model features. As is typical of the regulariza-
tion process, it is possible to choose a “best” solution by assessing the trade-off between
the norm of the residuals (fitting the data) and the model norm (smoothness of the
model) as the regularization parameter w is varied. In calculating a trade-oft curve,
Parseval’s theorem (8.39) usefully facilitates calculations of the model and residual norms
from spectra without calculating inverse Fourier transforms. Note that the 2-norm of the
water level-regularized solution, m,,, will be nonincreasing with increasing w because

|(gw)i| > |g1|

®
Example 8.1

In Example 3.2, we investigated time domain deconvolution for uniformly sampled data
with a sampling rate of f; = 2 Hz using the truncated single value decomposition. Here,
we solve this problem using frequency-domain deconvolution regularized via the water
level technique. The impulse response, true model, and noisy data for this example are
plotted in Figures 3.9, 3.11, and 3.12, respectively. We first pad the 210-point data and
impulse response vectors with 210 additional zeros to eliminate wrap-around artifacts,
and apply the fast Fourier transform to both vectors to obtain corresponding discrete
spectra. The spectral amplitudes of the impulse response, data, and noise are critical in
assessing the stability of the spectral division solution. See Figure 8.2. The frequencies
range from 0 to f;/2 = 1 Hz. Because spectral amplitudes for real-valued sequences are
symmetric about k=0 and k = n/2 (Figure 8.1), only positive frequencies are shown.

E
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Figure 8.2 Amplitude spectra for the system impulse response (solid, smooth curve), noise-free data
(dashed curve), and noisy data (solid, rough curve).

Examining the impulse response spectral amplitude, |G|, in Figure 8.2, we note that
it decreases by approximately three orders of magnitude between very low frequencies
and half of the sampling frequency (f;/2 =1 Hz). The convolution theorem (8.26)
shows that the forward problem convolution multiplies the spectrum of the model
by G(f) in mapping it to the data. Thus, the convolution of a general signal with
broad frequency content with this impulse response will strongly attenuate higher
frequencies. Figure 8.2 also shows that the spectral amplitudes of the noise-free data
fall off more quickly than the impulse response. This indicates that spectral division
will be a stable process for noise-free data in this problem. Figure 8.2 also shows that
the spectral amplitudes of the noisy data dominate the signal at frequencies higher than
f = 0.1 Hz. Because of the small values of G, at these frequencies, the spectral divi-
sion solution using the noisy data will be dominated by noise (as was the case in the
time domain solution of Example 3.2; see Figure 3.14). Figure 8.3 shows the ampli-
tude spectrum of the noisy data (Figure 3.14) divided by the spectrum of the impulse
response. The resulting model spectrum is dominated by noise at frequencies above
about 0.1 Hz.

To regularize the spectral division solution, an optimal water level, w, is sought,
where w should be large enough to avoid the undesirable amplification of noise.
Figures 8.2 and 8.3 suggest that the optimal value of w is near the crossover spectral
amplitude where the data spectrum is surpassed by noise, or near w somewhat greater
than 1. However, such a determination might be more difficult for data with a more
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Figure 8.3 Spectral amplitudes resulting from the Fourier transform of the noisy data divided by the
Fourier transform of the impulse response (the transfer function).
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Figure 8.4 L-curve for a logarithmically distributed range of water level values as indicated.

complex spectrum, and/or where the distinction between signal and noise spectra is gen-
erally less clear. Figure 8.4 shows an L-curve for this example, which suggests an optimal
w close to 3. Figure 8.5 shows a corresponding range of solutions, and Figure 8.6 shows
the solution for w = 3.16.
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Figure 8.5 Models corresponding to the range of water level values used to construct Figure 8.4.
Dashed curves show the true model, and bold trace shows the L-curve determined model with
w=3.16 (Figure 8.4).
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Figure 8.6 Water level-regularized model corresponding to w = 3.16. Dashed curve shows the true
model.

The solution shown in Figure 8.6, chosen from the corner of the trade-oft curve of
Figure 8.4, shows features of limited resolution that are typical of regularized solutions.
In this case, imperfect resolution induced by regularization is manifested by reduced
amplitude, oscillatory side lobes, and model broadening relative to the true model.
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8.4. TIKHONOV REGULARIZATION IN THE FREQUENCY DOMAIN

An alternative regularized approach to solving the frequency-domain forward problem
(8.46) 1s to consider the system as a least squares minimization problem, as we did in

Chapter 4 (e.g., (4.4)):
min |[GM — D||3 + | M]3 (8.52)

Expressing 8.52 as an augmented forward problem gives

G D

MENH

We solve (8.53) by applying the normal equations using the conjugate transpose of the

2
min

(8.53)

2

diagonal matrix G, G which gives

[G" aI] [G] M=[GH aI] [ﬂ. (8.54)

al

Equation (8.47) corresponds to the zeroth-order Tikhonov-regularized formulation
(GHG +o’T)M = GHD. (8.55)
with the frequency-domain solution,
My = (GHG +’ D)7 IGHD. (8.56)

Because GG is diagonal, (8.56) can be expressed solely using n-length vector element-
by-element operations as

My =G OD)2 (IG5 +ae), (8.57)

where e is an n-length vector of ones. Applying the IDFT to M, then produces the
corresponding regularized time domain solution, m.

Although we have implemented || M|, = ||DFT[m]|| rather than ||ml||, in (8.53) to
regularize the problem, by Parseval’s theorem (8.39), the norm of the model spectrum
is proportional to the norm of the time domain model. Thus, (8.57) is equivalent to
that obtained if we were to regularize using the norm of the model in the time domain
model (although the specific values of o will be different).

An important consideration is that the inverse operation (8.57) is applied by element-
by-element spectral division of n-length vectors, so the solution can be calculated
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extremely efficiently relative to inverting a nondiagonal n by # matrix. Even with the
additional calculations associated with the FFT, this methodology is typically much more
efficient than a time domain approach, such as is described in Example 3.2.

To implement higher-order Tikhonov regularization, we note that

d

i _ [ 1277 ft
= f M) df

o0

— 2 127 ft
—/ MO

—0

(8.58)

o

= [ 2mmcne

= F ' 2mif M(f)].

Taking the Fourier transform of both sides gives

F [%m(t)] =2m1f M(f). (859)

Equation (8.59) enables us to effect a first derivative seminorm by multiplying each
element of M by 27f;, choosing the f; to be proportional to the spectral frequency
of the jth-element (Figure 8.1). Proportionality is sufficient, because the exact con-
stant frequency-scaling factor for converting the DFT index to frequency can be
absorbed into the range of the regularization parameter «v. Thus, we can eftect pth-order
Tikhonov regularization by solving

2
. G D
min |:oth:| M — |:0:| . (8.60)
where K is an # by n diagonal matrix with diagonal elements (e.g., for n even)
L G—1D/n j=1,2,...,n/2
K”_{(f—l)/n—l J=n/24 1, 0242, . n (8.61)

that are proportional to the frequency represented by the jth element of M. The least
squares solution, obtained utilizing the normal equations, is thus

Mg = (GHG +o’K?)IGHD (8.62)
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or
My = G"OD)o (IG5 + k), (8.63)

where k? is the vector composed of the diagonal elements of K.

As with the zeroth-order solution (8.57), (8.63) can be evaluated very efficiently
with element-by-element n-length vector operations. Note that the implementation
of the (nonidentity) matrix K in (8.62) weights the higher frequency components
of the model more in the regularization, and thus tends to make them small. It is
thus straightforward to consider and implement more general regularization matrices
that will penalize particular Fourier components (e.g., within a particular frequency
range).

®
Example 8.2

Let us reconsider Example 8.1 in a Tikhonov regularization framework.

We first implement zeroth-order regularization using (8.56) and examine the trade-
off curve (Figure 8.7). The suite of solutions is shown in Figure 8.8, and a solution
selected from the trade-off curve is shown in Figure 8.9 compared with the true model.
Note that, compared to the water level solution shown in Figure 8.6, the Tikhonov
regularized solution has better amplitude recovery and is somewhat smoother. On the

350
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Model norm ||M||»

150

100

50 6.0 i

50 100 150
Residual norm ||GM-D||,

Figure 8.7 L-curve for a logarithmically distributed range of regularization-parameter values, zeroth-
order Tikhonov regularization.
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Figure 8.8 Zeroth-order Tikhonov regularized models corresponding to the range of regularization
parameters used to construct Figure 8.7. Dashed curves show the true model, and bold trace shows
the L-curve determined model with o = 0.48.
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Figure 8.9 Zeroth-order Tikhonov regularized model corresponding to o = 0.48. Dashed curve shows
the true model.

other hand, the recovered zeroth-order Tikhonov regularized model shows higher
amplitude structure later in the time series. Applying second-order Tikhonov regu-
larization, we obtain a corresponding trade-oft curve (Figure 8.10) and recover a still
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Figure 8.10 L-curve for a logarithmically distributed range of regularization-parameter values,
second-order Tikhonov regularization.
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Figure 8.11 Second-order Tikhonov regularized models corresponding to the range of regularization
parameters used to construct Figure 8.7. Dashed curves show the true model, and bold trace shows
the L-curve determined model with o« = 30.2 (Figure 8.10).

smoother model that is generally closer to the true model than either water level or
zeroth-order Tikhonov regularization (Figures 8.11 and 8.12). The final accuracy of any
regularized solution will, of course, depend on properties of the true solution. In this
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Figure 8.12 Second-order Tikhonov regularized model corresponding to « = 30.2. Dashed curve
shows the true model.

particular case the true model is smooth, and the second-order regularization solution
is closest.

A significant new idea introduced by the Fourier methodology is that it provides a
set of orthonormal model and data basis functions of the form of (8.27), the complex
exponentials, that have the property of passing through a linear system altered in phase
and amplitude, but not in frequency or functional character (8.30). This remarkable
fact is the essence of the convolution theorem (8.26), which leads to frequency-domain
inverse methodologies that are very efficient when coupled with the FFT algorithm.
This efficiency can become critically important when larger and/or higher-dimensional
models are of interest, a large number of deconvolutions must be performed, or compu-
tational speed is critical, such as in real-time applications. The spectrum of the impulse
response (such as in Figures 8.2 and 8.3) can be used to understand what frequency
components may exhibit instability in an inverse solution. The information contained
in the spectrum of Figure 8.2 is thus analogous to that obtained with a Picard plot in
the context of the SVD (Chapters 3 and 4). The Fourier perspective also provides a link
between linear inverse theory and the (vast) field of linear filtering. The deconvolution
problem in this context is identical to finding an optimal inverse filter to recover the
model while suppressing the influence of noise, and Tikhonov regularization in the fre-
quency domain applies a preferential filtering to the solution that reduces amplitudes of
high-frequency Fourier components.
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@ 8.5. EXERCISES

1. Given that the Fourier transform of a real-valued linear system, g(t),

Fle0] =G(f) = real(G()) +imag(G(/)) = a(f) +1B(f), (8.64)

is Hermitian,

G(NH=G"(—f), (8.65)

show that convolving ¢(f) with sin(27fyf) and cos(27 fyt) produces the scaled and
phase-shifted sinusoids,

g0 *sin2mfor) = 1G(fo)| sin(27for 4 6(fo)) (8.66)
g() x cos2mfot) = |G (fo)| cosRmfot 4+ 6(fo)), (8.67)

where the scale factor is the spectral amplitude,
GUDI = @ (o) + B (i), (8.68)

and the phase-shift factor is the spectral phase

(8.69)

0(fy) = tan_l(M).

a(fo)

2. (a) Demonstrate using (8.35) that the DFT of an n-point, real-valued sequence, x,
is Hermitian, i.e.,

X=X (8.70)

(b) Demonstrate that the Hermitian symmetry shown in part (a) implies that the N
independent elements in a time series x produce N/2 4 1 independent elements
(N even) or (N —1)/241 independent elements (N odd) in the DFT X. As
the DFT has an inverse (8.37) that reproduces x from X, clearly information has
not been lost in taking the DFT, yet the number of independent elements in x
and X differ. Explain.

3. A linear damped vertical harmonic oscillator consisting of a mass suspended on a
lossy spring is affixed to the surface of a terrestrial planet to function as a seismo-
meter, where the recorded displacement, z(f), of the mass relative to its equilibrium
position will depend on ground motion (note that when the surface of the planet
moves upward, the inertia of the mass will tend to make it remain at rest, and the
corresponding motion of the mass relative to its suspension system will be down-
ward). For an upward ground displacement, u(f), the system can be mathematically
modeled as the linear differential equation (8.31) as

>z n D dz . K d>u 8.71)
—_— —_— —z = _, .
a2 Mdt M dr?
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where the physical properties of the oscillator are defined by the mass M, the

displacement-proportional spring force constant K, and the velocity-proportional

damping force constant D.

(a) By taking the Fourier transform of (8.71), obtain the transfer function G(f) =
Z(f)/U(S), where Z(f) and U(f) are the Fourier transforms of z(f) and u(¢),
respectively.

In terms of M, K, and D, and f; = /K/M:

(b) For what general frequency range of ground motion will the response of this
instrument be difficult to remove via a deconvolution?

(c¢) For what general frequency range of ground motion will the output of this
instrument be nearly identical to the true ground motion?

4. A displacement seismogram is observed from a large earthquake at a far-field seis-
mic station, from which the source region can be approximated as a point. A much
smaller aftershock from the main shock region is used as an empirical Green’s func-
tion for this event. It is supposed that the observed signal from the large event should
be approximately equal to the convolution of the main shock’s rupture history with
this empirical Green’s function. The 256-point seismogram is in the file seis.mat.
The impulse response of the seismometer is in the file impresp.mat.

(a) Deconvolve the impulse response from the observed main shock seismogram
using frequency-domain Tikhonov zeroth-order deconvolution to solve for the
source time function of the large earthquake. Note that the source time function
is expected to consist of a nonnegative pulse or set of pulses. Estimate the source
duration in samples and assess any evidence for subevents and their relative dura-
tions and amplitudes. Approximately what water level do you believe is best for
this data set? Why?

(b) Perform second-order (p = 2), frequency-domain Tikhonov deconvolution to
solve this problem. See Exercise 8.4(b).

(c) Recast the problem as a discrete linear inverse problem, as described in the
example for Chapter 3, and solve the system using second-order Tikhonov
regularization.

(d) Are the results in (c) better or worse than in (a) or (b)? How and why? Compare
the amount of time necessary to find the solution in each case on your computing
platform.

8.6. NOTES AND FURTHER READING

Although we examine one-dimensional convolution and deconvolution problems here
for conceptual simplicity, note that these results are readily generalizable to higher
dimensions, and higher-dimensional formulations of the DFT are widely utilized.



216 Chapter 8 Fourier Techniques

MATLAB has a general n-dimensional set of FFT algorithms, fftn and ifftn. Many
regularization matrices (e.g., the L roughening matrices introduced for one-dimensional
Tikhonov regularization in this text (4.27) and (4.28)) are easily recognized as con-
volutions, where the rows are time-reversed sampled representations of the impulse
response of the convolution effected by Lm. Fourier analysis of the frequency response
of regularization matrices thus facilitates more sophisticated regularization matrix design.

In some physics and geophysics treatments, the sign convention chosen for the com-
plex exponentials in the Fourier transform and its inverse may be reversed, so that
the forward transform (8.16) has a plus sign in the exponent and the inverse transform
(8.18) has a minus sign in the exponent. This alternative sign convention merely induces
a complex conjugation in the spectrum that is reversed when the corresponding inverse
transform is applied. An additional convention issue arises as to whether to express
frequency in Hz (f) or radians per second (w = 27 f). Alternative Fourier transform
formulations using w differ from (8.16) and (8.18) by a simple change of variables, and
introduce scaling factors of 27 in the forward, reverse, or both transforms.

Gubbins [60] also explores connections between Fourier and inverse theory in a
geophysical context. Kak and Slaney [84] give an extensive treatment of Fourier-based
methods for tomographic imaging. Vogel [169] discusses Fourier methods for image
deblurring. Because of the tremendous utility of Fourier techniques, there are numer-
ous resources on their use in the physical sciences, engineering, and pure mathematics.
A basic treatment covering theory and some applications at the approximate level of this
text is [20], and a recommended advanced text on the topic is [131].



CHAPTER NINE

Nonlinear Regression

Synopsis

Common approaches to solving nonlinear regression problems are introduced, extending
the development of linear regression in Chapter 2. We begin with a discussion of New-
ton’s method, which provides a general framework for solving nonlinear systems of
equations and nonlinear optimization problems. Then we discuss the Gauss-Newton
(GN) and Levenberg-Marquardt (LM) methods, which are versions of Newton’s method
specialized for nonlinear regression problems. The distinction between LM and Tikhonov
regularization is also made. Statistical aspects and implementation issues are addressed, and
examples of nonlinear regression are presented.

9.1. INTRODUCTION TO NONLINEAR REGRESSION

In previous chapters we have concentrated on linear forward and inverse problems, and
have seen that such problems are uniformly approachable using a variety of solution
methods. We will next consider problems that are nonlinear, i.e., forward and inverse
problems that do not obey the rules of superposition (1.5) and scaling (1.6). There is no
general theory for the solution of nonlinear parameter estimation and inverse problems.
However, we will see that iterative strategies incorporating linear concepts can be applied
to solve them in many circumstances.

9.2. NEWTON’S METHOD FOR SOLVING NONLINEAR EQUATIONS

Consider a nonlinear system of m equations in m unknowns

F(x) = 0. 9.1)

We will construct a sequence of vectors, x", x', ..., that will converge to a solu-

tion x*. If the nonlinear vector function F is continuously differentiable, we can

construct a Taylor series approximation about some starting solution estimate, x,

F(x" + Ax) ~ F(x") +J(x") Ax, 9.2)

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00009-4
(© 2013 Elsevier Inc. All rights reserved.

217|


http://dx.doi.org/10.1016/B978-0-12-385048-5.00009-4

218 Chapter 9 Nonlinear Regression

where J(x") is the Jacobian,

dF (x) dF (x)
ax1 o Xy
0 . . .
I = L . 9.3)
3 F (x) .. 9F,(x)
dxq R 0

X=X

Using (9.2), and expressing the difference between the desired solution, x*, and x” as
Ax =x* —x" (9.4)
gives
F(x*) = 0 ~ F(x") +J(x")Ax, (9.5)
which produces a linear system of equations,
J&")Ax ~ —F(x"), (9.6)

that can be solved for Ax to improve the solution estimate.

Algorithm 9.1 Newton'’s Method

Given a system of equations F(x) = 0 and an initial solution x’, repeat the following
steps to compute a sequence of solutions x*. Stop if and when the sequence adequately
converges to a solution with F(x) = 0.

1. Calculate the Jacobian J(xk) and F(xk).

2. Solve J(x*)Ax = —F(x").

3. Let x*! =xF + Ax.

4. Letk=k+1.

The theoretical properties of Newton’s method are summarized in the following
theorem. For a proof, see [39].

Theorem 9.1 Ifx" is close enough to x* F(x) is continuously differentiable in a neighborhood
of x*, and J(x*) is nonsingular, then Newton’s method will converge to x*. The convergence rate
is quadratic in the sense that there is a constant c, such that for large k,

k 2

”Xle+1_ * <k — x*

X

<c 9.7)

2

In practical terms, quadratic convergence means that as we approach x*, the num-
ber of accurate digits in the solution doubles at each iteration. Unfortunately, if the
hypotheses in the above theorem are not satisfied, then Newton’s method can converge
very slowly or even fail altogether.
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A simple modification to Newton’s method often helps with convergence problems.
In the damped Newton’s method, we use the Newton’s method equations at each
iteration to compute an iterative correction to the working solution. However, instead
of taking the full step x**!

along the line x**! = x* 4 ¢ Ax for a range of positive a values and take the one with
k+1 )|
2.

= x* + Ax, we perform a line search across solutions lying

minimum ||F(x
Now suppose that we wish to minimize a scalar-valued function f(x). If we as-
sume that f(x) is twice continuously differentiable, we can construct a Taylor series

approximation,
0 0 ONT 1 T 0
PO+ Ax) & f ) + VA T Ax S AxTH(f () Ax, 9.8)
where Vf(x") is the gradient
fx)
0x1
Vi) =| (9.9)
fx)
X x=x"
and H( f (x")) is the Hessian
G B ¢
dx% 0x10xy
H(fx)=| o (9.10)
G I ¢ )
9x,,0x1 8x%n x=x0

A necessary condition for x* to be a minimum of f(x) is that Vf(x*) = 0. We can
approximate the gradient in the vicinity of x” by

Vi + Ax) ~ VA" +H(f(x") Ax. (9.11)
Setting the approximate gradient (9.11) equal to zero gives
H(f(x")Ax = —Vf(x"). (9.12)

Solving the linear system of equations (9.12) for successive solution steps leads to
Newton’s method for minimizing f(x).

Since Newton’s method for minimizing f(x) is exactly Newton’s method for solv-
ing a nonlinear system of equations applied to F = Vf(x) = 0, the convergence proof
follows immediately from the proof of Theorem 9.1.

Theorem 9.2 If f(x) is twice continuously differentiable in a neighborhood of a local mini-
mizer xX*, there is a constant A such that |H(f(x)) —H(f(y)|l2 < Allx —yll2 for every
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vector'y in the neighborhood, H( f(x*)) is positive definite, and x° is close enough to x*, then
Newton’s method will converge quadratically to x*.

Algorithm 9.2 Newton’s Method for Minimizing f(x)

Given a twice continuously differentiable function f(x), and an initial solution x”, repeat
the following steps to compute a sequence of solutions x!, x2, .... Stop if and when
the sequence adequately converges to a solution with Vf(x*) = 0.

1. Calculate the gradient Vf (x*) and Hessian H(f (x4)).

2. Solve H(f(x*))Ax = —Vf(x¥).

3. Letx*t! =x* + Ax.

4. Letk=k+1.

Newton’s method for minimizing f(x) can be very efficient, but the method can
also fail to converge. As with Newton’s method for solving a system of equations, the
convergence properties of the algorithm can be improved in practice by modifying the
model update step with a line search.

9.3. THE GAUSS-NEWTON AND LEVENBERG-MARQUARDT METHODS
FOR SOLVING NONLINEAR LEAST SQUARES PROBLEMS

Newton’s method is not directly applicable to most nonlinear regression and inverse
problems. We may not have equal numbers of data points and model parameters, there
may not be an exact solution to G(m) = d, or G(m) = d may have multiple solutions.
Here, we will use a specialized version of Newton’s method to minimize a nonlinear
least squares problem.

Given a nonlinear system of equations G(m) = d, consider the problem of finding an
n-length parameter vector, m, constrained by an n-length data vector, d, with associated
specified data standard deviations. Our goal is to find a set of parameters that best fits
the data in the sense of minimizing the 2-norm of the residuals.

As with linear regression, if we assume that the measurement errors are normally
distributed, then the maximum likelihood principle leads us to minimizing the sum of
squared residuals normalized by their respective standard deviations (2.12). We seek to
minimize the weighted residual norm

m 2
fm)y=>" (M) . (9.13)
i=1 oi
We define the scalar-valued functions

G(m);—d; .
film)= ———— i=1,2...,m (9.14)

1
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and the vector-valued function

fi(m)
F(m) = : . (9.15)
Sin(m)
Thus
m
fm)=>" fim)* = |E@m)]3. (9.16)
i=1
The gradient of f(m) can be written as the sum of the gradients of the individual
terms,
m
Vf(m) = Z V(fi(m)?). 9.17)

i=1
The elements of the gradient of f(m) are

m

(Vf(m); = 2fim)(Vfi(m));, 9.18)

i=1

and the gradient can thus be written in matrix notation as

Vf(m) = 2J(m) "F(m), (9.19)
where J(m) is the Jacobian
amy amy,
Jimy = S 9.20)
M e af;n(m)
dmq dmy,

Similarly, we can express the Hessian of f(m) using the f;(m) terms to obtain

H(f(m)) =) H(fi(m)?) 9.21)
i=1

= 3" H(m), 9.22)
i=1

where H'(m) is the Hessian of f,(m)2
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The j, k element of H'(m) is

i _ 9 (fitm)?)
_ 0 <2ﬁ-(m) —aff(m)) 924
am; amy,
: : 2.
_ 2<3ﬁ(m> Ifim) ﬁ(m)a ﬁ(m)). 0.2
om;  dmy, dm;dmy,
Thus
H(f(m)) = 2J(m)J(m) + Q(m), (9.26)
where
Q(m) =2 ) fi(m)H(fi(m)). 9.27)

i=1
In the Gauss-Newton (GN) method, we ignore the Q(m) term in (9.26) and
approximate the Hessian as

H(f(m)) ~ 2J(m) " J(m). (9.28)

In the context of nonlinear regression, we expect that the f;(m) terms will be small as we
approach the optimal parameters m*, so that this should be a reasonable approximation
in the vicinity of the solution. Conversely, this is not a reasonable approximation for
nonlinear least squares problems in which the values of f;(1m) can be large.
Implementing Newton’s method for minimizing f(m) (9.12) using the gradient
(9.19) and the approximate Hessian (9.28), and dividing both sides by 2, we obtain

Jm*)Jm*) Am = —J(m*) "E(m"), 9.29)

which provides a formula for solving for successive update steps Am. The »n by n matrix
J(m*) TJ(m"*) is symmetric and positive semidefinite. If the matrix is actually positive
definite then we can use the Cholesky factorization or another full-rank method to solve
the system of equations for Am. However, if the matrix is singular then such straight-
forward approaches will fail. Although the GIN method often works well in practice, it
is based on Newton’s method, and can thus fail by converging to a local maximum or
saddle point where Vf(m) & 0, or by not converging at all. An additional point to con-
sider in using GN and other such iterative methods is that the algorithm may converge
to a local minimum rather than to a global minimum (see Section 9.5).

In the Levenberg-Marquardt (LM) method, the GN method model update
equations (9.29) are modified to

(J(m")J(m") + A) Am = —J(m") "F(m"), 9.30)
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and the positive parameter A is adjusted during the course of iterations to ensure con-
vergence. One important reason for this modification is to ensure that the matrix on
the left-hand side of (9.30) is nonsingular. Since the matrix in this system of equations
is symmetric and positive definite, we can use the Cholesky factorization to efficiently
solve the system for the model update steps ém.

For very large values of A,

J(m") TJ(m") + A1~ A, 9.31)

and the solution to (9.30) is
1
Am ~ —XVf(m). (9.32)

This is called a steepest-descent step, meaning that the algorithm simply moves down-
gradient to most rapidly reduce f(m). The steepest-descent approach provides very slow
but certain convergence to a local minimum. Conversely, for very small values of A, the
LM method reverts to the GN method (9.29), which gives potentially fast but uncertain
convergence.

A challenge associated with implementing the LM method is determining the opti-
mal value of A. The general strategy is to use small values of A in situations where the
GN method is working well, but to increase A when the GN method fails to make
progress in reducing the residual norm. A simple approach is to start with a small value
of A, and then adjust it in every iteration. If the LM method leads to a residual norm
reduction, then update m and decrease A by a constant multiplicative factor (e.g., a fac-
tor of 2) before the next iteration. Conversely, if the LM method does not improve the
solution, we then increase A by a constant factor and try again, repeating this process
until 2 model update is found that decreases the residual norm. R obust implementations
of the LM method use more sophisticated strategies for adjusting A, but even this simple
strategy works surprisingly well.

In practice, a careful LM implementation offers the good performance of the GN
method as well as robust convergence properties, and LM is usually the method of choice
for small- to medium-sized nonlinear least squares problems.

Note that although the LM stabilization term AI in (9.30) resembles expressions used
elsewhere (e.g., Chapter 4) for Tikhonov regularization purposes, it does not alter the
ultimate model achieved at convergence. The AI term is used to stabilize the solution of
the linear system of equations that determines the search direction to be used. Because
the AI term is only used as a way to improve the convergence of the algorithm, and does
not enter into the residual norm objective function that is being minimized, it does not
regularize the nonlinear least squares problem. We discuss the regularization of nonlinear
problems in Chapter 10.
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9.4. STATISTICAL ASPECTS OF NONLINEAR LEAST SQUARES

Recall from Appendix B that if a vector d has a multivariate normal distribution, and
A is an appropriately sized matrix, then Ad also has a multivariate normal distribution
with an associated covariance matrix

Cov(Ad) = ACov(d)A”. (9.33)

In Chapter 2, we applied this formula to the linear least squares problem for Gm =d,
which we solved by the normal equations. The resulting formula for Cov(m) was

Cov(mp,) = (GTG)"'GTCov(d)G(GTG) . (9.34)
In the simplest case, where Cov(d) = o?I, (9.34) simplified to
Cov(mp,) =0*(GTG)™!. (9.35)

For the nonlinear regression problem, we no longer have a linear relationship
between the data and the estimated model parameters, so we cannot assume that the
estimated model parameters have a multivariate normal distribution, and cannot use the
above formulas. However, we can obtain useful corresponding formulas by linearization
if the data errors are not too large.

If small data perturbations result in small model perturbations in a nonlinear system,
we can consider a linearization of the misfit function (9.15) about a solution, m*:

F(m* + Am) ~ F(m"*) +J(m*) Am. (9.36)

Under this approximation, there is a linear relationship between changes in F and
changes in the parameters m:

F(m* + Am) — F(m*) = AF ~ J(m*) Am. (9.37)

To the extent that the residual misfit terms (the elements of F(m™)) are small, the
Hessian can be approximated by (9.28). In this case J(m*) in nonlinear regression can
take the place of G in linear problems (e.g., (9.35)) to estimate the covariance of the
model parameters. Equation (9.13) incorporates the respective data element standard
deviations o; into the formula for the residual norm f(m), and explicitly weights the
nonlinear constraint equations. Cov(d), in the case of independent data errors, is thus
the identity matrix in such a weighted system. In this case we have

Cov(m®) ~ (J(m*)'J(m*)) ™" (9.38)
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As in Chapter 2, we can construct a 95% confidence ellipsoid for the fitted para-
meters in terms of this covariance matrix,

(m —m*)J(m*) J(m*)(m —m*) < A”, 9.39)

where A? is the ninety-fifth percentile of a x2 distribution with n degrees of freedom.
It is important to reiterate that this confidence ellipsoid only defines an approximate
confidence region because we linearized F(m) in (9.37).

As in Chapter 2, there is an alternative derivation of the 95% confidence region for
the fitted parameters in terms of x2(m) — x> (m*). If we let

x*(m) = |E(m)||3 = F(m) F(m), (9.40)
then the inequality
x2(m) — x*(m*) < A® (9.41)

defines an approximate 95% confidence region for m*. Because of the nonlinearity in
the x2(m) function, this 95% confidence region is typically not an ellipsoid. Unfortu-
nately, this confidence region is not exact, because this development is still based on the
assumption of multivariate normality, and m*, because it is not a linear combination of
the data vector elements, will not in general have a multivariate normal distribution in
nonlinear problems.

Should (9.39) or (9.41) be used in practice? If G(m) is not too strongly nonlin-
ear, then there should be very little difference between the two confidence regions.
However, if G(m) is more strongly nonlinear, then the difference between the two
confidence regions may be large and neither confidence region can really be trusted. In
such situations, Monte Carlo methods are a more useful and appropriate way to estimate
parameter uncertainty. This is discussed further in Chapter 11.

As with linear regression, it is possible to apply nonlinear regression when the mea-
surement errors are independent and normally distributed and the standard deviations
are unknown but assumed to be equal (Section 3.3). We set the o; to 1 and minimize
the sum of squared errors, and define a residual vector,

= G(m*), — d,’ i= 1, 2, N (B (942)
Our estimate of the measurement standard deviation is then

2
s= ez (9.43)

>
m-—n

and the corresponding approximate covariance matrix for the estimated model parame-
ters 1s

Cov(m™) = &(J(m*) TJ(m*))~". (9.44)
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Given m* and Cov(m™), we can establish confidence intervals for the model param-
eters using the methods described in Chapter 2. As with any parameter estimation
problem, it is also important to examine the residuals for systematic patterns or devi-
ations from normality. If we have not estimated the measurement standard deviation s
from the fitted residuals, then it is also important to test the x2 value for goodness of
fit and perform an associated p-value test (2.21) if we have normally distributed data
errors. The appropriateness of this test will depend on how well the nonlinear model
is approximated by the Jacobian linearization for points near the optimal parameter
values.

@
Example 9.1

A classic method in hydrology for determining the transmissivity and storage coefficient
of an aquifer is called the “slug test” [49].

A known volume Q of water (the slug) is injected into a well, and the resulting
effects on the head, h, at an observation well a distance d away from the injection well
are observed at various times f. The change in the head measured at the observation
well typically increases rapidly and then decreases more slowly. We wish to determine
the dimensionless storage coefticient, S, and the transmissivity 7T

The mathematical model for the slug test is

T (9.45)
4 Tt

We know the parameters Q =50 m® and d = 60 m, and the times ¢ at which the head
h is measured. Our data are given in Table 9.1, where head measurements are roughly
accurate to 0.01 m (o; = 0.01 m).

The optimal parameter values are S = 0.00207 and T = 0.585 m?/hr. The observed
x? value is 2.04, with a corresponding p-value of 0.73. Thus this fit passes the x2 test.
The data points and fitted curve are shown in Figure 9.1.

Using the Jacobian evaluated at the optimal parameter values, we computed an
approximate covariance matrix for the fitted parameters. The resulting 95% confidence
intervals for S and T are

S =0.00207 & 0.00012 (9.46)
T = 0.585 4 0.029 m?/hr. (9.47)

Table 9.1 Slug Test Data
t (hr) 5 10 20 30 40 50
h(m) | 0.72 | 0.49 | 0.30 | 0.20 | 0.16 | 0.12
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Figure 9.1 Data, with one standard deviation error bars, and fitted model for the slug test.
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Figure 9.2 x? contour plot for the slug test for a wide range of parameters. The small box shows the

close-up axis range displayed in Figure 9.3.

A contour plot of the x? surface obtained by varying S and T is shown in Figure 9.2.
Note that, unlike our earlier linear regression problems, the contours are not even
approximately elliptical because of the nonlinearity of the problem. However, it we
zoom into the immediate vicinity of the optimal parameters (Figure 9.3), we find that
the x2 contours are approximately elliptical at this scale. The approximate ellipticity
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Figure 9.3 Close-up x2 contour plot for the immediate vicinity of the optimal parameters m* for the
slug test example, showing nonlinear 90%, 95% (bold), and 99% confidence contours. The nearly ellip-
tical contours are indicative of a approximately linear behavior at this scale. Dashed ellipse shows the
linearized approximation to the 95% confidence contour calculated using (9 38). Ninety-five percent
confidence intervals for the parameters calculated from (9.38) are shown as dashed lines.

of the contours indicates that the linear approximation of G(m) around the optimal
parameter values is a reasonable approximation for model perturbations in this range.

9.5. IMPLEMENTATION ISSUES

[terative methods for solving nonlinear problems require the computation of the func-
tions fi(m) and their partial derivatives with respect to the model parameters m;. These
partial derivatives in turn depend on the derivatives of the nonlinear G:

8fitm) _ 1 9G(m),

ij o; amj'

(9.48)

In some cases, we have explicit formulas for G(m) and its derivatives. In other cases,
G(m) exists only as a black box subroutine that can be called as required to evaluate
the function.

When an explicit formula for G(m) is available, and the number of parameters is
relatively small, we can differentiate analytically. There also exist automatic differen-
tiation software packages that can translate the source code of a program that computes
G(m) into a program that computes the derivatives of G(m).
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Another approach is to use finite differences to approximate the derivatives of
G(m);. A simple first-order scheme is to employ the linearization
dG(m); _ G(m+hej); — G(m);
dm; h ’

(9.49)

where e; is the jth standard basis vector, and the scalar /1 is chosen to be suitably small.
However, if h becomes very small, significant round-off error in the numerator of (9.49)
may occur. A good rule of thumb is to set 1 = /€, where € is the relative accuracy of the
evaluations of G(m);. For example, if the function evaluations are accurate to 0.0001,
then an appropriate choice of i would be about 0.01. Determining the actual accuracy
of function evaluations can be difficult, especially when G is a black box routine. One
useful assessment technique is to plot function values as a parameter of interest is varied
over a small range. These plots should be smooth at the scale of h. When G is available
only as a black box subroutine that can be called with particular values of m, and the
source code for the subroutine is not available, then the only available approach is to use
finite differences.

In practice, many difficulties in solving nonlinear regression problems can be traced
back to incorrect derivative computations. It is thus a good idea to cross-check any avail-
able analytical formulas for the derivative with finite-difference approximations. Many
software packages for nonlinear regression include options for checking the accuracy of
derivative formulas.

A second important issue in the implementation of the GN and LM methods is
deciding when to terminate the iterations. We would like to stop when the gradient
Vf(m) is approximately 0 and m has stopped changing substantially from one iteration
to the next. Because of scaling issues, it is not possible to set an absolute tolerance on
IVf(m)]|> that would be appropriate for all problems. Similarly, it is difficult to pick a
single absolute tolerance on [m*t! —mF||» or |f(mk+1) —f(mk)l.

The following convergence tests have been normalized so that they will work well
on a wide variety of problems. We assume that values of G(m) can be calculated with a
relative accuracy of €. To ensure that the gradient of f (m) is approximately 0, we require
that

IV (m®)l2 < Ve + 1 f(@m")). (9.50)
To ensure that successive values of m are close, we require
Im* —m" 7y < Ve + [Im"). (9.51)
Finally, to make sure that the values of f (m) have stopped changing, we require that

| f(m*) —fm* ] < (1 + | f(m"))). (9.52)
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There are a number of additional problems that can arise during the solution of
a nonlinear regression problem by the GN or LM methods related to the functional
behavior of f(m).

The first issue is that our methods, because they involve calculation of the Jacobian
and the Hessian, assume that f (m) is a smooth function. This means not only that f (m)
must be continuous, but also that its first and second partial derivatives with respect to
the parameters must be continuous. Figure 9.4 shows a function that is itself continuous,
but has discontinuities in the first derivative at m = 0.2 and the second derivative at
m=0.5. When G(m) is given by an explicit formula, it is usually easy to verify that
f(m) is smooth, but when G(m) is implemented as a black box routine it may be
difficult.

A second issue is that the function f(m) may have a “flat bottom.” See Figure 9.5.
In such cases, there are many values of m that come close to fitting the data, and it is
difficult to determine the optimal m*. In practice, this condition is seen to occur when
J(m*)TJ(m*) is nearly singular. Because of this ill-conditioning, computing accurate
confidence intervals for the model parameters can be eftectively impossible. We will
address this difficulty in Chapter 10 by applying regularization.

The final problem that we will consider is that f (m) may be nonconvex and therefore
have multiple local minimum points. See Figure 9.6. The GN and LM methods are
designed to converge to a local minimum, but depending on where we begin the search,
there is no way to be certain that such a solution will be a global minimum. Depending
on the particular problem, the optimization algorithm might well converge to a locally
optimal solution.

1.0

081

0.6}

f(m)

04+

0.2}

OO 1 1 1
0 0.2 0.4 0.6 (

Figure 9.4 Example of a nonsmooth function.
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Figure 9.5 Example of a function with a flat bottom.
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Figure 9.6 An example of a function with multiple local minima.

Global optimization methods have been developed to deal with this issue [17, 75,
76, 140]. Deterministic global optimization procedures can be used on problems with
a very small number of variables, while stochastic search procedures can be applied to
large-scale problems. Stochastic search procedures can be quite effective in practice, even
though they do not find a global optimum with certainty.

However, even a deterministic global optimization procedure is not a panacea. In the
context of nonlinear regression, if the nonlinear least squares problem has multiple locally
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optimal solutions with similar objective function values, then each of these solutions will
correspond to a statistically likely solution. We cannot simply report one globally optimal
solution as our best estimate and construct confidence intervals using (9.38), because this
would mean ignoring other likely solutions. However, if we could show that there is one
globally optimal solution and other locally optimal solutions have very small p-values,
then it would be appropriate to report the globally optimal solution and corresponding
confidence intervals.

Although a thorough discussion of global optimization is beyond the scope of this
book, we will discuss one simple global optimization procedure called the multistart
method in the next example. In the multistart method, we randomly generate a large
number of initial solutions, and then apply the LM method starting with each of these
initial solutions. We then examine the local minimum solutions found by the procedure,
and examine ones with acceptable values of f(m). The multistart approach has two
important practical advantages. First, by potentially identifying multiple locally optimal
solutions, we can determine whether there is more than one statistically likely solution.
Second, we can make effective use of the fast convergence of the LM method to find
the locally optimal solutions.

®
Example 9.2

Consider the problem of fitting a model of two superimposed exponential decay
functions characterized by four parameters,

yi = mpe"N + maxie, (9.53)
to a set of observations. The true model parameters are m1 = 1.0, my = —0.5, m3 = 1.0,
and my4 = —0.75, and the x; values are 25 evenly spaced points between 1 and 7. We

compute corresponding y; values and add independent normally distributed noise with
a standard deviation of 0.01 to obtain a synthetic data set.

We next apply the LM method to solve the problem 20 times, using random initial
solutions, with each initial parameter uniformly distributed between —1 and 1. This
produces a total of three different locally optimal solutions (Table 9.2).

Solution number 1, with a x2 value of approximately 17, has an acceptable p-value
of about 0.69 for a regression with 21 degrees of freedom. The other two solutions have

Table 9.2 Locally Optimal Solutions for the Sample Problem
Solution Number m my m3 mgy X2 p-value

1 0.9874 —0.5689 1.0477 —0.7181 17.3871 0.687
1.4368 0.1249 —0.5398 —0.0167 40.0649 0.007
3 1.5529 —0.1924 —0.1974 —0.1924 94.7845 2x 1071
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unreasonably large x? values, and hence much lower p-values. We will thus analyze
only the first solution. Figure 9.7 shows the data points with 1o error bars and the
fitted curve for solution number 1, and Figure 9.8 shows the corresponding residuals
normalized by the data standard deviations. Note that the majority of the residuals are
within 0.5 standard deviations, with a few residuals as large as 1.9 standard deviations.
There is no obvious residual trend as x ranges from 1 to 7.
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Figure 9.7 Data points and fitted curve.
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Figure 9.8 Normalized residuals corresponding to Figure 9.7.
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Next, we compute the approximate covariance matrix for the model parameters
using (9.38). The square roots of the diagonal elements of the covariance matrix are
standard deviations for the individual model parameters. These are then used to com-
pute 95% confidence intervals for model parameters. The solution parameters with 95%
confidence intervals are

mp = 0.98£0.22
my = —0.57+£0.77
m3 = 1.05£0.50
my = —0.72£0.20.

(9.54)

The true parameters (1, —0.5, 1, and —0.75) are all covered by these confidence
intervals. However, there is a large degree of uncertainty. This is an example of a poorly
conditioned nonlinear regression problem in which the data do not strongly constrain
the parameter values.

The correlation matrix provides some insight into the nature of the ill-conditioning
in this example by quantifying strong parameter trade-offs. For our preferred solution,
the correlation matrix calculated using (9.38) is

1.00 —0.84 0.68 089
—0.84 1.00 —096 —0.99
P=1 068 —096 1.00 093] (9-53)

0.89 —0.99 0.93 1.00

Note the strong positive and negative correlation between pairs of parameters. The
high negative correlation between my and my tells us that by increasing my and simulta-
neously decreasing my we can obtain a solution that is very nearly as good as our optimal
solution. There are also strong negative correlations between my and m3 and between
my and my.

9.6. EXERCISES

1. Show that (9.29) is equivalent to the normal equations (2.3) when G(m) = Gm,
where G is a matrix of constant coefficients.

2. A recording instrument sampling at 50 Hz records a noisy sinusoidal voltage signal
in a 40-s—long record. The data are to be modeled using

y(t) = A sinQRufot+ @) + c+on () (9.56)

where 7(f) is believed to be unit standard deviation, independent, and normally
distributed noise, and ¢ is an unknown standard deviation. Using the data in the
MATLAB data file instdata.mat, solve for the parameter (A, fo, @, ¢), using the
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LM method. Show that it is critical to choose a good initial solution (suitable initial
parameters can be found by examining a plot of the time series by eye). Once you are
satisfied that you have found a good solution, use it to estimate the noise amplitude o.
Use your solution and estimate of o to find corresponding covariance and correlation
matrices and 95% parameter confidence intervals. Which pair of parameters is most
strongly correlated? Are there multiple equally good solutions for this problem?

3. In hydrology, the van Genuchten model is often used to relate the volumetric water
content in an unsaturated soil to the head [52]. The model is

0 — 0,
1+ (_ah)n)(l—l/ﬂ)

0(h) =06, + (9.57)

where 6, is the volumetric water content at saturation, 6, is the residual volumetric
water content at a very large negative head, and @ and n are two parameters which
can be fit to laboratory measurements.

The file vgdata.mat contains measurements for a loam soil at the Bosque del
Apache National Wildlife Refuge in New Mexico [68]. Fit the van Genuchten
model to the data. The volumetric water content at saturation is 6, = 0.44, and the
residual water content is 6, = 0.09. You may assume that the measurements of 6 (h)
are accurate to about 2% of the measured values.

You will need to determine appropriate values for o;, write functions to compute
0 (h) and its derivatives, and then use the LM method to estimate the parameters. In
doing so, you should consider whether or not this problem might have local minima.
It will be helpful to know that typical values of & range from about 0.001 to 0.02,
and typical values of n run from 1 to 10.

4. An alternative version of the LM method stabilizes the GN method by multiplicative
damping. Instead of adding AI to the diagonal of J(m*)TJ(m"*), this method multi-
plies the diagonal of](mk) TJ(mk) by a factor of (1 + A). Show that this method can
fail by producing an example in which the modified J(m*) TJ(m*) matrix is singular,
no matter how large A becomes.

5. A cluster of 10 small earthquakes occurs in a shallow geothermal reservoir. The field
is instrumented with nine seismometers, eight of which are at the surface and one
of which is 300 m down a borehole. The P-wave velocity of the fractured granite
medium is thought to be an approximately uniform 2 km/s. The station locations
(in meters relative to a central origin) are given in Table 9.3 and in the MATLAB
data file stmat.mat.

The arrival times of P-waves from the earthquakes are carefully measured at the
stations, with an estimated error of approximately 1 ms. The arrival time estimates
for each earthquake, e;, at each station (in seconds relative to an arbitrary reference),
are given in Table 9.4. These data can also be found in the MATLAB data file
eqdata.mat.
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Table 9.3 Station Locations for the
Earthquake Location Problem

Station x(m) y(m) z(m)
1 500 —500 0
2 —500 —500 0
3 100 100 0
4 —100 0 0
5 0 100 0
6 0 —100 0
7 0 —50 0
8 0 200 0
9 10 50 —300

Table 9.4 Data for the Earthquake Location Problem.
Times are in Seconds

Station e

€2

€3

€4

€5

0.8423
0.8680
0.5826
0.5975
0.5802
0.5988
0.5857
0.6017
0.5266

O 0 N QN U

1.2729
1.2970
1.0095
1.0274
1.0093
1.0263
1.0141
1.0319
0.9553

0.8164
0.8429
0.5524
0.5677
0.5484
0.5693
0.5563
0.5748
0.5118

1.1745
1.2009
0.9177
0.9312
0.9145
0.9316
0.9195
0.9362
0.8533

1.1954
1.2238
0.9326
0.9496
0.9313
0.9480
0.9351
0.9555
0.8870

w
-
Q
(=4
]
=

€6

ez

€g

€9

€10

0.5361
0.5640
0.2812
0.2953
0.2795
0.2967
0.2841
0.3025
0.2115

O 0 N QN U RN~

0.7633
0.7878
0.5078
0.5213
0.5045
0.5205
0.5095
0.5275
0.4448

0.8865
0.9120
0.6154
0.6360
0.6138
0.6347
0.6215
0.6394
0.5837

1.0838
1.1114
0.8164
0.8339
0.8144
0.8336
0.8211
0.8400
0.7792

0.9413
0.9654
0.6835
0.6982
0.6833
0.6958
0.6857
0.7020
0.6157

a. Apply the LM method to this data set to estimate least squares locations of the

earthquakes.

b. Estimate the uncertainties in x, y, z (in meters) and origin time (in seconds)

for each earthquake using the diagonal elements of the appropriate covariance

matrix. Do the earthquake locations follow any discernible trend?
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Table 9.5 Data for the Lightning Mapping Array Problem

Station t(s) x(km) y(km) z(km)

1 0.0922360280 —24.3471411 2.14673146  1.18923667
2 0.0921837940 —12.8746056 14.5005985  1.10808551
3 0.0922165500  16.0647214 —4.41975194  1.12675062
4 0.0921199690 0.450543748  30.0267473  1.06693166
6 0.0923199800 —17.3754105 —27.1991732  1.18526730
7 0.0922839580 —44.0424408 —4.95601205 1.13775547
8 0.0922030460 —34.6170855 17.4012873  1.14296361
9 0.0922797660  17.6625731 —24.1712580  1.09097830
10 0.0922497250 0.837203704 —10.7394229  1.18219520
11 0.0921672710 4.88218031 10.5960946  1.12031719
12 0.0921702350  16.9664920 9.64835135 1.09399160
13 0.0922357370  32.6468622 —13.2199767  1.01175261

6. The Lightning Mapping Array is a portable system that locates the sources of light-
ning radio-frequency radiation in three spatial dimensions and time [132]. The
system measures the arrival times of impulsive radiation events with an uncertainty
specified by a standard deviation of 7 x 1072 ps. Measurements are made at multiple
locations, typically in a region 40 to 60 km in diameter. Each station records the peak
radiation event in successive 100-ps time intervals; from such data, several hundred
to over a thousand distinct radiation sources may typically be located per lightning
discharge. Example data from the LMA are shown in Table 9.5 and are found in the
MATLAB data file lightningdata.mat.

a. Use the arrival times at stations 1, 2, 4, 6, 7, 8, 10, and 13 to find the time
and location of the associated source. Assume that radio wave signals travel along
straight paths at the speed of light in a vacuum (2.997 x 10% m/s).

b. A challenge in dealing with the large number of detections from the LMA is to
disentangle overlapping signals from multiple events. Locate using subsets of the
data set to find the largest subset of the data for nine or more stations that gives
a good solution, and compare it to the station subset from part (a).

9.7. NOTES AND FURTHER READING

Newton’s method is central to the field of optimization [39, 58, 87, 88, 119], and is,
because of its speed, the basis for most methods of nonlinear optimization. A number
of modifications to the method are used to ensure convergence to a local minimum
of f(x) [58, 119]. One important difficulty in Newton’s method is that, for very large
problems, it may be impractical to store the Hessian matrix. Specialized methods have
been developed for the solution of such large-scale optimization problems [58, 119].
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The GN and LM methods are discussed in more detail in [16, 58, 119]. Statistical
aspects of nonlinear regression are discussed in [7, 40, 113]. A more detailed discus-
sion of the termination criteria for the LM method described in Section 9.5 can be
found in [58]. There are a number of freely available and commercial software packages
for nonlinear regression, including GaussFit [82], MINPACK [111], and ODRPACK
[18]. Automatic differentiation has applications in many areas of numerical computing,
including optimization and numerical solution of ordinary and partial differential equa-
tions. Two books that survey this topic are [34, 57]. Global optimization is a large field of
research. Some basic references include [17, 75, 76]. For a survey of global optimization
methods in geophysical inversion, see [140].
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Nonlinear Inverse Problems

Synopsis

The nonlinear regression approaches of Chapter 9 are generalized to problems requir-
ing regularization. The Tikhonov regularization and Occam’s inversion approaches are
introduced. Seismic tomography and electrical conductivity inversion examples are used
to illustrate the application of these methods. Resolution analysis for nonlinear problems
is addressed.

10.1. REGULARIZING NONLINEAR LEAST SQUARES PROBLEMS

As with linear problems, the nonlinear least squares approaches can run into difticulty
with ill-conditioned problems. This typically happens as the number of model param-
eters grows. Here, we will discuss regularization of nonlinear inverse problems and
algorithms for computing a regularized solution to a nonlinear inverse problem.

The basic ideas of Tikhonov regularization can be extended to nonlinear problems.
Suppose that we are given a nonlinear discrete inverse problem where an n-element
model m and an m-element data vector d are related by a nonlinear system of equations
G(m) = d. For convenience, we will assume that the m nonlinear constraint equations
have been scaled to incorporate the measurement standard deviations ;. We seek the
solution with the smallest seminorm || Lml]|> that comes sufficiently close to fitting the
data vector, where L is an appropriate roughening matrix (e.g., (4.28)).

We can formulate this problem as

min ||Lm]|>

G(m) —d|]2 < 3. (10.1)

Note that the form of the problem is virtually identical to that which was considered in
the linear case (e.g., (4.25)), with the only difference being that we now have a general
function G(m) instead of a matrix-vector multiplication Gm. As in the linear case, we
can reformulate this problem in terms of minimizing the misfit subject to a constraint
on [[Lm]2,

min||G(m) —d||2

ILml < e, (10-2)

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00010-0
(© 2013 Elsevier Inc. All rights reserved.
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or as a regularized (often referred to as “damped”) least squares problem,
min|G(m) — d||3 + 2| Lm]3. (10.3)

All three versions of the regularized least squares problem can be solved by applying
standard nonlinear optimization software. In particular, (10.3) is a nonlinear least squares
problem, so we can apply the LM or GN methods to it. Of course, any such approach
will still have to deal with the possibility of local minima that are not global minimum
points. In some cases, it is possible to show that nonlinear least squares problems are
convex, and thus possess only global minima. In other cases we will have to employ
multistart or some other global optimization strategy to determine whether there are
multiple minima.

To apply the GN method to (10.3), we rewrite it as

2
mmHG(m) -4 (10.4)
alm |,
The Jacobian of (10.4) for the kth iteration is
kb
m
K(m"*) = [J (O[L)], (10.5)

where J(m*) is the Jacobian of G(m*). A GN model step is obtained by applying (9.29)
and solving

(10.6)

k
K(mk) TK(mk) Am = —K(mk)T |:G(m ) k_ di|,
alm

or, combining (10.5) and (10.6), by solving
(](mk)TJ(mk) + aZLTL) Am = —J(m" T (Gm") —d) —e’LTLm*.  (10.7)

Equation (10.7) resembles the LM method (9.30). Note, however, that & in (10.7) now
appears in the objective function being minimized (10.4) and thus introduces regulariza-
tion. To further stabilize the iterations, as in the LM method, a variable AI term could be
added to the matrix term of the left-hand side of (10.7) to steer iterative updates toward
the direction of steepest descent. This will not be necessary if the explicit regularization
of (10.7) sufficiently stabilizes the system of equations.

@

Example 10.1 @
Consider a modified version of the cross-well tomography example from Exercise 4.3.

We introduce nonlinearity by employing a more realistic forward model that incorpo-
rates ray-path bending due to seismic velocity changes. The two-dimensional velocity
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structure is parameterized using a 64-element matrix of uniformly spaced slowness nodes
on an 8 by 8 grid spanning a 1600 m by 1600 m region.

We apply an approximate ray-bending technique to estimate refracted ray paths
within the slowness model and to estimate travel times and their partial derivatives with
respect to the model parameters [167]. Figure 10.1 shows the true velocity model and a
corresponding set of 64 ray paths. The true model consists of a background velocity of
2.9 km/s with large embedded fast (+10%) and slow (—15%) Gaussian-shaped anoma-
lies. The data set consists of the 64 travel times between each pair of opposing sources
and receivers with N (0, (0.001 s)?) noise added.

Note that refracted ray paths tend to be “repelled” from low-velocity regions (dark
shading) and are, conversely, “attracted” to high-velocity regions (light shading) in
accordance with Fermat’s least-time principle. In practice this effect makes low-velocity
regions more difficult to resolve in such studies because they will be less well sampled
by ray paths.

A discrete approximation of the two-dimensional Laplacian operator is used to
regularize this problem. Iterative GN (10.7) solutions were obtained for a range of
16 values of o ranging logarithmically from approximately 4.9 to 367. Figure 10.2
shows the suite of solutions after five iterations. An L-curve plot of seminorm ver-
sus data misfit is plotted in Figure 10.3, along with the discrepancy principle value
8 =0.001 - +/64 = 0.008. Note that the two most lightly regularized solutions are out
of their expected monotonically decreasing residual norm positions on the L-curve. This
is because the linearization-based GN method is unable to accurately solve the corre-
sponding poorly conditioned least squares systems (10.7) in these cases. Such solutions
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Figure 10.1 True velocity model and the corresponding ray paths for the bent-ray cross-well tomo-
graphy example.
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Figure 10.2 Suite of GN (10.7), second-order regularized solutions, ranging from least (upper left) to
most (lower right) regularized, and associated « values. The physical dimensions and gray scale are
identical to those of Figures 10.1 and 10.4.
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Figure 10.3 L-curve and corresponding « values for the solutions of Figure 10.2.
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could be improved by modifying the system of equations with an LM stabilizing term
as described above. The solution best satisfying the discrepancy principle corresponds to

o ~ 37 (Figure 10.4).
Because we know the true model in this example, it is instructive to examine how

well the regularized solutions of Figure 10.2 compare to it. Figure 10.5 shows the
2-norm model misfit as a function of &, and demonstrates that the discrepancy principle
solution for this problem, and for this particular noise realization, is indeed close to
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Figure 10.4 Best-solution velocity structure (m/s), o selected using the discrepancy principle, « ~ 37.
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Figure 10.5 Model misfit 2-norm as a function of regularization parameter «, with preferred model
highlighted.
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the minimum in |[m —m,,|2. Note that the solution shown in Figure 10.4 exhibits
resolution artifacts that are common in regularized solutions, such as streaking, side
lobes, and amplitude under-recovery (see Example 10.3).

10.2. OCCAM’S INVERSION

Occam’s inversion is a popular algorithm for nonlinear inversion introduced by Con-
stable, Parker, and Constable [33]. The name refers to the 14th-century philosopher
William of Ockham, who argued that simpler explanations should always be preferred
to more complicated explanations. A similar statement occurs as rule 1 in Newton’s
“Rules for the Study of Natural Philosophy” [118]. This principle has become known
as “Occam’s razor.”

Occam’s inversion uses the discrepancy principle, and searches for the solution
that minimizes ||Lml|» subject to the constraint ||G(m) — d|l» <4§. The algorithm is
straightforward to implement, requires only the nonlinear forward model G(m) and its
Jacobian, and works well in practice.

We assume that our nonlinear inverse problem has been cast in the form of (10.1).
The roughening matrix L can be I to implement zeroth-order Tikhonov regulariza-
tion, or it can be a finite difference approximation of a first (4.27) or second (4.28)
derivative for higher-order regularization. In practice, Occam’s inversion is often used
on two- or three-dimensional problems where L is a discrete approximation of the
Laplacian operator.

As usual, we will assume that the measurement errors in d are independent and
normally distributed. For convenience, we will also assume that the system of equations
G(m) = d has been scaled so that the standard deviations o; are equal.

The basic idea behind Occam’s inversion is an iteratively applied local linearization.
Given a trial model m¥, Taylor’s theorem is applied to obtain the local approximation,

G(m* + Am) ~ G(m*) +J(m*) Am, (10.8)
where _](mL ) is the Jacobian,
3G (mb) 9G1(m")
dmy o my,
J(m") = S a8 (10.9)
3Gy (m") 3Gy (m"*)
dnmq o omy,

Using (10.8), the regularized least squares problem (10.3) becomes
min||G(m"*) +J(m*) Am — d||3 + &?|[L(m* + Am)|[3, (10.10)
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where the variable is Am and m”* is constant. Reformulating this as a problem in which

the variable is m**t! = m* + Am, and letting

d(m*) = d — G(m") +J(m"*)m*, (10.11)
gives

min||J(m*)(m* + Am) — (d — G(m*) +J(m*)m") |3 + o?|L(m* + Am) |3
(10.12)

or
min[J(m*)m* ! — d(mb) |3 4 «? L ) 3. (10.13)

Because](mk) and a(mk) are constant within a given iteration, (10.13) is in the form
of a regularized linear least squares problem. If the system is of full rank, the solution is
given by

m* = m* + Am = (](mk)T](mk) 1 aZLTL)_l J(m*) Td(m"). (10.14)

Note that this method is similar to the GN method applied to the regularized least
squares problem (10.3) (see Exercise 10.1). The difference is that in Occam’s inversion
the parameter o is dynamically adjusted so that the solution will not exceed the allowable
misfit. At each iteration we pick the largest value of a that keeps the x? value of the
solution from exceeding the bound on & specified in (10.1). If this is impossible, we
instead pick the value of @ that minimizes the x? value. At the end of the procedure,
we should have a solution with x2 = §2. We can now state the algorithm.

Algorithm 10.1 Occam’s Inversion

Beginning with an initial solution, m”, repeat the following steps to compute a sequence

of solutions m*. Stop if and when the sequence converges to a solution with x2 = §2.

1. Calculate the Jacobian _](mk) and the vector a(mk).

2. Calculate updated models corresponding to a range of regularization parameter
values, o,

m*H = (J(mk)TJ(mk) + azLTL>_] Jm*) Td(m"). (10.15)

k1 with the largest value of « such that x2(m*t) < 82 1f

k+1)

3. Choose the particular m

no such value exists, then use the value of o that minimizes X2(m
4. Letk=Fk+1.
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®
Example 10.2

We will consider the problem of estimating subsurface electrical conductivities from
above-ground electromagnetic induction measurements. The instrument used in this
example is the Geonics EM-38 ground conductivity meter. A description of the instru-
ment and the mathematical model of its response can be found in [69]. The mathematical
model is complicated, but we will treat it as a black box, and concentrate on the inverse
problem.

Measurements are taken at heights of 0, 10, 20, 30, 40, 50, 75, 100, and 150 cm above
the surface, with the coils oriented in both the vertical and horizontal orientations.
There are a total of 18 observations (Table 10.1). We will assume measurement standard
deviations of 0.1 mS/m.

We discretize the subsurface electrical conductivity profile into 10- and 20-cm thick
layers and a semi-infinite layer below 2 m, giving us 11 parameters to estimate. The
forward problem function G(m) is available to us as a subroutine. Since we do not have
simple formulas for G(m), we cannot write down analytic expressions for the elements
of the Jacobian. However, we can use finite difference approximations to estimate the
necessary partial derivatives.

We first apply the LM method to estimate unregularized model parameters. After
50 iterations, the LM method produced the model shown in Figure 10.6. The x2 value
for this model is 9.62 and there are 18 — 11 =7 degrees of freedom, so the model
actually fits the data reasonably well. However, the least squares problem is very badly
conditioned, with a condition number for JTJ of approximately 2 x 10'7. Furthermore,
the resulting model is unrealistic because it includes negative electrical conductivities
and exhibits the high amplitudes and high-frequency oscillations that are characteristic
of under-regularized solutions to inverse problems.

Table 10.1 Data for the EM-38 Example
Height (cm) EMV (mS/m) EMH (mS/m)

0 134.5 117.4
10 129.0 97.7
20 120.5 81.7
30 110.5 69.2
40 100.5 59.6
50 90.8 51.8
75 70.9 38.2

100 56.8 29.8

150 38.5 19.9
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Figure 10.6 LM solution.
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Figure 10.7 Occam’s inversion solution.

We next apply Occam’s inversion with second-order regularization and a discrepancy
principle value of § = 0.1-4/18 & 0.424. The resulting model is shown in Figure 10.7,
and Figure 10.8 shows the true model. The Occam’s inversion method provides a fairly

good reproduction of the true model.
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Figure 10.8 True model.

10.3. MODEL RESOLUTION IN NONLINEAR INVERSE PROBLEMS

We introduced the concept of model resolution in Chapter 3 (see (3.63)) by expressing
the generalized inverse solution for a linear problem as

m =R, mye = G?Gmtrue (10.16)

where G is a (forward problem) matrix that produces data from a model, G' is the
generalized inverse matrix used to recover a model from data, and m and my,. are
the recovered and true models, respectively. In a linear problem, the action of mapping
a model to data and then back to a recovered model can be completely characterized
by the model resolution matrix R,, = G'G in (10.16). In Chapter 4 we saw that this
concept could easily be extended to Tikhonov regularization (4.20), by substituting the
corresponding Tikhonov inverse matrix, G*, for G in (10.16).
We can recast (10.16) for nonlinear problems as

m= G ' (G(mye)) (10.17)

where G™! and G are inverse and forward operators, respectively. However, the com-
bined action of the forward and inverse operations is not representable as a matrix, such
as R, in (10.17), because the forward operator is a nonlinear function or algorithm,
and the inverse operator is typically realized with an iterative method based on stepwise
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linearization, such as GN or Occam’s inversion. Furthermore, model resolution for a
nonlinear inversion will not only depend on the physics, model parameterization, and
data collection specifics, as was the case for linear problems, but may furthermore depend
on the choice of starting model used in the solution algorithm, chosen convergence cri-
teria, and possibly on the existence of multiple equally good solutions. Finally, as with
linear methods, nonlinear model resolution will depend on the level and nature of the
imposed regularization.

Because of these complexities, nonlinear resolution is typically analyzed using res-
olution tests. In seismic tomography, for example, it is common to evaluate the eftects
of nonideal resolution by generating noise-free synthetic data from a spike, checker-
board, or other test model using an identical source and receiver geometry as for the
actual data in the problem of interest. A model is then recovered using the identical
inverse methodology as was used for the actual data, and is compared to the test model
to evaluate inversion artifacts. If there are specific features of the true model that will
affect the resolution, such as a known strong velocity gradient with depth in seismic
problems that significantly affects the curvature of the ray paths, those features should
also be incorporated into the resolution test model. Because the problem is nonlinear,
resolution analysis results will also potentially be dependent on test model amplitudes.
A second resolution analysis strategy, sometimes referred to as a “squeeze” test, restricts
the freedom of the model in regions that are suspected to be unnecessary or marginal
for achieving an acceptable fit to the data. One example would be to modify the reg-
ularization constraints to strongly penalize model variations in the deeper part of a
tomographic model to assess whether an acceptable data fit can still be achieved when
structure is predominantly restricted to shallower depths.

®
Example 10.3

Revisiting Example 10.1, we calculate noise-free synthetic data for a checkerboard

velocity structure, using an identical starting model and ray-path end points. The
checkerboard model (Figure 10.9) consists of an 8 by 8 node 2.9 km/s background
model with alternating 10% variations for the 36 interior blocks. Inverting these data
using the identical methodology as in Example 10.1 for the same regularization con-
straints and range of regularization parameters, we obtain the suite of models shown
in Figure 10.10. For lower levels of regularization, the checkerboard is more appar-
ent, while for higher levels, the horizontally varying velocity structure is substantially
smoothed out. For the level of regularization chosen from the discrepancy principle for
Example 10.1, o &~ 37, we note substantial smearing that makes it difficult to discern
the full checkerboard pattern, indicating that structural variations of this character and
spatial scale will be difficult to recover in some parts of the model without additional
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Figure 10.9 Checkerboard test model and ray paths for the cross-well tomography problem of
Example 10.1.
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Figure 10.10 Suite of recovered models for a range of regularization parameter values (same as in
Figure 10.2) for the checkerboard test model of Figure 10.9.
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data. If we did not know the true model in Example 10.1, this test would helpfully show
that we would expect significant horizontal smearing for the inversion result shown in

Figure 10.4, and that the true model anomalies are thus not necessarily horizontally

elongated.

10.4. EXERCISES

1.

2.

Show that, for a given value of &, the GN (10.7) and Occam’s inversion model

(10.14) update steps are mathematically equivalent.

Recall Example 1.5, in which we had gravity anomaly observations above a density

perturbation of variable depth m(x), and fixed density Ap. Use Occam’s inversion to

solve an instance of this inverse problem. Consider a gravity anomaly along a 1-km
section, with observations taken every 50 m, and density perturbation of Ap =

200 kg/m> (0.2 g/cm?). The perturbation is expected to be at a depth of roughly

200 m.

The MATLAB data file gravprob.mat contains a vector x of observation loca-
tions. Use the same coordinates for your discretization of the model. The vector obs
contains the actual observations. Assume that the observations are accurate to about
1.0x 10712,

a. Derive a formula for the elements of the Jacobian.

b. Write MATLAB routines to compute the model predictions and the Jacobian for
this problem.

c. Use the supplied implementation of Occam’s inversion from Example 10.2 to
solve the inverse problem with second-order regularization.

d. Discuss your results. What features in the inverse solution appear to be real? What
is the resolution of your solution? Were there any difficulties with local minimum
points?

e. What would happen if the true density perturbation was instead at a depth of
about 1000 m?

Apply the GN method with explicit regularization to the EM inversion problem

by modifying the MATLAB code from Example 10.2. Compare your solution

with the solution obtained by Occam’s inversion. Which method required more
computational effort?

Apply Occam’s inversion to a cross-well, bent-ray tomography problem with identi-

cal geometry to Example 10.1. Use the example subroutine getj.m to forward model

the travel times, calculate the Jacobian, and implement second-order regularization.

Travel-time data and subroutine control parameters are contained in the MATLAB

data file benddata.mat. Start with the uniform 2900 m/s velocity 8 by 8 node initial




252 Chapter 10 Nonlinear Inverse Problems

velocity model in benddata.mat, and assume independent and normally distributed
data errors with o = 0.001 ms.

Hint: A search range of a® between 10 and 10° is appropriate for this problem.
MATLAB code for generating a second-order roughening matrix that approximates
a two-dimensional Laplacian operator can be found in makerough.m.

10.5. NOTES AND FURTHER READING

In inverse problems with a large number of parameters, the most difficult computational
problem is often computing derivatives of G(m) with respect to the model parameters,
often referred to as FreChet derivatives [107]. Computation of analytic formulas is
commonly impractical. Finite difference estimates require computational effort, which
increases with the number of parameters and may become impractical for large problems.
A promising technique for calculating Frechet derivatives is the adjoint approach [46,
154, 165], which is likely to see increasing use in large problems as forward modeling
capabilities advance. An alternative approach involves using the discretized differential
equation as a set of constraints to be added to the nonlinear least squares problem [15].

For large-scale problems, it may be impractical to use direct factorization to solve the
systems of equations (10.7) or (10.14) involved in computing the GN or Occam step.
One approach in this case is to use an iterative method such as conjugate gradients to
solve the linear systems of equations [58]. The conjugate gradient method can also be
extended to minimize the nonlinear objective function directly [58, 142].
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Bayesian Methods

Synopsis

Following a review of the classical least squares approach to solving inverse problems,
we introduce the Bayesian approach, which treats the model as a random variable with
a probability distribution that we seek to estimate. A prior distribution for the model
parameters is combined with the data to produce a posterior distribution for the model
parameters. In special cases, the Bayesian approach produces solutions that are equivalent
to the least squares, maximum likelihood, and Tikhonov regularization solutions. Several
examples of the Bayesian approach are presented. Markov Chain Monte Carlo methods
for sampling from the posterior distribution are presented and demonstrated.

11.1. REVIEW OF THE CLASSICAL APPROACH

In the classical approach to parameter estimation and inverse problems with discrete data
and models, we begin with a mathematical model of the form Gm = d in the linear case
or G(m) = d in the nonlinear case. We assume that there exists a true model, myye,
and a true data set, dyye, such that Gmyye = dyye. We acquire an actual data set, d,
which is generally the sum of dyye and measurement noise. Our goal is to recover Mye
from the noisy data.

For well-conditioned linear problems, under the assumption of independent and
normally distributed data errors, the theory is well developed. In Chapter 2 it was
shown that the maximum likelihood principle leads to the least squares solution, which
1s found by minimizing the 2-norm of the residual, |Gm — d||». Since there is noise
in the data, we should expect some misfit between the data predictions of the forward
model and the data, so that observed values of the square of the 2-norm of the inverse
standard deviation—weighted residual, ngs’ will not typically be zero. We saw that the
x? distribution can be used to test the goodness-of-fit of a least squares solution. We
showed that the least squares solution, my,, is an unbiased estimate of myy.. We were
also able to compute a covariance matrix for the estimated parameters

Cov(mp,) = (G'G) 'GTCov(d)G(GTG)™! (11.1)

to compute confidence intervals for and correlations between the estimated parameters.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00011-2
(© 2013 Elsevier Inc. All rights reserved.
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This approach works very well for linear regression problems where the least squares
problem is well-conditioned. We found, however, that in many cases the least squares
problem is not well-conditioned. In such situations, the set of solutions that adequately
fits the data is large and diverse, and commonly contains physically unreasonable models.

In Chapters 4 through 8, we discussed a number of approaches to regularizing the
least squares problem. These approaches pick a single “best” solution out of those that
adequately fit the data, based on a preference for what sort of model features constitute a
good solution. Zeroth-order Tikhonov regularization selects the model that minimizes
the model 2-norm [|ml||» subject to the residual norm constraint, ||[Gm —d|, <4,
while higher-order Tikhonov regularization selects the model that minimizes a model
seminorm |[|[Lmy||» subject to ||[Gm —d||» <. We introduced L; regularization and
the related technique of total variation regularization which are now widely used in
compressive sensing.

For relatively small linear problems, straightforward, insightful, and robust com-
putation of regularized solutions can be performed with the help of singular value
decomposition (SVD). For large sparse linear problems, iterative methods such as
conjugate gradient least squares (CGLS) or LSQR are widely used.

For nonlinear problems, as discussed in Chapters 9 and 10, the Gauss-Newton,
Levenberg-Marquardt, or Occam’s inversion methods can be used to find local minima
of the nonlinear least squares problem. We showed how approximate confidence inter-
vals for the fitted parameters can be obtained by linearizing the nonlinear model around
the best fit parameters. As in linear inverse problems, the nonlinear least squares problem
can be badly conditioned in which case regularization may be needed to obtain a stable
solution.

Unfortunately nonlinear problems may have a large number of local minimum solu-
tions, and finding the global minimum can be difficult. Furthermore, if there are several
local minimum solutions with acceptable data fits, then it may be difficult to select a
single “best” solution.

How can we more generally justify selecting one solution from the set of models that
adequately fit the data? One justification is Occam’s razor, which is the philosophy that
when we have several different hypotheses to consider, we should select the simplest.
Solutions selected by regularization are in some sense the simplest models that fit the
data. However, this approach is not by itself entirely satisfactory because different choices
of the regularization term used in obtaining regularized solutions can result in very
different models, and the specific choice of regularization may be subjective.

Recall from Chapter 4 (e.g., Example 4.3) that once we have regularized a least
squares problem, we lose the ability to obtain statistically useful confidence intervals
for the parameters because regularization introduces bias. In particular, the expected
value of the regularized solution is not generally equal to the true model. In practice
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this regularization bias is often much more significant than the effect of noise in the
data. Bounds on the error in Tikhonov regularized solution error were discussed in
Section 4.8, but these estimates require knowledge of the true model that is typically
not available in practice.

11.2. THE BAYESIAN APPROACH

The Bayesian approach is named after Thomas Bayes, an 18th-century pioneer in prob-
ability theory. The methodology is based on philosophically different ideas than we have
considered so far. However, as we will see, it frequently results in similar solutions.

The most fundamental difterence between the classical and Bayesian approaches is
in the conceptualization of the solution. In the classical approach, there is a specific but
unknown model my,e that we would like to uncover. In the Bayesian approach the
model is not deterministic, but is rather a random variable, and the solution takes the
form of a probability distribution for the model parameters called the posterior distri-
bution. Once we have this probability distribution, we can use it to answer probabilistic
questions about the model, such as “What is the probability that ms is less than 1?7 In
the classical approach such questions do not make sense, since the true model that we
seek 1s not a random variable.

A second very important difference between the classical and Bayesian approaches is
that the Bayesian approach naturally incorporates prior information about the solution,
ranging from hard additional constraints to experience-based intuition. This information
is expressed mathematically as a prior distribution for the model. Once data have been
collected, they are combined with the prior distribution using Bayes’ theorem (B.54) to
produce the desired posterior distribution for the model parameters.

If no other information is available, then under the principle of indifference, we
may alternatively pick a prior distribution where all model parameter values have equal
likelihood. Such a prior distribution is said to be uninformative.

It should be pointed out that, in the common case where the model parameters are
contained in the range (—00, 00), the uninformative prior is not a proper probability
distribution. This is because a probability density function f(x) does not exist which
satisfies (B.4) so that

/f(x) dx=1 (11.2)

and f(x) 1s constant. In practice, the use of this improper prior distribution in Bayesian
methods can nevertheless be justified because the resulting posterior distribution for the
model is a proper distribution.
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One of the main objections to the Bayesian approach is that the method is
“unscientific” because it allows the analyst to incorporate subjective judgments into
the model that are not solely based on the data. Proponents of the approach rejoin that
there are also subjective aspects to the classical approach embodied in the choice of reg-
ularization biases, and furthermore, that one is free to choose an uninformative prior
distribution.

Here, we denote the prior distribution by p(m), and assume that we can compute the
conditional probability distribution, f(d|m), that, given a particular model, correspond-
ing data, d, will be observed. Given a prior distribution, we then seek the conditional
(posterior) distribution of the model parameter(s) given the data. We will denote this
posterior probability distribution for the model parameters by qg(m|d). Bayes’ theorem
relates the prior and posterior distributions in a way that makes the computation of
g(m|d) possible, and can be stated as follows.

Theorem 11.1

q(m|d) =JM (11.3)
where
c= / f(djm)p(m)dm. (11.4)

all models

Note that the constant ¢ in (11.3) simply normalizes the conditional distribution
g(m|d) so that its integral in model space is one.

For some purposes, knowing the normalization constant, ¢, is not necessary. For
example, we can compare two models m and m by computing the likelihood ratio:

g(m|d) _ f(dlm)p()
gm|d)  f(d|m)p(m)

A very small likelihood ratio would indicate that the model m is far more likely than

(11.5)

the model m. Because ¢ is not always needed, (11.3) is often written as a statement of
proportionality,

q(m|d) o f(d|m)p(m). (11.6)

However, there are many other situations in which knowing ¢ in (11.3) is required.
In particular, ¢ is required to compute any posterior probabilities and to compute the
expected value and variance of the posterior distribution.

It is important to re-emphasize that the probability distribution g(m|d) does not
provide a single model that we can consider to be the “answer” However, in cases
where we want to single out a representative model, it may be appropriate to identify
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the one corresponding to the largest value of g(m|d). This model is referred to as the
maximum a posteriori (MAP) model. Another possibility is to select the mean of
the posterior distribution. In situations where the posterior distribution is normal, the
MAP and posterior mean models will be identical.

In general, the computation of a posterior distribution using (11.3) can be difficult.
The chief difficulty lies in evaluating the integral in (11.4). This integral often has very
high dimensionality, and numerical integration techniques may thus be computationally
daunting.

Fortunately, there are a number of useful special cases in which the computation of
the posterior distribution is greatly simplified. One simplification occurs when the prior
distribution p(m) is uninformative, in which case (11.6) simplifies to

q(m|d) o¢ f(d|m), (11.7)

and the posterior distribution is precisely the likelihood function, L(m]|d). Under
the maximum likelihood principle, we would select the model my. that maximizes
L(m|d), which is the MAP model.

A fturther simplification occurs when data noise elements are independent and nor-
mally distributed with standard deviation o. Because the data errors are independent,
we can write the likelihood function as

L(m|d) =f(d|lm) = f(di|m) - f(d2|m) - - - f(dy|m). (11.8)

If the data points d; are normally distributed with expected values given by the (linear
or nonlinear) operation (G(m));, and each has standard deviation o, we can write

(dilm) I 11
‘'m) = e 20 9
f 1 O'\/E ( )
and
Mmoo (Gm))—dp?
L(m|d) = ( ) e =1 202 (11.10)
o2

We can maximize (11.10) by maximizing the exponent or equivalently minimizing the
negative of the exponent.

m

Z ((G(m)); — dp)?

5 (11.11)

i=1

This is a weighted least squares problem. Thus we have shown that when we have
independent and normally distributed measurement errors and we use an uninformative
prior, the MAP solution is the least squares solution.
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[ 4
Example 11.1

Consider a very simple parameter estimation problem where we perform repeated
weighings of a microscopic object to determine its mass in micrograms. The measure-
ment errors are normally distributed with zero mean and standard deviation 0 =1 pg.
Our goal is to estimate the mass of the object.

For the specified normally distributed and zero mean measurement error, the
probability density function for a measurement d given m is

Fdm) = \/%_ne—w—df/% (11.12)

Suppose that we weigh the mass once and obtain a measurement of d; = 10.3 pg.
What do we now know about m? For an uninformative prior, (11.7) gives

1
g(mld; = 10.3) o f(10.3|m) = Ee—“ﬂ—mﬁ)zﬂ. (11.13)

Because (11.13) is itself a normal probability distribution, the constant of proportionality
in (11.3) is 1, and the posterior distribution for the mass in micrograms (Figure 11.1) is
therefore

1
g(m]dy = 10.3) = Ee*m—m*/z. (11.14)

Next, suppose that we obtain a second statistically independent measurement of dp =
10.1 pg. We can then use the distribution (11.14) estimated from the first measurement

0.6 E

051 E

10.3ug)

0.3 i

q(ml|d

021 E

0.1 E

0 1
5 10 15

m (ug)

Figure 11.1 Posterior distribution q(m|d; = 10.3 pg), uninformative prior.
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as an informative prior distribution to compute a revised posterior distribution:

g(mld; =10.3, d>=10.1) o f(d> = 10.1|m)q(m|dy = 10.3)

— 1 e—(m—l().l)z/Z 1 e—(m—l().S)Z/Z. (1115)

Vo Var

Combining the exponents and absorbing the 1/+/2m factors into the constant of
proportionality gives

g(mld; = 10.3, do = 10.1) oc ¢~ (=103 +(n=10.1%)/2, (11.16)

Finally, we can simplify the exponent by combining terms and completing the square to
obtain

(m—10.3)%+ (m—10.1)%> = 2(m — 10.2)> 4 0.02. (11.17)
Thus,

m|d| = O ng, dp = 1) Xe 2740, . .
q(mldy =10.3 ng, d» = 10.1) ox ¢~ Gn=10-2740.02)/2 11.18

—0.02/2

The constant e can be absorbed into the constant of proportionality, giving

(m|d; =10.3, dy = 10.1) o ¢~ (102=m7 11.19
q

Normalizing (11.19) gives a normal posterior distribution

_(102—m)>

g(mld; =103, d =10.1) = ¢ 2027 (11.20)

1
(1/v/2)3/2m

with mean 10.2 pg and o = 1/+/2 pg (Figure 11.2). Since we used an uninformative
prior and the measurement errors were independent and normally distributed, the MAP
solution is precisely the least squares solution for this problem.

It is notable in the second part of this example that we started with a normal prior
distribution, accommodated normally distributed data, and obtained a normal posterior
distribution (see (11.20)). In general we should not expect that the prior and posterior
distributions will both be well-known distributions whose properties are well known. A
prior distribution associated with a simple posterior distribution in this way is called
a conjugate prior. There are other families of conjugate distributions for various
parameter estimation problems, but in general this is unusual [51].
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Figure 11.2 Posterior distribution q(m|d; = 10.3 png, d» = 10.1 pg).

11.3. THE MULTIVARIATE NORMAL CASE

The result shown in Example 11.1 in which a normal prior distribution and normally
distributed data lead to a normal posterior distribution can be readily extended to prob-
lems with many model parameters. We next examine the problem of determining the
posterior distribution for a linear model, multivariate normal (MVN) distributed data
errors, and an MVN prior distribution.

Let dops be the observed data, Cp be the corresponding data covariance matrix,
my;io; be the mean of the prior distribution, and Cy; be the covariance matrix for the
prior distribution. The prior distribution is thus, by (B.62),

p(m) o ¢~ 2 Mprion) '€y (m—mpior) (11.21)
and the conditional distribution of the data, given m, is
f(d]m) o ¢~ 2(Cm=dTCp! (Gm—d) (11.22)
Thus, (11.6) gives
g(mld) o o~ 3 (6m=-a)Cp (Gm—d)+(m—mypion) " Cy/ (m—mmprion)) (11.23)

Tarantola [155] showed that this can be simplified to

>

g(m|d) e_%(m_mMAP)TC;Il/ (m—mpmap)

(11.24)
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where mpap is the MAP solution, and
cw=GTcy'c+c;hn (11.25)

The MAP solution can be found by maximizing the exponent in (11.23), or equivalently
by minimizing its negative:

min (Gm —d)"C'(Gm — d) + (m — myior) T Cy} (m — mpyion). (11.26)

The key to minimizing (11.26) is to rewrite it in terms of the matrix square roots of
. y ' g q

C,; and C, . Note that every covariance matrix is positive definite and has a unique

positive definite matrix square root, which may be calculated in MATLAB using the

sqrtm routine. This minimization problem can then be reformulated as

min (C,,"*(Gm —a))"(C," 2$gm —d) + (11.27)

—1/2
(Cop (M — mipion) T(Cy, (= mprian),

or as the standard least squares problem,

—1/2 —1/2 2
min CD_l/ZG m— S% d (11.28)
Czw CM Myprior 5
Examining the right-hand terms in (11.28), note that
Cov(Cp'?d) = ¢, *epc,)T =1 (11.29)

The multiplication of Cgl/z times d in (11.28) can thus be conceptualized as a data
transformation that both makes the resulting elements independent and normalizes the
standard deviations. In the model space, multiplication by C;/[l/ % has the same effect.
An interesting limiting case is where the prior distribution provides essentially no
information. Consider an MVN prior distribution with a covariance matrix Cyy = o?1,
in the limit where o is extremely large. In this case, the diagonal elements of C;/Il will be
extremely small, and the posterior covariance matrix (11.25) will be well-approximated

by
Cu ~ (GT Cov(d)™' G)~ 1. (11.30)
If the data covariance matrix is Cp = ¢°I, then
Cy ~o2(G'G) !, (11.31)

which is precisely the covariance matrix for the least squares model parameters in (11.1).
Furthermore, when we solve (11.28) to obtain the MAP solution, we find that it simpli-
fies to the least squares problem of minimizing ||Gm — d||§ Thus, under the common
assumption of normally distributed and independent data errors with constant variance,
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a very broad prior distribution leads to a MAP solution that is the unregularized least
squares solution.

It is also worthwhile to consider what happens in the special case where Cp = o°I
and Cyy = oL In this case the corresponding matrix square roots are also proportional
to identity matrices, and (11.28) simplifies to

min (1/0)?[(Gm — d)|[3 + (1/e)*|m — mpyior |13, (11.32)

which is a modified optimization problem for zeroth-order Tikhonov regularization
(4.4), where the 2-norm regularization term is evaluated relative to mypyior, and the
equivalent Tikhonov regularization parameter is o'/ar. Thus, the MAP solution obtained
by using a prior with independent and normally distributed model parameters is pre-
cisely the zeroth-order Tikhonov regularized solution obtained by solving (11.32).
However, this does not mean that the Bayesian approach is entirely equivalent to
Tikhonov regularization, because the Bayesian solution is a probability distribution,
whereas the Tikhonov solution is a single model from that distribution.

Once we have obtained the posterior distribution, it is straightforward to generate
corresponding model realizations. We may wish to do this to assess likely or unlikely
model features. Following the procedure outlined in Example B.10, we compute the
Cholesky factorization of the posterior distribution covariance matrix,

Cw =R'R, (11.33)
and generate a random solution
m=RTs +mpmap, (11.34)

where the vector s consists of independent and normally distributed random numbers
with a zero mean and a unit standard deviation.

Example 11.2 @
We consider Bayesian solutions to the Shaw problem that was previously considered in
Examples 3.3, 4.1, 4.2, 4.3, and 4.8.

We first use a relatively uninformative MVN prior distribution with mean 0.5,
standard deviation 0.5, and zero covariances, so that Cp; = 0.25 I. As in the previ-
ous examples, the measurement noise has standard deviation 1.0 x 107, so that Cp =
1.0 x 107'2 1. Solving (11.28) produces the mpap solution shown in Figure 11.3.
Figure 11.4 shows this same solution with error bars. These error bars are not classical
95% confidence intervals (e.g., Figure 4.9). Rather, they are 95% probability intervals
calculated from the MVN posterior distribution, so that there is 95% probability that
each model parameter lies within the corresponding symmetric interval around mpap.
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Figure 11.3 The MAP solution and the true model for the Shaw example using an MVN prior
distribution with mean 0 5, standard deviation 0 5, and zero covariance.
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Figure 11.4 The MAP solution of Figure 11.3, with 95% probability intervals.

Figure 11.5 shows a random solution generated from the posterior distribution. This
solution varies considerably from the true model, and demonstrates great uncertainty in
the inverse solution, consistent with the large 95% probability intervals in Figure 11.3.
The roughness of this solution realization is a consequence of the fact that the prior dis-
tribution Cys had zero covariances, so model realizations from the posterior distribution
have no preference for smoothness.
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Figure 11.5 A model realization for the Shaw example using an MVN prior distribution with mean 0.5,

standard deviation 0 5, and zero covariance.
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Figure 11.6 A more restrictive zero covariance prior distribution for the Shaw problem with 95%

probability intervals.

Next, consider a more restrictive prior distribution. Suppose we have reason to
believe that the largest amplitudes in the solution should be near the center of the
model. We thus choose the bell-shaped zero-covariance prior distribution depicted in
Figure 11.6. Figures 11.7 and 11.8 show the resulting MAP model and its probability
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Figure 11.7 The MAP solution for the Shaw example using the prior distribution shown in Figure 11.6.
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Figure 11.8 The MAP solution of Figure 11.7 with probability intervals.

intervals for this case. The solution recovery is, not surprisingly, improved by our more
restrictive prior model given that the true model is highly restricted and is thus consistent
with the prior distribution (Figure 11.3).

These results illustrate a principal issue with applying the Bayesian approach to poorly
conditioned problems. To obtain a tight posterior distribution in such cases, we will have
to make strong prior assumptions. Conversely, if such assumptions are not made, then
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we cannot recover the true model features well. This situation is analogous to that of
Tikhonov regularization, which must also impose strong and consistent model bias to
produce “good” solutions and must also make strong model assumptions to estimate
solution error bounds (Section 4.8).

In the previous example, we applied a prior that preferentially concentrated the
model structure in a particular region (the center) by imposing a zero prior with
small standard deviations near the model edges. Because this prior distribution had zero
covariances, resulting model realizations were rough. Prior distributions can be readily
designed to enforce smoothness constraints on realizations from the posterior distri-
bution by specifying a nondiagonal prior covariance matrix. A straightforward way to
accomplish this for a 1-dimensional model is to construct a correlation matrix with
columns

R; = shift(q), 1), (11.35)

where q; is the desired sequence of parameter correlations, with a zero lag correlation
of 1. The shift operator shifts the sequence (truncating as necessary) so that the zero-lag
(unit) maximum of the correlation sequence is centered on element i, and hence on the
diagonal of R. Suitable sequences g; that ensure the positive definiteness of R can be
constructed using autocorrelation (e.g., using the MATLAB xcorr function). Here, we
use the autocorrelation of a triangle function, which produces a cubic approximation to
a Gaussian function. Given the correlation matrix, R, a corresponding prior distribution
covariance matrix with uniform parameter variances, oy, can then be constructed as

Cy =0y R. (11.36)

®
Example 11.3

Consider the vertical seismic profile (VSP) problem first introduced in Example 1.3,
which was solved and analyzed using Tikhonov regularization in Examples 4.4, 4.5,
4.6, and 4.7. We revisit this problem as a Bayesian problem, implementing an MVN
prior with a covariance matrix of the form of (11.36). The model consists of 50 equally
spaced slowness intervals along a 1000-m vertical borehole with an interval length of
20 m. Seismic travel time data are collected at 50 equally spaced depths with independent
zero-mean normal errors with standard deviation of op =2 x 10~ s, producing a data
covariance matrix Cp = 012) I. We apply a prior distribution that is consistent with a seis-
mic slowness decrease (velocity increase) with depth and has a constant gradient between
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Figure 11.9 A constant-slowness gradient prior distribution and its 95% distribution intervals for the
V'SP problem. The true model is shown as the gray smooth curve.
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Figure 11.10 A correlation function for the prior distribution of Figure 11.9 with a 1/e correlation
length of approximately five parameters (100 m).

known seismic slownesses from the top and the bottom of the borehole. We first impose
a prior distribution standard deviation of oy = 2 x 107> s/m on all parameters to repre-
sent an estimated variability in model slownesses, and utilize a prior correlation function
that falls off with a scale length of five model intervals (i.e., a correlation of 1/e at
a model parameter lag of approximately five model parameters or 100 m). The prior
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Figure 11.11 MAP model obtained from the posterior distribution, and its 95% distribution intervals,
using the prior distribution described in Figures 11.9 and 11.10. The true model is shown as the gray
smooth curve.
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Figure 11.12 A correlation function for the prior distribution of Figure 11.9 with a 1/e correlation
length of approximately 10 parameters (200 m).

distribution and its parameter standard deviations are shown in Figure 11.9, and the
corresponding parameter correlation function is shown in Figure 11.10. The resulting
posterior distribution and its standard deviations are shown in Figure 11.11. We next
apply a prior with twice the correlation length (Figure 11.12). The resulting posterior
distribution is shown in Figure 11.13.
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Figure 11.13 MAP model obtained from the posterior distribution, and its 95% distribution intervals,

using the prior distribution depicted in Figures 11.9 and 11.12. The true model is shown as the gray
smooth curve.

The approach described in this section can be extended to nonlinear problems. To
find the MAP solution, solve the nonlinear least squares problem,

min G(m) —d)" C;' (G(m) — d) + (m — Mprio) ' Cyf (M —mypior).  (11.37)

One can then linearize around the MAP solution to obtain the approximate posterior
covariance,

Cyr = (J(mpmap) ' C5'J(mpmap) +CH) 7, (11.38)

where J(m) is the Jacobian. As with other nonlinear optimization problems, we must
consider the possibility of multiple local optima. If (11.37) has multiple solutions with
comparable likelihoods, then a single MAP solution and associated Cyp from (11.38)
will not accurately characterize the posterior distribution.

11.4. THE MARKOV CHAIN MONTE CARLO METHOD

We next introduce the use of Markov Chain Monte Carlo (MCMC) methods to sample
from a posterior distribution. Given a sufficient population of such samples, we can
use them to characterize the solution of a Bayesian inverse problem. Because MCMC
methods depend only on the forward model and associated likelihood calculations, they
are easily applied to both linear and nonlinear problems.
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A Markov chain is a sequence of random variables,
xY xt x2 ., (11.39)

where the probability distribution of X"*! depends solely on the previous value, X",
and not on earlier values of random variables in the sequence. That s,

px"hx0 xt oL, XM =Pt X, (11.40)

The particular Markov chains considered here will be time-invariant, so that the Markov
chain transition kernel

P(X", X" = p(x"t X (11.41)

is independent of .

For example, consider a one-dimensional random process in which we start at
X" =0, and then iteratively compute X"*! from X" by adding an N (0, o2) realization
to X". Clearly X"*! depends directly on X", and this dependence is time-invariant. The
transition kernel for this Markov chain is

1

2o

In the MCMC method, we are interested in Markov chains that have limiting
distributions, ¢(x), such that

k(x1, x2) = ¢ 2ln—x)?/o?, (11.42)

lim P(X"|X") = ¢(x). (11.43)
n—0o0

Not all Markov chains have limiting distributions. For example, if X" is the sum of n
independent N (0, 02) random variables, X" has an N(0, no?) distribution. This does
not approach a limiting probability distribution as n — 00.

For a general multivariate model, it can be shown that if g(x) and k(x, y) satisty the
local balance equation

qX)k(x, y) = q(y)k(y, x) (11.44)

for all models x and y, then ¢g(x) is the limiting distribution of the Markov chain.
Equation (11.44) states that the rate of model transitions from x to y equals the rate
from y to x.

The Metropolis-Hastings sampler is an algorithm that simulates a Markov chain
with a specified limiting distribution. We will apply it to produce samples from a poste-
rior distribution q(m|d) that will tend to densely sample its higher likelihood regions.
With enough such samples, we can usefully characterize the posterior distribution of a
Bayesian parameter estimation or inverse problem. Since the data vector d is given, we
will simply write ¢(m|d) as ¢(m) throughout the following development.
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We begin a Metropolis-Hastings sampler implementation by picking a proposal
distribution r(x, y) that facilitates random steps in the posterior model space. These
randomly perturbed samples will subsequently be subjected to a likelihood-based test in
the Metropolis-Hastings sampler. A common choice for the proposal distribution is an

2 5o that

MVN distribution with zero covariances and variances o;

o, yi) oc e 2O/, (11.45)

Although r(x, y) cannot be implemented as a transition kernel directly, because
it does not satisfy (11.44), this can be remedied by introducing a factor called the
acceptance ratio,

a(x, y) =min(l, ), (11.46)
where
_ 1y, X). (11.47)
qx)r(x, y)

Note that 0 < a(x, y) < 1. Also note that
a(y, x) =min (1, s71). (11.48)

At least one of a(x, y) and a(y, x) will thus be equal to 1, depending on whether s is
greater than or less than 1.

Now, let
I~e(x, y) =a(x, y)r(x, y). (11.49)
a(x,y) <1,so
B(x) = / I;(x, y) dy = / alx, y)r(x,y) dy < 1. (11.50)
all models all models

Thus k(x, y) is not a properly normalized transition kernel. We can, however, obtain a
normalized kernel by defining

k(x, y) = k(x, y) + (1 — B)s(x—y) (11.51)
so that
[ weya= [ awyeyas [ a-pas-y i
all models all models all models
=B+(1—p) (11.52)

=1.



272 Chapter 11 Bayesian Methods

A simple algorithm can now be used to generate a random value y from x that
satisfies (11.44).

Algorithm 11.1 Transition Kernel Evaluation

1. Generate a candidate y from x according to the proposal distribution r(x, y).
2. Compute a(x, y).

3. With probability «, return the candidate y.

4. With probability 1 — ¢, return the previous value x.

Now, we need to show that g(x) and k(x, y) as defined above satisty the local balance
equation (11.44). If y = x, this is obviously true. For y # x, we need to consider the
two cases of a(x, y) =1 or a(y, x) = 1. If a(x, y) =1, then

| qeor(x, y)

x)=sl= 11.53
Y0 == oy, 0 (11.53)
and
qXk(x, y) = qX)a(x, y)r(x, y) = ¢qx)r(x, y). (11.54)
Also,
{k(y, %) = gy)aly, Oy, ) = g VO 0 — gwrx y). (1155)
q(y)r(y, x)

However, ¢(x)r(x, y) = q(x)k(x, y), so
q(y)k(y, x) = q(x)k(x, y), (11.56)

thus satisfying (11.44). A similar argument shows that (11.44) is satisfied for the case
where a(y, x) = 1.

There are several important tactics that help to simplify the method further. Because
the product of ¢ and r appears in both the numerator and denominator of s, we need
only know these factors to constants of proportionality, and thus do not need to nor-
malize ¢ and r in individual calculations. Also note that the posterior distribution, g(m),
1s proportional to the product of the prior, p(im), and the likelihood, f(djm) (11.3).
We can thus write (11.46) as

(11.57)

a(x, y) = min (1 PF(dly)r(y, x))'

T px)f(dx)r(x, y)
If r(x, y) is a symmetric distribution, such as (11.45), then r(x, y) = r(y, x), and we
can simplify (11.57) to

a(x, y) = min (1, @) (11.58)
q(x)
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In computational practice, numbers in the numerator of (11.58) may be extremely small,
and can thus generate floating point underflow problems. This is easily avoided by eval-
uating log a(x, y) instead of a(x, y). We now have all the components to describe the
Metropolis-Hastings sampler.

Algorithm 11.2 The Metropolis-Hastings Sampler

Given a starting model, m", repeat the following steps for j=1, 2, . .. until the

posterior distribution is sufficiently sampled by the set of models m /.

1. Generate a candidate model ¢ from the previous model, m/, using the proposal
distribution r(m/, c).

2. Compute log a(m/, c).

w

Let ¢ be a realization of a uniformly distributed random variable on [0, 1].

4. If log t <log a(m/, ¢), then accept the candidate model and let m/*! =¢;

otherwise reject the candidate model and let m/ ™! =m/.

Note that if log ¢ is quite small, we will occasionally accept a new model that has
a small acceptance ratio and thus move towards a model with reduced likelihood. This
property of the algorithm helps overcome the problem of having the sampling become
trapped near a localized likelihood maximum. The behavior of the algorithm and its
ability to sample the posterior distribution fruitfully and efticiently will depend on the
size of the steps taken in generating candidate models. In the case of the normal formu-
lation for the proposal distribution (11.45), this will be controlled by the size of the o;.
Smaller steps will result in higher acceptance rates, but the algorithm may be unaccept-
ably slow at exploring the posterior distribution. Conversely, larger steps will result in
lower acceptance ratios and will thus be less frequently accepted. Either situation may
cause the algorithm to become stuck in a particular region of the posterior distribution.
Often, the step size parameters are explored adaptively in multiple runs of the algorithm
(which may be run as independent parallel processes on a multi-CPU computer sys-
tem). Some studies, e.g., [51], suggest that the algorithm is optimally tuned when the
new model acceptance rate is between approximately 20% and 50%.

11.5. ANALYZING MCMC OUTPUT

Although the limiting distribution of the Markov chain sampled by the Metropolis-
Hastings algorithm is the desired posterior distribution, there are significant practical
challenges in analyzing the output of an MCMC simulation.

First, successive models m¥, mkt1, mkt2

.., produced by the simulation are typ-
ically strongly correlated with each other, but most statistical techniques require

independent samples. In practice, this complication can be avoided by analyzing a
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subset of samples that are far apart in the sample sequence. For example, if we examine
k k41000 mk+2000

m”, m ..., it is likely that samples taken 1000 steps apart will not be
highly correlated. We can verify this by plotting the successive model autocorrelations
for the history of sampling over some moving window length.

Second, early Metropolis-Hastings algorithm samples will be biased by the initial
model m”, which may not lie in a high likelihood region of the posterior distribution.
This issue is commonly addressed by skipping over early samples in the chain to give
time for the algorithm to “burn in,” and/or by running the process with a variety of
starting models, either sequentially or in parallel on multiple CPUs. For example, if it
is determined that samples spaced 1000 steps apart are effectively uncorrelated, then it
might be reasonable to let the Metropolis-Hastings sampler establish itself for 10,000
steps before beginning to collect samples.

Once we are confident that the procedure has produced a large enough collection
of effectively independent samples, we can use the results to characterize the posterior
distribution. For a suitably large sample, the MAP solution can be estimated as the
retrieved posterior distribution sample that has the greatest likelihood. The posterior
distribution may be approximately multivariate normal, which can be established by
examining model histograms and quantile-quantile (Q-Q) plots. In this case we can
readily construct probability intervals for describing the posterior distribution from the
sample mean and covariance using normal assumptions. However, if the distribution
is distinctly non-normal, it will be more difficult to produce a simple summary of its
character, particularly for very high dimensional models. A common approach is to
produce and evaluate scatter plots and/or histograms that display key features of the
posterior distribution and to use counting statistics to establish probability intervals.

®
Example 11.4

Reconsidering the ill-posed nonlinear parameter estimation problem of Example 9.2,
we apply the Metropolis-Hastings algorithm to the problem of fitting four parameters,
mj, to the nonlinear function

di = (G(m)); = my1 " + max;e"*™ (11.59)

given a set of observations, d;, with specified independent normally distributed data
noise, specified by corresponding standard deviations o;. As in Example 9.2, the
true model parameters are my = 1.0, mpy = —0.5, m3 =1.0, and my = —0.75; data
are produced at 25 equally spaced points, x;, on the interval [1, 7]; and N(0, 0.01%)
independent noise is added to each data element. The likelihood function is specified by

m
F(dlm) oc [ ] 20 Gam*/o, (11.60)
i=1
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which, after taking the natural logarithm, is

log(f(dim)) = —3 >t~ Gl /o + C. (11.61)
i=1

where C is the logarithm of the constant of proportionality in (11.60). We sample the
posterior distribution using 410,000 steps, and produce a low-correlation set of 400
samples by allowing a 10,000 sample burn in and selecting subsequent samples spaced
1000 steps apart by down-sampling the full 410,000 length sequence. The procedure
was initiated using a random model selected from a 4-dimensional uniform distribution
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Figure 11.14 Sampled posterior distribution for Example 11.3. The true model is shown as the large
black dot, and the MAP model estimated from the maximum likelihood posterior distribution sample
is indicated by the open circle. 400 retrieved samples of the posterior distribution (every 1000th calcu-
lated sample from the MCMC output) are shown as gray dots. Ninety-five percent probability intervals
estimated from the MCMC posterior distribution samples are shown by boxes.
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bounded by [—1, 1] in each parameter direction and applying a uniform prior for
the region mq =10, 2], my =[—1, 0], m3 =10, 2], and ms =[—1, 0]. In each of the
MCMC steps, we apply independent normally distributed random perturbations with
standard deviations of 0.005 in each of the four model parameter directions, accepting
or rejecting the corresponding candidate models according to the Metropolis-Hastings
algorithm. The procedure produced an acceptance rate of approximately 39.5%, which
is in the nominally acceptable range of not being too large or too small [51].

Figure 11.14 shows scatter plots and histograms of the resulting sampled posterior
distribution, along with the corresponding MAP solution and 95% probability intervals
for each parameter direction, which well enclose the true solution. Figure 11.15 shows

1.5 T T T T T T T

100 150 200 250 300 350 400

Sample number

Figure 11.15 Time history of the posterior samples plotted in Figure 11.14. True parameters are shown
as gray lines.
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Figure 11.16 Twenty-point autocorrelations for posterior distribution parameters shown in
Figure 11.15.

the time history of the corresponding 400 samples. The prominent quasilinear scattering
trends in the output between my and mj3 are indicative of a high degree of anticorrelation
between some parameter pairs. This anticorrelation is also apparent in the sequence
of parameter samples in Figure 11.15, for example in the anticorrelated trends of iy
and m3. An examination of the parameter autocorrelations for the samples shown in
Figure 11.14 (Figure 11.16) shows that individual parameter estimates are eftectively
decorrelated after 20 or fewer steps. Figure 11.17 shows a histogram of the natural log
of likelihood values for the posterior samples. The multimodal nature of this histogram
is reflective of the “bumpy” likelihood function surface for this ill-posed problem with
random data noise, a situation that also resulted in multiple solutions when we applied
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Figure 11.17 Natural logarithm of the likelihood function for the 400 posterior distribution samples

shown in Figures 11.14 and 11.15. The value for the true model is approximately —10 2, and the value
for the MAP model is approximately —8.7.

classical nonlinear solution methods in Example 9.2. However, the MCMC method here
provided a sufficiently thorough search of the model space to allow us to discriminate
the MAP solution from solutions corresponding to subsidiary likelihood maxima.

11.6. EXERCISES

1. Reanalyze the data in Example 11.1 using a prior distribution that is uniform on the
interval [9, 11]. Compute the posterior distribution after the first measurement of
10.3 g and after the second measurement of 10.1 pg. What is the posterior mean?

2. Consider the estimation problem d =m (i.e., where G=1) in two dimensions.
The data, d = [5 15], have identical and independent normal errors with standard
deviations of +/2. Apply a zero-mean MVN prior characterized by a covariance
matrix where mq and mp have a correlation coefficient of 0.9, and equal standard
deviations of +/5. Calculate the MAP model, and compute and plot the 50%, 90%,
and 95% contours of the MVN distributions d, myyjor, and the posterior model.

3. In writing (11.28) we made use of the matrix square root.

a. Suppose that A is a symmetric and positive definite matrix. Using the SVD, find
an explicit formula for the matrix square root. Your square root should itself be a
symmetric and positive definite matrix.

b. Show that instead of using the matrix square roots of Cl_)1 and C]T/;, we could
have used the Cholesky factorizations of CBl and CA_/I1 in formulating the least
squares problem.

4. Consider the following coin tossing experiment. We repeatedly toss a coin, and each
time record whether it comes up heads (0) or tails (1). The bias b of the coin is the
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probability that it comes up heads. We have reason to believe that this is not a fair

coin, so we will not assume that b = 1/2. Instead, we will begin with a uniform

prior distribution p(b) =1, for 0 < b < 1.

a. What is f(d|b)? Note that the only possible data are 0 and 1, so this distribution
will involve delta functions at d =0, and d = 1.

b. Suppose that on our first flip, the coin comes up heads. Compute the posterior
distribution q(b|dy = 0).

c. The second, third, fourth, and fifth flips are 1, 1, 1, and 1. Find the poste-
rior distribution gq(bld; =0, do =1, d3 =1, dy =1, d5 =1). Plot the posterior
distribution.

d. What is your MAP estimate of the bias?

e. Now, suppose that you initially felt that the coin was at least close to fair, with

p(b) oc e 100097 g <<, (11.62)

Repeat the analysis of the five coin flips described above.

5. Apply the Bayesian method to Exercise 2 in Chapter 4. Select what you consider
to be a reasonable prior. How sensitive is your solution to the prior mean and
covariance?

6. Apply the Bayesian method to Exercise 9.3. Assume an MVN prior distribution for
o and n, with o and n independent. The prior for o should have a mean of 0.01
and a standard deviation of 0.005, and the prior for n should have a mean of 5 and a
standard deviation of 3. Compare your solution with the solution that you obtained
to Exercise 9.3. How sensitive is your solution to the choice of the prior?

7. Repeat Exercise 11.6, using MCMC to estimate the posterior distribution. Compare
your solution to the solution that you obtained for Exercise 11.6.

8. Apply the Metropolis-Hastings sampler to produce a sampled posterior distribution %
for the nonlinear parameter estimation problem of Example 9.1. Use a prior dis-
tribution that is uniform on S =10, 0.01] and T = [0, 2], a zero covariance MVN
proposal distribution, and a starting model of (S, T) = (5 x 1072, 1.0). Generate
200,000 samples using a 10,000-sample burn-in and explore independent step sizes
for the two parameters in your proposal distribution to obtain a Metropolis-Hastings
sampler acceptance rate between 10% and 50%. Extract every 1000th sample for
analysis and establish that these 191 samples are not highly dependent by examin-
ing sample autocorrelation functions. Examine the sampled distribution to obtain
the MAP model and empirical 95% probability intervals on S and T. Apply a Q-
Q plot and assess the multivariate normality of the sampled posterior distribution
and compare normal assumption and empirical estimates of the 95% probability
intervals.

9. Apply the Metropolis-Hastings sampler to produce a sampled posterior distribution
for the nonlinear inverse problem for gravity observations above a buried density
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perturbation with an unknown variable depth m(x) and a fixed density perturbation
Ap, as described in Exercise 10.2. Your prior should be selected to favor smooth
(specified by nonzero parameter correlations) models.

11.7. NOTES AND FURTHER READING

The arguments for and against the use of Bayesian methods in statistics and inverse
problems have raged for decades. Some classical references that provide context for these
arguments include [35, 42, 80, 81, 136]. Sivia and Skilling’s book [143] is a good general
introduction to Bayesian ideas for scientists and engineers. The book by Calvetti and
Somersalo introduces Bayesian methods for inverse problems including Markov Chain
Monte Carlo sampling and includes MATLAB examples [22]. The book by Kaipio and
Somersalo provides a more detailed theoretical treatment of Bayesian methods for inverse
problems and includes some interesting case studies [83]. An early paper by Tarantola
and Valette on the application of the Bayesian approach was quite influential [156],
and Tarantola’s book is the standard reference work on Bayesian methods for inverse
problems [155]. The book by Rodgers [133] focuses on application of the Bayesian
approach to problems in atmospheric sounding. The paper by Gouveia and Scales [56]
discusses the relative advantages and disadvantages of Bayesian and classical methods
for inverse problems. The draft textbook by Scales and Smith [137] takes a Bayesian
approach to inverse problems.

In many cases the solution to an inverse problem will be used in making a decision,
with measurable consequences for making the “wrong” decision. Statistical decision
theory can be helpful in determining the optimal decision. The paper by Evans and
Stark provides a good introduction to the application of statistical decision theory to
inverse problems [48].
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Epilogue

The theme of this book has been obtaining and analyzing solutions to discretized param-
eter estimation problems using classical and Bayesian approaches. We have discussed
computational procedures for both linear and nonlinear problems. Classical procedures
produce estimates of the parameters and their associated uncertainties. In Bayesian
methods, the model is a random variable, and the solution is its probability distribution.

However, there are critical issues that arise in solving these problems. When we
discretize a continuous problem, the choice of the discretization scheme, basis functions,
and grid spacing can have large effects on the behavior of the discretized problem and its
solutions, and these effects will not be reflected in the statistical analysis of the solution
of the discretized problem. The discretization errors in the solution could potentially
be far larger than any explicitly computed statistical uncertainty. Thus it is important
to ensure that the discretization provides an adequate approximation to the continuous
problem. If no formal analysis is performed, it is at least desirable to see whether varying
the discretization has a significant effect on the solutions obtained.

For well-conditioned problems with normally distributed measurement errors, we
can use the classical least squares approach. This results in unbiased parameter estimates
and associated confidence intervals. For ill-conditioned problems, and for problems
where we have good reason to prefer a specific bias in the character of the solution,
Tikhonov regularization can be applied to obtain a solution. However, regularization
introduces bias into the solution, and it is impossible to even bound this bias without
making additional assumptions about the model.

Although Bayesian approaches are also applicable to well-conditioned situations, they
are particularly interesting in the context of ill-conditioned problems. By selecting a
prior distribution, we make explicit assumptions about the model. The resulting poste-
rior distribution is not affected by regularization bias. In the multivariate normal case
for linear problems the Bayesian approach is no more difficult computationally than the
least squares approach.

Various efforts have been made to avoid the use of subjective priors in the Bayesian
approach. Principles such as maximum entropy can be used to derive prior distributions
that have been claimed to be, in some sense, “objective.” However, we do not find
these arguments completely convincing, and in many cases the choice of prior has a
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similar effect on the choice of the regularization operations in Tikhonov and other
classical approaches. Markov Chain Monte Carlo methods present a computationally
intensive methodology to sample and characterize the Bayesian posterior distribution
using forward model-based likelihood calculations.

Both the classical and Bayesian approaches can be extended to nonlinear inverse
problems. The computation of the estimated model parameters becomes substantially
more complex in that we must solve nonlinear optimization problems which may have
multiple locally optimal solutions. In both standard approaches, the statistical analysis is
typically performed approximately by analyzing a linearization of the nonlinear model
around the estimated parameters. However, the validity of this approach will depend
on the data uncertainties and the nonlinearity of the problem. The Bayesian approach
can in theory be applied when measurement errors are not normally distributed. In
practice, however, the associated analytical computations can be difficult. Markov Chain
Monte Carlo methods provide a very general approach for characterizing the posterior
distribution that avoids the difficulties of computing it in analytical form.



APPENDIX A

Review of Linear Algebra

Synopsis
A summary of essential concepts, definitions, and theorems in linear algebra used
throughout this book.

A.1. SYSTEMS OF LINEAR EQUATIONS

Recall that a system of linear equations can be solved by the process of Gaussian
elimination.

®
Example A.1

Consider the following system of equations:

X1+ 2xp +3x3 = 14
X1+ 2xy +2x3 =11 (A.1)
x1 4+ 3xy + 4x3 = 19.

We eliminate xq from the second and third equations by subtracting the first equation
from the second and third equations to obtain

x1+2xy +3x3 = 14
—x3=-—3 (A.2)
Xo+x3= 5.

We would like x to appear in the second equation, so we interchange the second and
third equations:

x1+2xy+3x3 = 14
xo+x3= 5 (A.3)
—x3 = —3.
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Next, we eliminate xp from the first equation by subtracting two times the second
equation from the first equation:

x1+x3= 4
xXp4+x3= 5 (A.4)
—x3 =—3.

We then multiply the third equation by —1 to get an equation for x3:

x1+x3=4
X3 =3.

Finally, we eliminate x3 from the first two equations to obtain a solution to the original
system of equations:

x1 =1
Xy = 2 (A6)
x3 = 3.

Geometrically the constraints specified by the three equations of (A.1) describe three
planes that, in this case, intersect in a single point, x;1 = 1, xp =2, x3 = 3.

In solving (A.1), we used three elementary row operations: adding a multiple of
one equation to another equation, multiplying an equation by a nonzero constant, and
swapping two equations. This process can be extended to solve systems of equations
with an arbitrary number of variables.

In performing the elimination process, the actual names of the variables are insignifi-
cant. We could have renamed the variables in the above example to a, b, and ¢ without
changing the solution in any significant way. Because the actual names of the variables
are insignificant, we can save space by writing down the significant coefficients from the
system of equations in matrix form as an augmented matrix. The augmented matrix
form is also useful in solving a system of equations in computer algorithms, where the
elements of the augmented matrix are stored in an array.

In augmented matrix form (A.1) becomes

1 2 314
1 2 2 11/, (A7)
1 3 419

In augmented notation, the elementary row operations become adding a multiple of
one row to another row, multiplying a row by a nonzero constant, and interchanging
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two rows. The Gaussian elimination process is essentially identical to the process used in
Example A.1, with the final version of the augmented matrix given by

(A.8)

[ R
S - O
- O O
[SVIN S

Definition A.1 A matrix is said to be in reduced row echelon form (RREF) if it

has the following properties:

1. The first nonzero element in each row is a 1. The first nonzero row elements of the
matrix are called pivot elements. A column in which a pivot element appears is
called a pivot column.

2. Except for the pivot element, all elements in pivot columns are Os.

w

Each pivot element is to the right of the pivot elements in previous rows.
4. Any rows consisting entirely of Os are at the bottom of the matrix.

In solving a system of equations in augmented matrix form, we apply elementary
row operations to reduce the augmented matrix to RREF and then convert back to
conventional notation to read off the solutions. The process of transforming a matrix
into RREF can easily be automated. In MATLAB, this is done by the rref command.

It can be shown that any linear system of equations has either no solutions, exactly
one solution, or infinitely many solutions [95]. In a system of two dimensions, for
example, lines represented by the equations can fail to intersect (no solution), intersect
at a point (one solution), or intersect in a line (many solutions). The following example
shows how to determine the number of solutions from the RREF of the augmented
matrix.

®
Example A.2

Consider a system of two equations in three variables that has many solutions:
X1 +x+x3=0

(A.9)
x1 4+ 2xp + 2x3 = 0.

We put this system of equations into augmented matrix form and then find the RREE

10 0]0
[ 0]' (A.10)

which is

0 1 1
We can translate this back into equation form as
x1 =0

(A.11)
x1+x3 =0.
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Clearly, x1 must be 0 in any solution to the system of equations. However, x> and x3
are not fixed. We could treat x3 as a free variable and allow it to take on any value.
Whatever value x3 takes on, xo must be equal to —x3. Geometrically, this system of
equations describes the intersection of two planes, where the intersection consists of
points on the line xy = —x3 in the x1 = 0 plane.

A linear system of equations may have more equation constraints than variables,
in which case the system of equations is over-determined. Although over-determined
systems often have no solutions, it is possible for an over-determined system of equations
to have either many solutions or exactly one solution.

Conversely, a system of equations with fewer equations than variables is under-
determined. Although in many cases under-determined systems of equations have
infinitely many solutions, it is also possible for such systems to have no solutions.

A system of equations with all Os on the right-hand side is homogeneous. Every
homogeneous system of equations has at least one solution, the trivial solution in which
all of the variables are 0s. A system of equations with a nonzero right-hand side is
nonhomogeneous.

A.2. MATRIX AND VECTOR ALGEBRA

As we have seen in the previous section, a matrix is a table of numbers laid out in rows
and columns. A vector is a matrix consisting of a single column or row of numbers
(vectors in this text are typically expressed as column vectors). In general, matrices and
vectors may contain complex numbers as well as real numbers. With the exception of
Chapter 8, all of the vectors and matrices in this book are real.

There are several important notational conventions used here for matrices and vec-

tors. Boldface capital letters such as A, B, . . . are used to denote matrices. Boldface
lower-case letters such as x, y, . . . are used to denote vectors. Lower-case letters or
Greek letters such as m, n, &, B, . . . will be used to denote scalars.

At times we will need to refer to specific parts of a matrix. The notation A4;; denotes
the element of the matrix A in row i and column j. We denote the jth element of the
vector x by x;. The notation A. ; is used to refer to column j of the matrix A, while A;.
refers to row i of A.

We can also construct larger matrices from smaller matrices. The notation A =
[B C] means that the matrix A is composed of the matrices B and C, with matrix
C to the right of B.

If A and B are two matrices of the same size, we can add them by simply adding
corresponding elements. Similarly, we can subtract B from A by subtracting the corre-
sponding elements of B from those of A. We can multiply a scalar times a matrix by
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multiplying the scalar times each matrix element. Because vectors are just n by 1 matri-
ces, we can perform the same arithmetic operations on vectors. A zero matrix, 0, is
a matrix composed of all zero elements. A zero matrix plays the same role in matrix
algebra as the scalar 0, with

A+0=A (A.12)
=0+A. (A.13)

Using vector notation, we can write a linear system of equations in vector form.

®
Example A.3
Recall the system of equations (A.9),

X1 +x2+x3=0
x1 4+ 2x3 +2x3 =0,

(A.14)

from Example A.2. We can write this in vector form as
1 1 1 0
T N R

The expression on the left-hand side of (A.15) where vectors are multiplied by scalars

and the results are summed together is called a linear combination.
If A is an m by n matrix, and x is an n element vector, we can multiply A times x,
where the product is defined by

Ax=x1A. 1 +xA 0+ - -+ xA . (A.16)
@
Example A.4
Given
1 2 3
A= [4 5 6i| (A17)
and

1
x= 0], (A.18)
2
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wemt [Too o2 []-]7] "

The formula (A.16) for Ax is a linear combination much like the one that occurred

then

in the vector form of a system of equations. It is possible to write any linear system of
equations in the form Ax = b, where A is a matrix containing the coefficients of the
variables in the equations, b is a vector containing the coefficients on the right-hand
sides of the equations, and x is a vector containing the variables.

Definition A.2 If A is a matrix of size m by n, and B is a matrix of size n by r, then
the product C = AB is obtained by multiplying A times each of the columns of B and
assembling the matrix vector products in C:

C=[AB.; AB., ... AB,]| (A.20)

This approach given in (A.20) for calculating a matrix-matrix product will be referred
to as the matrix-vector method.

Note that the product (A.20) is only possible if the two matrices are of compatible sizes.
If A has m rows and n columns, and B has n rows and r columns, then the product
AB exists and is of size m by r. In some cases, it is thus possible to multiply AB but
not BA. It is important to note that when both AB and BA exist, AB is not generally
equal to BA!

An alternate way to compute the product of two matrices is the row-column
expansion method, where the product element C;;; is calculated as the matrix product
of row i of A and column j of B.

[
Example A.5
Let
1 2
A=|3 4 (A.21)
|5 6
and
[5 2
B__3 7]. (A.22)
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The product matrix C = AB will be of size 3 by 2. We compute the product using both
methods. First, using the matrix-vector approach (A.20), we have

C=[AB.; AB.;| (A.23)
1 2 1 2

=|5|3[+3 4] 2|3|+7|4 (A.24)
L5 6 5 6
11 16

=27 34/|. (A.25)
|43 52

Next, we use the row-column approach:

[1.54+2-3 1.242.7

C=|3.-54+4-3 3-2+4+4.7 (A.26)
[5:54+6-3 5:2+46-7
11 16

=127 34]. (A.27)
| 43 52

Definition A.3 The n by n identity matrix I, is composed of 1s in the diagonal and
0Os in the off-diagonal elements.

For example, the 3 by 3 identity matrix is

I = (A.28)

S O -
S - O
- O O

We often write I without specifying the size of the matrix in situations where the
size of matrix is obvious from the context. It is easily shown that if A is an m by n
matrix, then

AL, =A (A.29)
=1,A. (A.30)

Thus, multiplying by I in matrix algebra is similar to multiplying by 1 in conventional
scalar algebra.

We have not defined matrix division, but it is possible at this point to define the
matrix algebra equivalent of the reciprocal.
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Definition A.4 If A is an n by n matrix, and there is a matrix B such that
AB=BA =1, (A.31)

then B is the inverse of A. We write B= A",

How do we compute the inverse of a matrix? If AB =1, then
[AB.; AB.,...AB.,]=L (A.32)
Since the columns of the identity matrix and A are known, we can solve

1

0
AB = . (A.33)

0
to obtain By. We can find the remaining columns of the inverse in the same way. If any
of these systems of equations are inconsistent, then A~ does not exist.
The inverse matrix can be used to solve a system of linear equations with n equations

and n variables. Given the system of equations Ax =b, and A~!, we can multiply
Ax = Db on both sides by the inverse to obtain

A 'Ax=A""b. (A.34)
Because
A 'Ax=1x (A.35)
=x, (A.36)
this gives the solution
x=A""b. (A.37)

This argument shows that if A™! exists, then for any right-hand side b, a system of
equations has a unique solution. If A~! does not exist, then the system of equations may
have either many solutions or no solution.

Definition A.5 When A is an # by n matrix, A* is the product of k copies of A. By
convention, we define A = L.

Definition A.6 The transpose of a matrix A, denoted A7, is obtained by taking the

columns of A and writing them as the rows of the transpose. We will also use the
notation A~ T for (A_l)T.
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@
Example A.6
Let
2 1
A=|:5 2i|. (A.38)
Then
T _ {2 5
A _|:1 L (A.39)

Definition A.7 A matrix is symmetric if A = A”.

Although many elementary textbooks on linear algebra consider only square diagonal
matrices, we will have occasion to refer to m by n matrices that have nonzero elements
only on the diagonal.

Definition A.8 An m by n matrix A is diagonal if 4; ; = 0 whenever i # j.

Definition A.9 An m by n matrix R is upper-triangular if R; ; = 0 whenever i > j.
A matrix L is lower-triangular if LT is upper-triangular.

[
Example A.7
The matrix
10 0 0 O
S=(0 2 0 0 O (A.40)
00 3 00
is diagonal, and the matrix
1 2 3
0 2 4
R = 0 0 5 (A.41)
0 0 0

is upper-triangular.

Theorem A.1 The following statements are true for any scalars s and t and matrices A, B,
and C. It is assumed that the matrices are of the appropriate size for the operations involved and
that whenever an inverse occurs, the matrix is invertible.
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A+0=0+A=A.
A+B=B+A.
(A+B)+C=A+B+C).
A(BC) = (AB)C.
AB-+C)=AB+AC.
(A+B)C = AC+BC.
(st)A = s(tA).

s(AB) = (sA)B = A(sB).
(s+1)A=sA+tA.
s(A+B) =sA+sB.

. (AT =A.

PRI AP

—
—_- O

12. AT =sAT).

13. A+B)T =AT+BT.

14. (AB)T =BTAT

15. (AB)"! =B 'A~L

16. (A~HT=A.

17. A=A HT

18. If A and B are n by n matrices, and AB =1, then A~' =B and B~' = A.

The first 10 rules in this list are identical to rules of conventional algebra, and you should
have little trouble in applying them. The rules involving transposes and inverses are new,
but they can be mastered without too much trouble.

Some students have difficulty with the following statements, which would appear to
be true on the surface, but that are in fact false for at least some matrices.
1. AB =BA.
2. fAB=0,then A=0o0orB=0.
3. fAB=ACand A #0, then B=C.
It is a worthwhile exercise to construct examples of 2 by 2 matrices for which each of
these statements is false.

A.3. LINEAR INDEPENDENCE

Definition A.10 The vectors vy, vo, . . ., v, are linearly independent if the system
of equations

avi+ovo+- - -+c¢v, =0 (A.42)

has only the trivial solution ¢ = 0. If there are multiple solutions, then the vectors are
linearly dependent.

Determining whether a set of vectors is linearly independent is simple. Just solve the
above system of equations (A.42).
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®
Example A.8
Let

12 3
A=|4 5 6. (A.43)
7 8 9

Are the columns of A linearly independent vectors? To determine this we set up the
system of equations Ax = 0 in an augmented matrix, and then find the RREE,

1 0 —-11]0
0 1 210]. (A.44)
0 0 0|0
The solutions are
1
x=x3 | —2|. (A.45)
1

x=|-2]. (A.46)

Thus, the columns of A are linearly dependent.

There are a number of important theoretical consequences of linear independence.
For example, it can be shown that if the columns of an n by n matrix A are linearly
independent, then A~" exists, and the system of equations Ax = b has a unique solution
for every right-hand side b [95].

A.4. SUBSPACES OF R"

So far, we have worked with vectors of real numbers in the n-dimensional space R".
There are a number of properties of R" that make it convenient to work with vectors.
First, the operation of vector addition always works. We can take any two vectors in
R" and add them together and get another vector in R". Second, we can multiply any
vector in R" by a scalar and obtain another vector in R". Finally, we have the 0 vector,
with the property that for any vector x, x4+0=0+x =x.
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Definition A.11 A subspace I/ of R" is a subset of R" that satisfies the three

properties:

1. It x and y are vectors in I/, then x4y is also a vector in W.

2. Ifxisavector in W and s is any real scalar, then sx is also a vector in V.

3. The 0 vector is in . A subspace of R" is nontrivial if it contains vectors other
than the 0 vector.

[
Example A.9
In R3, the plane P defined by the equation

x1+x2+x3=0 (A.47)

is a subspace of R" To see this, note that if we take any two vectors in the plane and add
them together, we get another vector in the plane. If we take a vector in this plane and
multiply it by any scalar, we get another vector in the plane. Finally, 0 is a vector in the
plane.

Subspaces are important because they provide an environment within which all of
the rules of matrix-vector algebra apply. An especially important subspace of R" that we
will work with is the null space of an m by n matrix.

Definition A.12 Let A be an m by n matrix. The null space of A, written N(A), is
the set of all vectors x such that Ax = 0.

To show that N(A) is actually a subspace of R", we need to show that:

1. If x and y are in N(A), then Ax =0 and Ay = 0. By adding these equations, we
find that A(x+y) = 0. Thus x4y is in N(A).

2. If x is in N(A) and s is any scalar, then Ax = 0. We can multiply this equation by s
to get sSAx = 0. Thus A(sx) =0, and sx is in N(A).

3. A0=0,s00isin N(A).
Computationally, the null space of a matrix can be determined by solving the system

of equations Ax = 0.

[ 4
Example A.10
Let
31 9 4
A=(2 1 7 3 (A.48)
5 2 16 7
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To find the null space of A, we solve the system of equations Ax = 0. To solve the
equations, we put the system of equations into an augmented matrix,

31 9 4]0
21 7 30|, (A.49)
5 2 16 70
and find the RREE
10 2 110
01 3 10 (A.50)
0 00 00
From the augmented matrix, we find that
=2 -1
-3 —1
X = X3 1 + x4 ol (A.51)
1

Any vector in the null space can be written as a linear combination of the above vectors,
so the null space is a two-dimensional plane within R*

Now, consider the problem of solving Ax = b, where

22
b=|17 (A.52)
39
and one particular solution is
1
2
P=1 | (A.53)
2

We can take any vector in the null space of A and add it to this solution to obtain
another solution. Suppose that x is in N(A). Then

Ax+p)=Ax+Ap
A(x+p)=0+b
Ax+p)=b.
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For example,

1 —2 —1
2 -3 —1

x=|1+2 ] T+, (A.54)
2 0 1

is also a solution to Ax = b.

In the context of inverse problems, the null space is critical because the presence
of a nontrivial null space leads to nonuniqueness in the solution to a linear system of
equations.

Definition A.13 A basis for a subspace I/ is a set of vectors v1, . . ., v, such that:
1. Any vector in W can be written as a linear combination of the basis vectors.
2. The basis vectors are linearly independent.

A particularly simple and useful basis is the standard basis.

Definition A.14 The standard basis for R” is the set of vectors eq, . . ., e, such that
the elements of e; are all zero except for the ith element, which is 1.

Any nontrivial subspace W of R" will have many different bases. For example, we
can take any basis and multiply one of the basis vectors by 2 to obtain a new basis. It is
possible to show that all bases for a subspace W have the same number of basis vectors
[95].

Theorem A.2 Let W be a subspace of R" with basis vq, va, . . ., vj,. Then all bases for W
have p basis vectors, and p is the dimension of V.

It can be shown that the procedure used in the above example always produces a
basis for N(A) [95]. A basis for the null space of a matrix can be found in MATLAB
using the null command.

Definition A.15 Let A be an m by n matrix. The column space or range of A
(written R(A)) is the set of all vectors b such that Ax = b has at least one solution. In
other words, the column space is the set of all vectors b that can be written as a linear
combination of the columns of A.

The range is important in the context of discrete linear inverse problems, because
R(G) consists of all vectors d for which there is a model m such that Gm = d.

To find the column space of a matrix, we consider what happens when we compute
the RREF of [A | b]. In the part of the augmented matrix corresponding to the left-
hand side of the equations we always get the same result, namely the RREF of A. The
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solution to the system of equations may involve some free variables, but we can always
set these free variables to 0. Thus when we are able to solve Ax = b, we can solve the
system of equations by using only variables corresponding to the pivot columns in the
RREF of A. In other words, if we can solve Ax = b, then we can write b as a linear
combination of the pivot columns of A. Note that these are columns from the original
matrix A, not columns from the RREF of A. An orthonormal (see below) basis for the
range of a matrix can be found in MATLAB using the orth command.

®
Example A.11

As in the previous example, let

31 9 4
A=|2 1 7 3. (A.55)
5 2 16 7

To find the column space of A, note that the RREF of A is
10 2 1
0 1 3 1. (A.56)
0 0 0 0

Thus, whenever we can solve Ax = b, we can find a solution in which x3 and x4 are O.

In other words, whenever there is a solution to Ax =b, we can write b as a linear
combination of the first two columns of A:

3 1
b=x1 [2]|+x |1]. (A.57)
5 2

Since these two vectors are linearly independent and span R(A), they form a basis for
R(A). The dimension of R(A) is 2.

In finding the null space and range of a matrix A, we found that the basis vectors
for N(A) corresponded to nonpivot columns of A, while the basis vectors for R(A)
corresponded to pivot columns of A. Since the matrix A had n columns, we obtain the
following theorem.

Theorem A.3
dim N(A) + dim R(A) = n. (A.58)

In addition to the null space and range of a matrix A, we will often work with the
null space and range of the transpose of A. Since the columns of AT are rows of A, the
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column space of AT is also called the row space of A. Since each row of A can be
written as a linear combination of the nonzero rows of the RREF of A, the nonzero
rows of the RREF form a basis for the row space of A. There are exactly as many
nonzero rows in the RREF of A as there are pivot columns. Thus we have the following
theorem.

Theorem A.4
dim(R(AT)) = dim R(A). (A.59)

Definition A.16 The rank of an m by n matrix A is the dimension of R(A). If
rank(A) = min(m, n), then A has full rank. If rank(A) = m, then A has full row
rank. If rank(A) = n, then A has full column rank. If rank(A) < min(m, n), then A
is rank deficient.

The rank of a matrix is readily found in MATLAB by using the rank command.

A.5. ORTHOGONALITY AND THE DOT PRODUCT

Definition A.17 Let x and y be two vectors in R” The dot product of x and y is
x-y:xTyleyl +x0y2 + - A Xy (A.60)

Definition A.18 Let x be a vector in R" The 2-norm or Euclidean length of x is

||x||2=vxTx:\/x%+x§+- Ce a2, (A.61)

Later we will introduce two other ways of measuring the “length” of a vector. The
subscript 2 is used to distinguish this 2-norm from the other norms.

You may be familiar with an alternative definition of the dot product in whichx -y =
[Ix[[llyll cos(8), where 8 is the angle between the two vectors. The two definitions are
equivalent. To see this, consider a triangle with sides x, y, and x —y. See Figure A.1.

Figure A.1 Relationship between the dot product and the angle between two vectors.
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The angle between sides x and y is 6. By the law of cosines,
Ix =113 = IIxI13 + lIyll3 = 2llxI2llyll> cos(®)
=y x—y) =x"x+y"y = 2[x|2llyll2 cos(®)
x'x—2x"y+y'y =x"x+y"y = 2|x|allyll2 cos(6)
—2x"y = =2[Ixll2llyll2 cos(®)
x'y = [Ixll2llyll2 cos(®).
We can also use this formula to compute the angle between two vectors:

9 = cos™! <X—Ty) (A.62)
Ixll2[lyll2

Definition A.19 Two vectors x and y in R" are orthogonal, or equivalently, per-

pendicular (written x L y), if x’y = 0.

Definition A.20 A set of vectors v, V2, . . ., V, is orthogonal if each pair of vectors
in the set is orthogonal.

Definition A.21 Two subspaces 7 and ¥ of R" are orthogonal if every vector in I/
is perpendicular to every vector in .

If x is in N(A), then Ax = 0. Since each element of the product Ax can be obtained
by taking the dot product of a row of A and x, x is perpendicular to each row of A.
Since x is perpendicular to all of the columns of AT, it is perpendicular to R(AT). We
have the following theorem.

Theorem A.5 Let A be an m by n matrix. Then
N(A) L R(AT). (A.63)
Furthermore,
N(A)+R(AT) =R". (A.64)
That is, any vector x in R" can be written uniquely as x = p + q, where p is in N(A) and q is

in R(AT).

Definition A.22 A basis in which the basis vectors are orthogonal is an orthogo-
nal basis. A basis in which the basis vectors are orthogonal and have length 1 is an
orthonormal basis.

Definition A.23 An n by n matrix Q is orthogonal if the columns of Q are
orthogonal and each column of Q has length 1.
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With the requirement that the columns of an orthogonal matrix have length 1,
using the term “orthonormal” would make logical sense. However, the definition of
“orthogonal” given here is standard and we will not try to change standard usage.

Orthogonal matrices have a number of useful properties.

Theorem A.6 If Q is an orthogonal matrix, then:
1. QTQ=QQ" =1 In other words, Q™' = Q™.

2. For any vector x in R", || Qx|2 = ||x]|2
3. For any two vectors x and 'y in R", xTy = (Qx) T (Qy).

A problem that we will often encounter in practice is projecting a vector X onto
another vector y or onto a subspace I to obtain a projected vector p. See Figure A.2.
We know that

xy = |x|l2llyll2 cos(®), (A.65)

where 6 is the angle between x and y. Also,

os(0) = @ (A.66)
lIxIl2
Thus
T
Xy
Ipll2=———. (A.67)
Iyll2
Since p points in the same direction as 'y,
XY (A.68)
p = proj,x = —-y. .
oyly

The vector p is called the orthogonal projection or simply the projection of x
onto y.

Figure A.2 The orthogonal projection of x onto y.
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Similarly, if 17 is a subspace of R" with an orthogonal basis wq, wa, . . ., w), then
the orthogonal projection of x onto IV is

XTW1 XTW2 XTWP

p=projpx=—F—wWi+—F Wt +—
wlwl W2W2 Wp

W). (A.69)
W,
Note that this equation can be simplified considerably if the orthogonal basis vectors are
also orthonormal. In that case, wlTw1, W;FWQ, e, ngwp are all 1.

It is inconvenient that the projection formula requires an orthogonal basis. The
Gram-Schmidt orthogonalization process can be used to turn any basis for a sub-
space of R" into an orthogonal basis. We begin with a basis v, v2, . . ., v,,. The process
recursively constructs an orthogonal basis by taking each vector in the original basis and
then subtracting off its projection on the space spanned by the previous vectors. The

formulas are

W1 =V,
VlTV 1TV2
W) =V) — V| = V) — ——W]
viv W1
WiVp pr Vp
Wy =V, — —5— Wi — — W) (A.70)
Wi W W, W)

Unfortunately, the Gram-Schmidt process is numerically unstable when applied to large
bases. In MATLAB the command orth provides a numerically stable way to produce
an orthogonal basis from a nonorthogonal basis. An important property of orthogonal
projection is that the projection of x onto I is the point in ¥ which is closest to x. In
the special case that x is in ¥/, the projection of x onto W is x.

Given an inconsistent system of equations Ax = b, it is often desirable to find an
approximate solution. A natural measure of the quality of an approximate solution is the
norm of the difference between Ax and b, ||Ax —b||. A solution that minimizes the
2-norm, ||[Ax — b||2, is called a least squares solution, because it minimizes the sum
of the squares of the residuals.

The least squares solution can be obtained by projecting b onto R(A). This cal-
culation requires us to first find an orthogonal basis for R(A). There is an alternative
approach that does not require finding an orthogonal basis. Let

Axj; = projp(a)b- (A.71)

Then, the difference between the projection (A.71) and b, Ax;; — b, will be perpendic-
ular to R(A) (Figure A.3). This orthogonality means that each of the columns of A will
be orthogonal to Ax;; —b. Thus

AT(Ax,—b) =0 (A.72)
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Rm
b Ax;;—b

Axs=projga)b

0

Figure A.3 Geometric conceptualization of the least squares solution to Ax = b. b generally liesin R",
but R(A) is generally a subspace of R™. The least squares solution x; minimizes ||Ax — b||.

or
ATAx,=A"b. (A.73)

This last system of equations is referred to as the normal equations for the least squares
problem. It can be shown that if the columns of A are linearly independent, then the
normal equations have exactly one solution for xj; and this solution minimizes the sum
of squared residuals [95].

A.6. EIGENVALUES AND EIGENVECTORS

Definition A.24 An n by n matrix A has an eigenvalue A with an associated eigen-
vector x if x is not 0, and

Ax = Ax. (A.74)

To find eigenvalues and eigenvectors, we rewrite the eigenvector equation (A.74) as
(A—ADx=0. (A.75)

To find nonzero eigenvectors, the matrix A — AI must be singular. This leads to the
characteristic equation,

det(A — AI) = 0. (A.76)

where det denotes the determinant. For small matrices (e.g., 2 by 2 or 3 by 3), it is
relatively easy to solve (A.76) to find the eigenvalues. The eigenvalues can then be sub-
stituted into (A.75), and the resulting system can then be solved to find corresponding
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eigenvectors. Note that the eigenvalues can, in general, be complex. For larger matrices,
solving the characteristic equation becomes impractical and more sophisticated numeri-
cal methods are used. The MATLAB command eig can be used to find eigenvalues and
eigenvectors of a matrix.

Suppose that we can find a set of n linearly independent eigenvectors, v;, of an #n by
n matrix A with associated eigenvalues A;. These eigenvectors form a basis for R". We
can use the eigenvectors to diagonalize the matrix as

A=PAP !, (A.77)
where
P= [v1 vy oo vﬂ], (A.78)
and A is a diagonal matrix of eigenvalues
Aji = Aj. (A.79)
To see that this works, simply compute AP:
AP:A[V1 Vo o o... vn]
= [klvl Aovo ... knvn]
=PA.

Thus, A = PAP~ L. Not all matrices are diagonalizable, because not all matrices have n
linearly independent eigenvectors. However, there is an important special case in which
matrices can always be diagonalized.

Theorem A.7 If A is a real symmetric matrix, then A can be written as

A=QAQ '=QAQ", (A.80)
where Q is a real orthogonal matrix of eigenvectors of A, and A is a real diagonal matrix of the

eigenvalues of A.

This orthogonal diagonalization of a real symmetric matrix A will be useful later
on when we consider orthogonal factorizations of general matrices.

The eigenvalues of symmetric matrices are particularly important in the analysis of
quadratic forms.

Definition A.25 A quadratic form is a function of the form
f(x) =xTAx, (A.81)

where A is a symmetric # X n matrix. The quadratic form f(x) is positive definite
if f(x) >0 for all x and f(x) =0 only when x = 0. The quadratic form is positive
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semidefinite if f(x) > 0 for all x. Similarly, a symmetric matrix A is positive definite
if the associated quadratic form f(x) = x! Ax is positive definite. The quadratic form
is negative semidefinite if —f(x) is positive semidefinite. If f(x) is neither positive
semidefinite nor negative semidefinite, then f(x) is indefinite.

Positive definite quadratic forms have an important application in analytic geometry.
Let A be a symmetric and positive definite matrix. Then the region defined by the
inequality

x—c)TA(x—c)<$ (A.82)
is an ellipsoidal volume, with its center at c. We can diagonalize A as
A =PAP! (A.83)

where the columns of P are normalized eigenvectors of A, and A is a diagonal matrix
whose elements are the eigenvalues of A. It can be shown that the ith eigenvector of A
points in the direction of the ith semimajor axis of the ellipsoid, and the length of the
ith semimajor axis is given by 4/8/A; [95].

An important connection between positive semidefinite matrices and eigenvalues is
the following theorem.

Theorem A.8 A symmetric matrix A is positive semidefinite if and only if its eigenvalues are
greater than or equal to 0. A is positive definite if and only if its eigenvalues are greater than 0.

This provides a convenient way to check whether a symmetric matrix is positive
semidefinite or positive definite.

The Cholesky factorization provides another way to determine whether a sym-
metric matrix is positive definite.

Theorem A.9 Let A be an an n by n positive definite and symmetric matrix. Then A can be
written uniquely as

A=R'R=1LT7, (A.84)

where R is a nonsingular upper-triangular matrix and L = R is a nonsingular lower-triangular
matrix. Note that A can be factored in this way if and only if it is positive definite.

The MATLAB command chol can be used to compute the Cholesky factorization.

A.7. VECTOR AND MATRIX NORMS

Although the conventional Euclidean length (A.61) is most commonly used, there are
alternative ways to measure the length of a vector.
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Definition A.26 Any measure of vector length satisfying the following four conditions
is called a norm.

1. For any vector x, ||x] > 0.

2. For any vector x and any scalar s, ||sx|| = [s|||x]|.

3. Forany vectors x and y, [|x+y| < x| + llyll.

4. ||x|| =0 if and only it x = 0.

If ||| satisfies conditions 1, 2, and 3, but does not satisty condition 4, then ||| is called a
seminorm.

Definition A.27 The p-norm of a vector in R" is defined for p > 1 by
Il = (et [P+ [l + - - - |2 (A.85)

[t can be shown that for any p > 1, (A.85) satisfies the conditions of Definition A.26
[53]. The conventional Euclidean length is just the 2-norm, but two other p-norms are
also commonly used. The 1-norm is the sum of the absolute values of the elements
in x. The co-norm is obtained by taking the limit as p goes to infinity. The co-norm
is the maximum of the absolute values of the elements in x. The MATLAB command
norm can be used to compute the norm of a vector, and has options for the 1, 2, and
infinity norms.

The 2-norm is particularly important because of its natural connection with dot
products and projections. The projection of a vector onto a subspace is the point in
the subspace that is closest to the vector as measured by the 2-norm. We have also
seen in (A.73) that the problem of minimizing ||Ax — b||> can be solved by computing
projections or by using the normal equations. In fact, the 2-norm can be tied directly
to the dot product by the formula

T

Ix|l> = vx'x. (A.86)

The 1- and oco-norms can also be useful in finding approximate solutions to over-
determined linear systems of equations. To minimize the maximum of the residuals, we
minimize ||[Ax — b||so. To minimize the sum of the absolute values of the residuals, we
minimize ||Ax — b||;. Unfortunately, these minimization problems are generally more
difficult to solve than least squares problems.

Definition A.28 Any measure of the size or length of an m by n matrix that satisfies
the following five properties can be used as a matrix norm.

For any matrix A, [|[A|| > 0.

For any matrix A and any scalar s, ||sA|| = |s]||A]|.

For any matrices A and B, ||A+B| < ||A] + ||B]|.

|A|l =0 if and only if A = 0.

For any two matrices A and B of compatible sizes, ||AB|| < ||A||||B]|.

Ul W N =
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Definition A.29 The p-norm of a matrix A is

[All, = max [|Ax]],, (A.87)

lIxll,=1
where [[x||, and ||Ax]|, are vector p-norms, while [|A[|, is the matrix p-norm of A.
Solving the maximization problem of (A.87) to determine a matrix p-norm could

be extremely difficult. Fortunately, there are simpler formulas for the most commonly
used matrix p-norms. See Exercises A.11, A.12, and C.4:

m

Al =max ) 14, (A.88)
i=1

”A”Z = )\'maX(ATA) (A89)
n

| Alloc = max 21: 14; 1, (A.90)
]:

where Amax(ATA) denotes the largest eigenvalue of ATA.
Definition A.30 The Frobenius norm of an m by »n matrix is given by

m n

— 2
IAlF= | > 42, (A.91)
i=1 j=1
Definition A.31 A matrix norm || ||as and a vector norm || ||;» are compatible if
IAx| 1 < [|AllamlIx]]y . (A.92)

The matrix p-norm is by its definition compatible with the vector p-norm from
which it was derived. It can also be shown that the Frobenius norm of a matrix is
compatible with the vector 2-norm [109]. Thus the Frobenius norm is often used with
the vector 2-norm.

In practice, the Frobenius norm, 1-norm, and co-norm of a matrix are easy to
compute, while the 2-norm of a matrix can be difficult to compute for large matrices.
The MATLAB norm command has options for computing these matrix norms.

A.8. THE CONDITION NUMBER OF A LINEAR SYSTEM

Suppose that we want to solve a system of # equations in n variables

Ax =b. (A.93)
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Suppose further that because of measurement errors in b, we actually solve

Ax =b. (A.94)

Can we get a bound on ||x — %[ in terms of ||b — b||? Starting with (A.93) and (A.94),
we have

Ax—%)=b—b (A.95)

x—%)=A"'(b—b) (A.96)

Ix—%| = A~ (b—b)|| (A.97)

Ix— %] < |A~'|[b—B. (A.98)

This formula provides an absolute bound on the error in the solution. It is also worth-
while to compute a relative error bound:

% AL B
lx—xI _ A" [lll'b — bl

= (A.99)
bl bl
Ix—%I _ IA~"llb—b]
< (A.100)
A bl
; iy b —b
lx —x[| < [|Ax[[[|A]] bl (A.101)
: b —b]
lx —x[l < (A=A bl (A.102)
Ix—%I i b =B
< [|AlAl (A.103)
1]l bl
The relative error in b is measured by
Ib— b
. (A.104)
bl
The relative error in x is measured by
Ix — x|
(A.105)
1|l
The constant
cond(A) = A [|A7| (A.106)

is called the condition number of A.
Note that nothing that we did in the calculation of the condition number depends
on which norm we used. The condition number can be computed using the 1-norm,
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2-norm, o00-norm, or Frobenius norm. The MATLAB cond command can be used to
find the condition number of a matrix using each of these norms.

The condition number provides an upper bound on how inaccurate the solution to a
system of equations might be because of errors in the right-hand side. In some cases, the
condition number greatly overestimates the error in the solution. As a practical matter, it
is wise to assume that the error is of roughly the size predicted by the condition number.
In practice, double-precision floating point arithmetic only allows us to store numbers
to about 16 digits of precision. If the condition number is greater than 10'°, then by
the above inequality, there may be no accurate digits in the computer solution to the
system of equations. Systems of equations with very large condition numbers are called
ill-conditioned.

It is important to understand that ill-conditioning is a property of the system of equa-
tions and not of the algorithm used to solve the system of equations. Ill-conditioning
cannot be fixed simply by using a better algorithm. Instead, we must either increase
the precision of our floating point representation or find a different, better conditioned
system of equations to solve.

A.9. THE QR FACTORIZATION

Although the theory of linear algebra can be developed using the reduced row eche-
lon form, there is an alternative computational approach that works better in practice.
The basic idea is to compute factorizations of matrices that involve orthogonal, diag-
onal, and upper-triangular matrices. This alternative approach leads to algorithms that
can quickly compute accurate solutions to linear systems of equations and least squares
problems. In this section we introduce the QR factorization, which is one of the most
widely used orthogonal matrix factorizations. Another factorization, the singular value
decomposition (SVD), is introduced in Chapter 3.

Theorem A.10 Let A be an m by n matrix. A can be written as
A =QR, (A.107)

where Q is an m by m orthogonal matrix, and R is an m by n upper-triangular matrix. This is
called the QR factorization of A.

The MATLAB command qr can be used to compute the QR factorization of a
matrix. In a common situation, A will be an m by n matrix with m > n, and the rank of
A will be n. In this case, we can write

_ R
R= [ o } (A.108)
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where R is n by n, and

Q=[Q Q2f, (A.109)

where Qg is m by n and Qg is m by m — n. In this case, the QR factorization has some
important properties.

Theorem A.11 Let Q and R be the QR factorization of an m by n matrix A with m > n
and rank(A) = n. Then,

1. The columns of Q1 are an orthonormal basis for R(A).

2. The columns of Qo are an orthonormal basis for N(AT).

3. The matrix Ry is nonsingular.

Now, suppose that we want to solve the least squares problem,
min||Ax — b||». (A.110)

Since multiplying a vector by an orthogonal matrix does not change its length, this is
equivalent to

min||QT (Ax —b)||». (A.111)
But
Q'A=Q"QR=R. (A.112)
So, we have
min||Rx — Qb (A.113)
or
min R(l)z:QjTE - (A.114)

Whatever value of x we pick, we will probably end up with nonzero residuals because of
the 0x — 2T b part of the least squares problem. We cannot minimize the norm of this
part of the vector. However, we can find an x that exactly solves Rix = Q1T b. Thus, we
can minimize the least squares problem by solving the square system of equations,

Rix=Q/b. (A.115)

The advantage of solving this system of equations instead of the normal equations (A.73)
is that the normal equations are typically much more badly conditioned than (A.115).
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A.10. COMPLEX MATRICES AND VECTORS

Although nearly all of the mathematics in this textbook involves real numbers, complex
numbers do appear in Chapter 8 when we consider the Fourier transform. We assume
that the reader is already familiar with arithmetic involving complex numbers including
addition, subtraction, multiplication, division, and complex exponentials. Most theo-
rems of linear algebra extend trivially from real to complex vectors and matrices. In this
section we briefly discuss our notation and some important differences between the real
and complex cases.

Given a complex number z = a+ bz, where 1 is the /—1, the complex conjugate
of zis 2* = a — bi. Note that the absolute value of z is

|2| = Va® + b = 2*z. (A.116)

The main difference between linear algebra on real vectors and complex vectors is
in the definition of the dot product of two vectors. We define the dot product of two
complex vectors x and y to be

.

xy=x"y. (A117)

The advantage of this definition is that

n n
X*TXZZ xek=Z ES (A.118)
k=1

k=1

Thus we can then define the 2-norm of a complex vector by

lxllo = Vx*' x. (A.119)

The combination of taking the complex conjugate and transpose, called the Hermitian
transpose, occurs so frequently that we denote this by

xH = x*" (A.120)

Note that for a real vector, x, the conjugate is simply x* = x, so x!’ = x'. In MATLAB,
the apostrophe denotes the Hermitian transpose.

In general, you will almost never go wrong by using the Hermitian transpose in any
linear algebra computation involving complex numbers that would normally involve
a transpose when working with real vectors and matrices. For example, if we want
to minimize ||Gm — d||», where G, m, and d are complex, we can solve the normal
equations,

G"Gm = GHd. (A.121)
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A.11. LINEAR ALGEBRA IN SPACES OF FUNCTIONS

So far, we have considered only vectors in R". The concepts of linear algebra can be
extended to other contexts. In general, as long as the objects that we want to consider
can be multiplied by scalars and added together, and as long as they obey the laws of
vector algebra, then we have a vector space in which we can practice linear algebra.
If we can also define a vector product similar to the dot product, then we have what is
called an inner product space, and we can define orthogonality, projections, and the
2-norm.

There are many different vector spaces used in various areas of science and math-
ematics. For our work in inverse problems, a very commonly used vector space is the
space of functions defined on an interval [a, b].

Multiplying a scalar times a function or adding two functions together clearly pro-
duces another function. In this space, the function z(x) =0 takes the place of the 0
vector, since f(x) 4+ z(x) = f(x). Two functions f(x) and g(x) are linearly independent
if the only solution to

aq fx)+ o glx) =z(x) (A.122)

s =0=0.
We can define the dot product of two functions f and g to be

b
fg= / f(x)g(x) dox. (A.123)

Another commonly used notation for this dot product or inner product of f and ¢ is

fe=(f 2 (A.124)

It is easy to show that this inner product has all of the algebraic properties of the dot
product of two vectors in R". A more important motivation for defining the dot product
in this way is that it leads to a useful definition of the 2-norm of a function. Following
our earlier formula that ||x|» = \/m, we have

b

Il fll2= /f(x)2 dx. (A.125)

a

Using this definition, the distance between two functions f and g is

b
T / (F(x) —g(x))? d. (A.126)
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This measure is obviously 0 when f(x) = g(x) everywhere, but can also be 0 when f(x)
and g(x) differ at a finite or countably infinite set of points. The measure is only nonzero
if f(x) and g(x) differ on an interval.

Using this inner product and norm, we can reconstruct the theory of linear alge-
bra from R" in our space of functions. This includes the concepts of orthogonality,
projections, norms, and least squares solutions.

Definition A.32 Given a collection of functions fi (x), f>(x), . . ., fu(x) in an inner
product space, the Gram matrix of the functions is the m X m matrix T', whose
elements are given by

T, j=ff. (A.127)

The Gram matrix has several important properties. It is symmetric and positive
semidefinite. If the functions are linearly independent, then the Gram matrix is also
positive definite. Furthermore, the rank of I' is equal to the size of the largest linearly
independent subset of the functions fi (x), . . ., fu(x).

A.12. EXERCISES

1. Let A be an m by n matrix with n pivot columns in its RREE Can the system of
equations Ax = b have infinitely many solutions?

2. f C=AB is a 5 by 4 matrix, then how many rows does A have? How many
columns does B have? Can you say anything about the number of columns in A?

3. Suppose that vi, v, and v3 are three vectors in R and that v3 = —2v; + 3v». Are
the vectors linearly dependent or linearly independent?
4. Let
1 2 3 4
A=12 2 1 3]. (A.128)
4 6 7 11
Find bases for N(A), R(A), N(AT), and R(AT). What are the dimensions of the

four subspaces?

5. Let A be an n by n matrix such that A~" exists. What are N(A), R(A), N(AT),
and R(AT)?

6. Let A be any 9 by 6 matrix. If the dimension of the null space of A is 5, then what
is the dimension of R(A)? What is the dimension of R(AT)? What is the rank
of A?

7. Suppose that a nonhomogeneous system of equations with four equations and six
unknowns has a solution with two free variables. Is it possible to change the right-
hand side of the system of equations so that the modified system of equations has
no solutions?
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10.

11.

12.
13.

14.

15.

. Let W be the set of vectors x in R* such that xjx; = 0. Is W a subspace of R*?

Let vy, v2, v3 be a set of three nonzero orthogonal vectors. Show that the vectors
are also linearly independent.
Show that if x L y, then

Ix+yll3 = x5+ lIyl3. (A.129)

In this exercise, we will derive the formula (A.88) for the 1-norm of a matrix.
Begin with the optimization problem

Al = max [ AX][. (A.130)

x||1=
(a) Show that if ||x||;1 =1, then
m
|Ax]l; < max ) 14 - (A.131)
J .
i=1

(b) Find a vector x such that ||x||; = 1, and

m

| A = max Y 7 |4 (A.132)
J i=1
(c) Conclude that
1Al = max [IAx]=max 14, (A.133)

i=1

Derive the formula (A.90) for the infinity norm of a matrix.

Let A be an m by n matrix.

(a) Show that ATA is symmetric.

(b) Show that ATA is positive semidefinite. Hint: Use the definition of positive
semidefinite rather than trying to compute eigenvalues.

(c) Show that if rank(A) = #, then the only solution to Ax =0is x = 0.

(d) Use part ¢ to show that if rank(A) = n, then ATA is positive definite.

(e) Use part d to show that if rank(A) = #, then ATA is nonsingular.

(f) Show that N(ATA) = N(A).

Show that

cond(AB) < cond(A)cond(B). (A.134)
Let A be a symmetric and positive definite matrix with Cholesky factorization,

A=R'R. (A.135)
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Show how the Cholesky factorization can be used to solve Ax = b by solving two
systems of equations, each of which has R or R as its matrix.

16. Let P3[0, 1] be the space of polynomials of degree less than or equal to 3 on the
interval [0, 1]. The polynomials p1(x) =1, p2(x) = x, pa(x) = x2, and pa(x) = X
form a basis for P3[0, 1], but they are not orthogonal with respect to the inner
product,

1
fe= / S0)g(x) dx. (A.136)
0

Use the Gram-Schmidt orthogonalization process to construct an orthogonal basis
tfor P3[0, 1]. Once you have your basis, use it to find the third-degree polynomial
that best approximates f (x) = e¢~* on the interval [0, 1] in the least squares sense.

A.13. NOTES AND FURTHER READING

Much of this material is typically covered in sophomore-level linear algebra courses, and
there are an enormous number of textbooks at this level. One good introductory linear
algebra textbook is [95]. At a slightly more advanced level, [109] and [152] are both
excellent. The book by Strang and Borre [153] reviews linear algebra in the context of
geodetic problems.

Fast and accurate algorithms for linear algebra computations are a somewhat more
advanced and specialized topic. A classic reference is [53]. Other good books on this
topic include [38] and [164].

The extension of linear algebra to spaces of functions is a topic in the subject of
functional analysis. Unfortunately, most textbooks on functional analysis assume that
the reader has a considerable mathematical background. One book that is reasonably
accessible to readers with limited mathematical backgrounds is [102].



APPENDIX B

Review of Probability and Statistics

Synopsis

A brief review is given of the topics in classical probability and statistics that are used
throughout the book. Connections between probability theory and its application to the
analysis of data with random measurement errors are highlighted. Note that some very
different philosophical interpretations of probability theory are discussed in Chapter 11.

B.1. PROBABILITY AND RANDOM VARIABLES

The mathematical theory of probability begins with an experiment, which has a set S
of possible outcomes. We will be interested in events that are subsets A of S.

Definition B.1 The probability function P is a function defined on subsets of S
with the following properties:

1. P(S)=1.
2. For every event A C S, P(A) > 0.
3. Ifevents Ay, Ao, . . ., A, are pairwise mutually exclusive (i.e., impossible to both

occur), so that A; N A; is empty for all pairs i, j, then
n
P(UL A =" P(A). (B.1)
i=1
The probability properties given above are fundamental to developing the mathemat-
ics of probability theory. However, applying this definition of probability to real-world
situations frequently requires ingenuity.

®
Example B.1

Consider the experiment of throwing a dart at a dart board. We will assume that our
dart thrower is an expert who always hits the dart board. The sample space S consists of
the points on the dart board. We can define an event A that consists of the points in the
bullseye, so that P(A) is the probability that the thrower hits the bullseye.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00014-8
(© 2013 Elsevier Inc. All rights reserved.
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In practice, the outcome of an experiment is often a number rather than an event.
Random variables are a useful generalization of the basic concept of probability.

Definition B.2 A random variable X is a function X(s) that assigns a value to each
outcome s in the sample space S.

Each time that we perform an experiment, we obtain a particular value of the
random variable. These values are called realizations of the random variable.

®
Example B.2

To continue our previous example, let X be the function that takes a point on the dart
board and returns the associated score. Suppose that throwing the dart in the bullseye
scores 50 points. Then for each point s in the bullseye, X(s) = 50.

In this book we deal frequently with experimental measurements that can include
some random measurement error.

®
Example B.3

Suppose that we measure the mass of an object five times to obtain the realizations
mp =10.1 kg, mpy = 10.0 kg, m3 = 10.0 kg, my =9.9 kg, and m5 = 10.1 kg. We will
assume that there is one true mass m, and that the measurements we obtained varied
because of random measurement errors ¢;, so that

m=m-te, my=m-+te, my=m-+te3, mg=m-+teq, ms=m+es. (B.2)

We can treat the measurement errors as realizations of a random variable E. Equivalently,
since the true mass m is just a constant, we could treat the measurements my, ma, . . . , ms
as realizations of a random variable M. In practice it makes little difference whether we
treat the measurements or the measurement errors as random variables.

Note that in a Bayesian approach the mass m of the object would itself be a random
variable. This is a viewpoint that we consider in Chapter 11.

The relative probability of realization values for a random variable can be character-
ized by a non-negative probability density function (PDF), fx(x), with

P(X <a) = / fx(x) dx. (B.3)
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Because a random variable always has some value,

/ fx(x) dx=1. (B.4)

The following definitions give some useful random variables that frequently arise in
inverse problems.

Definition B.3 The uniform random variable on the the interval [a, b] (Figure B.1)
has the following PDF:

|H

a<x<b
x<a (B.5)
x> b.

—a

Julx) =

S O

Definition B.4 The normal or Gaussian random variable (Figure B.2) has the
following PDF:

1
Ine) = ——= (2l (B.6)

o

The notation N(u, 02) is used to denote a normal distribution with parameters [
and 0. The standard normal random variable, N(0, 1), has © =0 and 6> = 1.

1.0 E

0.8 i

(x)

< 06 .

0.4+ E

02 i

0.0 .
-0.5 0.0 0.5 1.0 1.5

X

Figure B.1 The PDF for the uniform random variable on [0, 1].
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Figure B.2 The PDF of the standard normal random variable.
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Figure B.3 The Student’s ¢ probability density function for v = 3 and v = 20. Dashed curve shows the
normal distribution N(0, 1) (Figure B 2).

Definition B.5 The Student’s ¢ distribution with v degrees of freedom (Figure B.3)
has the PDF

2\ —(+1)/2
ft(x)zl‘((v—i—l)/Z) 1 <1+x_) |
rw/2) Jow

v
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where the gamma function is
o0
I'(x) = f ¥l 5 e (B.8)
0

The Student’s ¢ distribution is so named because W. S. Gosset used the pseudonym
“Student” in publishing the first paper in which the distribution appeared. In the limit
as v goes to infinity, Student’s ¢ distribution approaches a standard normal distribution.

However, for small values of v, (B.7) has a greater percentage of extreme values than
B.6).

Definition B.6 The x? random variable has the PDF (Figure B.4)

fr2(x) = ;x%vqe_x/z (B.9)
X 2V/21 (v /2) ’ '

where the parameter v is the number of degrees of freedom.
Definition B.7 The exponential random variable (Figure B.5) has the PDF

re M x>0

Jep(3) = {0 x < 0.

Definition B.8 The double-sided exponential random variable (Figure B.6) has
the PDF

(B.10)

1
—/2|x—
Sep(x) = —— ¢ V2ml/e B.11)
a\/i
0.25 : .
0.20F v=3 .
0.15 v=5 i
x v=7
NX
= v=9
0.10 -
0.05} -
O 1 1
0 5 10 15
X

Figure B.4 The x2 PDF for several values of v.
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Figure B.5 The exponential PDF (1 = 1).
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Figure B.6 The double-sided exponential PDF (x =0, o = 1).

It can be shown that for n independent random variables, X;, with standard normal
distributions, the random variable

n
Z=>Y "X} (B.12)
i=1

is a x? random variable with v = n degrees of freedom [47].
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The cumulative distribution function (CDF) Fx(a) of a one-dimensional
random variable X is given by the definite integral of the associated PDF

Fx(a) =P(X <a) = / fx(x) dx. (B.13)

Note that Fx(a) must lie in the interval [0, 1] for all a4, and is a nondecreasing function
of a because of the unit area and non-negativity of the PDE
For the uniform PDF on the unit interval, for example, the CDF is a ramp function,

Fy(a) = / Ju(z) dz (B.14)
0 a<0

Fy(@)=4a 0<a<1 (B.15)
1 a>1.

The PDE fx(x), or CDE Fx(a), completely determine the properties of a ran-
dom variable. The probability that a particular realization of X will lie within a general
interval [a, b] is

Pla= X =b)=P(X =b)—P(X=a)=Fx(b) — Fx(a) (B.16)

b a b
= / fx(x) dx— / fx(x) dxz/.fx(x) dx. (B.17)

B.2. EXPECTED VALUE AND VARIANCE

Definition B.9 The expected value of a random variable X, denoted by E[X] or
w(X), is
o
E[X] = / x fx(x) dx. (B.18)
—00
In general, if ¢g(X) is some function of a random variable X, then
o0
BLCO1= [ ) b .19
—00
Some authors use the term “mean” for the expected value of a random variable. We
will reserve this term for the average of a set of data. Note that the expected value of
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a random variable is not necessarily identical to the mode (the value with the largest
value of f(x)) nor is it necessarily identical to the median, the value of x for which the
value of the CDF is Fx(x) = 1/2.

@
Example B.4
The expected value of an N(u, o) random variable X is

E[X] 70 LSy (B.20)
= X e 20 X .
V2
Joovim
o0
1 _a2
= (x+p)e 202 dx B.21
/ o2 ( )
—oQ0
o o0
/ 1 2 1 _ a2
=pu e 202 dx+ / xe 202 dx. B.22
o2 o2 ( )
—00 —0o0

The first integral term is u because the integral of the entire PDF is 1, and the second
term is O because it is an odd function integrated over a symmetric interval. Thus,

E[X] = pu. (B.23)
Definition B.10 The variance of a random variable X, denoted by Var(X) or 0*)2(, is

given by
Var(X) = E[(X — E[X])?]

= E[X?] — E[X)?
~ (B.24)

= / (x — E[X])?fx () dx.

The standard deviation of X, often denoted oy, is
ox = +/ Var(X). (B.25)

The variance and standard deviation serve as measures of the spread of the random
variable about its expected value. Since the units of o are the same as the units of u, the
standard deviation is generally more practical for reporting a spread measure. However,
the variance has properties that make it more useful for certain calculations.
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B.3. JOINT DISTRIBUTIONS

Definition B.11 If we have two random variables X and Y, they may have a joint
probability density function (JDF), f(x, y), with

a b
P(X<aand Y <b) = / / f(x, y) dy dx. (B.26)

—00 —00

If X and Y have a JDF, then we can use it to evaluate the expected value of a function
of X and Y. The expected value of ¢(X, Y) is

E[g(X, V)| = / f g(x, P)f(x, y) dy dx. B.27)

-0 —00

Definition B.12 Two random variables X and Y are independent if a JDF exists and
is defined by

S ) =fxEfy (). (B.28)
Definition B.13 If X and Y have a JDE then the covariance of X and Y is
Cov(X, Y) = E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]. (B.29)

If X and Y are independent, then E[XY] = E[X]E[Y], and Cov(X, Y) = 0. How-
ever, if X and Y are dependent, it is still possible, given some particular distributions, for
X and Y to have Cov(X, Y) =0.If Cov(X, Y) =0, X and Y are called uncorrelated.

Definition B.14 The correlation of X and Y is
Cov(X, Y)

VVar(X)Var(Y)

p(X, Y) = (B.30)

Correlation is thus a scaled covariance.

Theorem B.1 The following properties of Var, Cov, and correlation hold for any random
variables X and Y and scalars s and a.

Var(X) > 0.

Varn(X 4 a) = TVar(X).

Var(sX) = > Var(X).

Var(X+Y) = Var(X) + Var(Y) 4+ 2Cov(X, Y).

Cov(X, Y) = Cov(Y, X).

p(X, Y)=p(Y, X).

—1<pX,Y)=1

N O\ UL AW N =

The following example demonstrates the use of some of these properties.
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[ 4
Example B.5

Suppose that Z is a standard normal random variable. Let

X=pu+oZ (B.31)
Then
E[X] = E[u] + 0 E[Z] (B.32)
50
E[X] = p. (B.33)
Also,
Var(X) = Var(u) + 0*Var(Z) = 0. (B.34)

Thus, if we have a program to generate random numbers with the standard normal dis-
tribution, we can use it to generate normal random numbers with any desired expected
value and standard deviation. The MATLAB command randn generates independent
realizations of an N(0, 1) random variable.

[
Example B.6
What is the CDF (or PDF) of the sum of two independent random variables X + Y?

To see this, we write the desired CDF in terms of an appropriate integral over the JDE
f(x, y), which gives (Figure B.7):

Fxiy(x) =P(X+Y < 2) (B.35)

= / f(x, y) dx dy (B.36)

xt+y<z

= / / Sfx@o)fy(y) dx dy (B.37)
x+y=z
0o Y
= / / Sx@)fy (y) dx dy (B.38)
0o Y
= / / Sfx () dx fy(y) dy (B.39)

—00 —00
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_ / Fx(z— () dy. (B.40)
The associated PDF is
d o0
feor() = / Fx(z— () dy (B.41)
h d
_ / Ex(z= () dy (B.42)
<
= / Sx(z=pfy(y) dy (B.43)
— (D) #fr (). (B.44)

Adding two independent random variables thus produces a new random variable that
has a PDF given by the convolution of the PDFs of the two individual variables.

\ Contours of
X+y<z \

Figure B.7 Integration of a JDF for two independent random variables, X and Y, to evaluate the CDF
of Z=X+Y.
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The JDF can be used to evaluate the CDF or PDF arising from a general function
of jointly distributed random variables. The process is identical to the previous example
except that the specific form of the integral limits is determined by the specific function.

®
Example B.7

Consider the product of two independent, identically distributed, standard normal
random variables,

7 =XY, (B.45)
with a JDF given by
J ) =f ) = 5oy I (5.46)
The CDF of Z is
F(z) =P(Z <z)=P(XY <2). B.47)

For z <0, this is the integral of the JDF over the exterior of the hyperbolas defined
by xy < z <0, while for z > 0, we integrate over the interior of the complementary
hyperbolas xy < z > 0. At z = 0, the integral covers exactly half of the (x, y) plane (the
second and fourth quadrants) and, because of the symmetry of the JDE has accumulated
half of the probability, or 1/2.

The integral is thus

0 oo
F(z) =2 / / ﬁe—(*ﬂ@)/%zdy dx (2 < 0) (B.48)
-0 z/x
and
0 z/x
F(z) =1/2+2 / / 27:7e—<x2+yz)/2"2dy dx (2 > 0). (B.49)
—o0 0

As in the previous example for the sum of two random variables, the PDF may be
obtained from the CDF by differentiating with respect to z.

B.4. CONDITIONAL PROBABILITY

In some situations we will be interested in the probability of an event happening given
that some other event has also happened.
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Definition B.15 The conditional probability of A given that B has occurred is
given by
P(AN B)
P(A|B) = ————. (B.50)
P(B)
Arguments based on conditional probabilities are often very helpful in computing
probabilities. The key to such arguments is the law of total probability.

Theorem B.2 Suppose that By, Bo, . . ., By, are mutually disjoint and exhaustive events.
That is, Bi(\ B; = (the empty set) for i # j, and
UL,Bi=S. (B.51)
Then
n
P(A) = Z P(A|B)P(B)). (B.52)

i=1
It is often necessary to reverse the order of conditioning in a conditional probability.

Bayes’ theorem provides a way to do this.

Theorem B.3 Bayes Theorem
P(A|B)P(B)

P(B|A) = D (B.53)

®
Example B.8

A screening test has been developed for a very serious but rare disease. If a person has the
disease, then the test will detect the disease with probability 99%. If a person does not
have the disease, then the test will give a false-positive detection with probability 1%.
The probability that any individual in the population has the disease is 0.01%. Suppose
that a randomly selected individual tests positive for the disease. What is the probability
that this individual actually has the disease?

Let A be the event “the person tests positive.” Let B be the event “the person has
the disease.” We then want to compute P(B|A). By Bayes theorem,

P(B|A) = PAIBDB) (B.54)
P(A)

We have that P(A|B) is 0.99, and that P(B) is 0.0001. To compute P(A), we apply the
law of total probability, considering separately the probability of a diseased individual
testing positive and the probability of someone without the disease testing positive:

P(A) =0.99-0.0001 4 0.01-0.9999 = 0.010098. (B.55)
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Thus
0.99-0.0001
P(B|A) = ———— =0.0098. (B.56)
0.010098
In other words, even after a positive screening test, it is still unlikely that the individual
will have the disease. The vast majority of those individuals who test positive will in fact

not have the disease.

The concept of conditioning can be extended from simple events to distributions
and expected values of random variables. If the distribution of X depends on the value
of Y, then we can work with the conditional PDF fx|y(x), the conditional CDF
Fx|y(a), and the conditional expected value E[X]|Y].

In this notation, we can also specify a particular value of Y by using the notation
JSXly=y, Fx|y=y, or E[X|Y = y]. In working with conditional distributions and expected
values, the following versions of the law of total probability can be very useful.

Theorem B.4 Given two random variables X and Y, with the distribution of X depending on
Y, we can compute

o0

PX < a) = / P(X < alY = Pfy(y) dy B.57)
and
E[X] = f EIX]Y = )] () dy. (B.58)
[}
Example B.9

Let U be a random variable uniformly distributed on (1, 2). Let X be an exponential
random variable with parameter A = U. We will find the expected value of X:

2
E[X] :f E[X|U = u] fu(u) du. (B.59)
1

Since the expected value of an exponential random variable with parameter A is 1/A,
and the PDF of a uniform random variable on (1, 2) is fiy(u) =1,

2
1
E[X] = / —du=log 2. (B.60)
1
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B.5. THE MULTIVARIATE NORMAL DISTRIBUTION

Definition B.16 If the random variables Xy, . . ., X, have a multivariate normal
distribution (MVN), then the JDF is

1 1 Te—1
_ —(x—p)  C™ (x—p)/2
X) = e B.61
f&) (27)"? \/det(C) (B.61)
where x = [X1, Xo, . . ., Xn]T and = [u1, 2, - - ., ;Lﬂ]T is a vector containing the
expected values along each of the coordinate directions of X, . . ., Xj;, and C contains

the covariances between the random variables,
Ci)]' = COV(X,’, ){]) (B.62)

Note that if C is singular, then the JDF involves a division by zero, and is simply not
defined.

The vector p and the covariance matrix C completely characterize the MVN distri-
bution. There are other multivariate distributions that are not completely characterized
by the expected values and covariance matrix.

Theorem B.5 Let X be a multivariate normal random vector with expected values defined by
the vector w and covariance matrix C, and let Y = AX. Then Y is also multivariate normal,
with

E[Y] =Au (B.63)
and
Cov(Y) = ACAT. (B.64)

Theorem B.6 If we have an n-dimensional MVN distribution X with covariance matrix
C and expected value v, and the covariance matrix is of full rank, then the quantity

Z=X-w'c'X-p (B.65)

has a x? distribution with n degrees of freedom.

®
Example B.10

We can generate vectors that are realizations of an MVN distribution with a known
mean, u, and covariance matrix, C, as follows.

1. Find the lower-triangular Cholesky factorization C = LL” .

2. Let Z be a vector of n independent N(0O, 1) random numbers.

3. Let X =pu+LZ.
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We can easily show that this procedure produces the desired distribution. Because
E[Z] =0, E|X]=p+L0=pu. Also, since Cov(Z) =1 and Cov(un) =0, Cov(X) =
Cov(u+LZ)=Cov(LZ) =LILT =C using (B.64).

B.6. THE CENTRAL LIMIT THEOREM

Theorem B.7 Let Xy, Xo, . . ., X, be independent and identically distributed (IID) random
variables with a finite expected value y and variance o> Let

7 _X1+X2+ o+ Xy —np

In the limit as n approaches infinity, the distribution of Z, approaches the standard normal

(B.66)

distribution.

The central limit theorem shows why quasi-normally distributed random variables
appear so frequently in nature; the sum of numerous independent random variables
produces an approximately normal random variable, regardless of the distribution of the
underlying IID variables. In particular, this is one reason that measurement errors are
often normally distributed. As we will see in Chapter 2, having normally distributed
measurement errors leads us to consider least squares solutions to parameter estimation
and inverse problems.

B.7. TESTING FOR NORMALITY

Many of the statistical procedures that we will use assume that data are normally dis-
tributed. Fortunately, the statistical techniques that we describe are generally robust in
the face of small deviations from normality. Large deviations from the normal distribu-
tion can cause problems. Thus, it is important to be able to examine a data set to see
whether the distribution is approximately normal.

Plotting a histogram of the data provides a quick view of the distribution. The his-
togram should show a roughly “bell-shaped” distribution, symmetrical around a single
peak. If the histogram shows that the distribution is obviously skewed, then it would be
unwise to assume that the data are normally distributed.

The Q-Q plot provides a more precise graphical test of whether a set of data could
have come from a particular distribution. The data points,

d=[d, o, ..., dy]", (B.67)
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are first sorted in numerical order from smallest to largest into a vector y, which is
plotted versus
xi=F Y ((i—05)/n) (i=1,2,...,n), (B.68)
where F(x) is the CDF of the distribution against which we wish to compare our
observations.
If we are testing to see if the elements of d could have come from the normal
distribution, then F(x) is the CDF for the standard normal distribution:
X
Fa(x) = — / -3y (B.69)
Nx) = — e z. .
V2r
—00
If the elements of d are normally distributed, the Q-Q plot points (y;, x;) will follow
a straight line with a slope and intercept determined by the standard deviation and
expected value, respectively, of the normal distribution that produced the data.
¢ It
Example B.11 TRET
LRSI
DNas's

Figure B.8 shows the histogram from a set of 1000 data points. The character-
istic bell-shaped curve in the histogram might make it appear at first that these
data are normally distributed. The sample mean is —0.01 and the sample standard
deviation is 1.41.

Figure B.9 shows the Q-Q plot for these data, which makes it apparent that
the data set contains substantially more extreme values than the normal distribution
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Figure B.8 Histogram of a sample data set.
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Figure B.9 Q-Q plot for the sample data set.

would predict. In fact, these data were generated according to a ¢ distribution with
5 degrees of freedom, that has broader tails than the normal distribution (Figure B.3).

There are a number of statistical tests for normality. These include the Kolmogorov-
Smirnov test, Anderson-Darling test, and Lilliefors test. Each produces probabilistic
measures called p-values. A small p-value indicates that the observed data would be
unlikely if the distribution were in fact normal, while a larger p-value is consistent with
normality.

B.8. ESTIMATING MEANS AND CONFIDENCE INTERVALS

Given a collection of n noisy measurements mq, my, . . . , m, of some quantity of inter-
est, how can we estimate the true value m, and how uncertain is this estimate? This is a
classic problem in statistics.

We will assume first that the measurement errors are independent and normally
distributed with expected value 0 and some unknown standard deviation o. Equiva-
lently, the measurements themselves are normally distributed with expected value m and
standard deviation 0.

We begin by computing the measurement average,

my+my+- - +my

n

(B.70)

m=
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This sample mean m will serve as our estimate of m. We will also compute an estimate
s of the standard deviation

(B.71)

The key to our approach to estimating m is the following theorem.

Theorem B.8 (The Sampling Theorem) Under the assumption that measurements are inde-
pendent and normally distributed with expected value m and standard deviation o, the random
quantity

NG

has a Student’s ¢ distribution with n — 1 degrees of freedom.

t

(B.72)

If we had the true standard deviation o instead of the estimate s, then t would in
fact be normally distributed with expected value 0 and standard deviation 1. This does
not quite work out because we have used an estimate s of the standard deviation. For
smaller values of n, the estimate s is less accurate, and the ¢ distribution therefore has
fatter tails than the standard normal distribution. As n becomes large, s becomes a better
estimate of 0 and it can be shown that the f distribution converges to a standard normal
distribution [47].

Let t,-1,0.975 be the 97.5%-tile of the ¢ distribution and let t,_1 0.025 be the 2.5%-tile
of the f distribution. Then

m—m

s/\/n

P(tn—l,o.ozs < < tn—l,o.975> = 0.95. B.73)

This can be rewritten as

P((tu=1,00255/~/n) < (m—im) < (ty—1,0.9755/+/1)) = 0.95. (B.74)

We can construct the 95% confidence interval for m as the interval from m -+
ta—1.0.0255/ /1 tO 1+ t,—1,0.9755/+/n. Because the ¢ distribution is symmetric, this can
also be written as m — t,—1,0.9755/ /1 to m+ t,—1,0.9755/ /1.

As we have seen, there is a 95% probability that when we construct the confidence
interval, that interval will contain the true mean, m. Note that we have not said that,
given a particular set of data and the resulting confidence interval, there is a 95% prob-
ability that m is in the confidence interval. The semantic difficulty here is that m is not
a random variable, but is rather some true fixed quantity that we are estimating; the
measurements my, my, . . . , m,, and the calculated m, s, and confidence interval are
the random quantities.
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[ 4
Example B.12

Suppose that we want to estimate the mass of an object and obtain the following ten

measurements of the mass (in grams):

9.98 10.07 994 1022 9098

10.01 10.11 10.01  9.99 9.92 (B.75)

The sample mean is m = 10.02 g. The sample standard deviation is s = 0.0883 grams.
The 97.5%-tile of the ¢ distribution with n — 1 = 9 degrees of freedom is (from a t-table
or function) 2.262. Thus our 95% confidence interval for the mean is

[ —2.2625//n, m+2.2625//n | g. (B.76)
Substituting the values for m, s, and n, we get an interval of
[10.02 —2.262-0.0883/4/10, 10.02 4+ 2.262 - 0.0883/+/ 10] g (B.77)
or

[9.96, 10.08] g. (B.78)

The above procedure for constructing a confidence interval for the mean using the
t distribution was based on the assumption that the measurements were normally dis-
tributed. In situations where the data are not normally distributed, this procedure can
fail in a very dramatic fashion (Exercise B.9). However, it may be safe to generate an
approximate confidence interval using this procedure if (1) the number # of data is large
(50 or more) or (2) the distribution of the data is not strongly skewed and n is at least 15.

B.9. HYPOTHESIS TESTS

In some situations we want to test whether a set of normally distributed data could
reasonably have come from a normal distribution with expected value pg. Applying the
sampling theorem, we see that if our data did come from a normal distribution with
expected value o, then there would be a 95% probability that
o — m
fobs = ——F— (B-79)

s//n
would lie in the interval
[F;1(0.025), F;1(0.975)] = [t4—1,0.025, ta—10.975], (B.80)
and only a 5% probability that t would lie outside this interval. Equivalently, there is
only a 5% probability that |fobs| > f,—1,0.975.

This leads to the t-test: If |fops| > f,—1,0.975, then we reject the hypothesis that
1 = puo. On the other hand, if |fobs| < f,—1,0.975, then we cannot reject the hypothe-
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sis that u = pp. Although the 95% confidence level is traditional, we can also perform
the t-test at a 99% or some other confidence level. In general, if we want a confidence
level of 1 — a, then we compare |fops| to ,—1,1—q/2-

In addition to reporting whether or not a set of data passes a f-test, it is good practice
to report the associated t-test p-value. The p-value associated with a f-test is the largest
value of o for which the data passes the t-test. Equivalently, it is the probability that
we could have gotten a greater ¢ value than we have observed, given that all of our
assumptions are correct.

®
Example B.13

Consider the following data:

1.2944  —0.3362 1.7143 2.6236 0.3082

1.8580 22540 —0.5937 —0.4410 15711 (B.81)

These appear to be roughly normally distributed, with a mean that seems to be larger
than 0. We will test the hypothesis © = 0. The f statistic is

_ro—m

t - ’
obs S/ﬁ

(B.82)

which, for this data set, is
. 0—1.0253
obs — T —
1.1895/4/10

Because |fops| 1s larger than f9 9 975 = 2.262, we reject the hypothesis that these data came

A —2.725. (B.83)

from a normal distribution with expected value 0 at the 95% confidence level.

The t-test (or any other statistical test) can fail in two ways. First, it could be that the
hypothesis that 4 = g is true, but our particular data set contained some unlikely values
and failed the f-test. Rejecting the hypothesis when it is in fact true is called a type I
error. We can control the probability of a type I error by decreasing «.

The second way in which the f-test can fail is more difficult to control. It could be
that the hypothesis 4 = uo was false, but the sample mean was close enough to po to
pass the t-test. In this case, we have a type II error. The probability of a type II error
depends very much on how close the true mean is to pg. If the true mean pu = puq is
very close to o, then a type II error is quite likely. If the true mean p = pq is very far
from o, then a type II error will be less likely. Given a particular alternative hypothesis,
u =1, we call the probability of a type II error B(u1), and call the probability of
not making a type II error (1 — 8(u1)) the power of the test. We can estimate S(u1)
by repeatedly generating sets of #n random numbers with p = 1 and performing the
hypothesis test on the sets of random numbers (Exercise B.10).
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The results of a hypothesis test should always be reported with care. It is important to
discuss and justify any assumptions (such as the normality assumption made in the t-test)
underlying the test. The p-value should always be reported along with whether the
hypothesis was rejected. If the hypothesis was not rejected and some particular alternative
hypothesis is available, it is good practice to estimate the power of the hypothesis test
against this alternative hypothesis. Confidence intervals for the mean should be reported
along with the results of a hypothesis test.

It is important to distinguish between the statistical significance of a hypothesis test
and the actual magnitude of any diftference between the observed mean and the hypothe-
sized mean. For example, with very large # it is nearly always possible to achieve statistical
significance at the 95% confidence level, even though the observed mean may differ from
the hypothesis by only 1% or less.

B.10. EXERCISES

1. Compute the expected value and variance of a uniform random variable in terms
of the parameters a and b.

2. Compute the CDF of an exponential random variable with parameter A. You may
find the MATLAB library function exprand.m to be useful here.

3. Show that

Cov(aX, Y) =aCov(X, Y) (B.84)
and that
Cov(X+4+Y, Z) =Cov(X, Z)+ Cov(Y, Z2). (B.85)

4. Show that the PDF for the sum of two independent uniform random variables on
[a, b] = [0, 1] is

0 (x<0)

x (0<x<1)
2—x (1<x<2)
0 (x>2).

flo) = (B.86)

5. Suppose that X and Y are independent random variables. Use conditioning to
find a formula for the CDF of X4 Y in terms of the PDFs and CDFs of X
and Y.

6. Suppose that x = (X1, Xp) T is a vector composed of two random variables with a
multivariate normal distribution with expected value p and covariance matrix C,
and that A is a 2 by 2 matrix. Use properties of expected value and covariance to
show that y = Ax has expected value Ay and covariance ACAT .

7. Suppose that x is a multivariate normal random variable with mean vector p and
covariance matrix C. Use Theorem B.5 to show that the ith component of x, x;, is
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10.

11.

normally distributed with mean p; and variance C;;. Hint: Let A = et-T, where e;
is the ith column of the identity matrix.
Consider the following data, which we will assume are drawn from a normal

distribution.

—0.4326 —1.6656 0.1253 0.2877 —1.1465
1.1909 1.1892 —-0.0376 0.3273 0.1746

Find the sample mean and standard deviation. Use these to construct a 95% confi-
dence interval for the mean. Test the hypothesis Hy : p = 0 at the 95% confidence
level. What do you conclude? What was the corresponding p-value?

Using MATLAB, repeat the following experiment 1000 times. Generate five expo-
nentially distributed random numbers from the exponential probability density
function (B.10) with means u =1/A =10. You may find the library function
exprand to be useful here. Use (B.74) to calculate a 95% confidence interval for
the 1000 mean determinations. How many times out of the 1000 experiments did
the 95% confidence interval cover the expected value of 10? What happens if you
instead generate 50 exponentially distributed random numbers at a time? Discuss
your results.

Using MATLAB, repeat the following experiment 1000 times. Use the randn
function to generate a set of 10 normally distributed random numbers with
expected value 10.5 and standard deviation 1. Perform a t-test of the hypothesis
u =10 at the 95% confidence level. How many type II errors were committed?
‘What 1s the approximate power of the f-test with #n = 10 against the alternative
hypothesis u = 10.5? Discuss your results.

Using MATLAB, repeat the following experiment 1000 times. Generate five expo-
nentially distributed random numbers with expected value 10. You may find the
library function exprand to be useful here. Take the average of the five random
numbers. Plot a histogram and a Q-Q plot of the 1000 averages that you com-
puted. Are the averages approximately normally distributed? Explain why or why
not. What would you expect to happen if you took averages of 50 exponentially
distributed random numbers at a time? Try it and discuss the results.

B.11. NOTES AND FURTHER READING

Most of the material in this Appendix can be found in virtually any introductory

textbook in probability and statistics. Some recent textbooks include [4, 29]. The mul-

tivariate normal distribution is a somewhat more advanced topic that is often ignored

in introductory courses. Searle [139] has a good discussion of the multivariate normal

distribution and its properties. Numerical methods for probability and statistics are a

specialized topic. Two standard references include [89, 157].
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APPENDIX C

Review of Vector Calculus

Synopsis
A review of key vector calculus topics, including the gradient, Hessian, Jacobian, Taylor’s
theorem, and Lagrange multipliers.

C.1. THE GRADIENT, HESSIAN, AND JACOBIAN

In vector calculus, the familiar first and second derivatives of a single-variable function
are generalized to operate on vectors.

Definition C.1 Given a scalar-valued function with a vector argument, f(x), the
gradient of f is

Vix)=| " |. (C.1)

The vector Vf(x) has an important geometric interpretation in that it points in the
direction in which f(x) increases most rapidly at the point x.

Recall from single-variable calculus that if a function f is continuously differentiable,
then a point x* can only be a minimum or maximum point of f if f/ () |x=x = 0.
Similarly in vector calculus, if f(x) is continuously differentiable, then a point x* can
only be a minimum or maximum point if Vf(x*) = 0. In more than one dimension,
a point x* where Vf(x*) = 0 can also be a saddle point. Any point where Vf(x*) =0
is called a critical point.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00015-X
(© 2013 Elsevier Inc. All rights reserved. 339
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Definition C.2 Given a scalar-valued function of a vector, f(x), the Hessian of f is a
square matrix of partial derivatives given by

Cr e T
9x2 0x10x2 0x10x,
1
9*f 9*f 9*f
2 e P
H(f(x)) — 8x23x1 B'XZ BXZBM ) (CZ)
L 0x,0x1 0x,0x2 ax% a

If f is twice continuously differentiable, the Hessian is symmetric. It is common in
mathematics to write the Hessian using the operator V2, but this sometimes leads to
confusion with another vector calculus operator, the Laplacian.

Theorem C.1 If f(x) is a twice continuously differentiable function, and H(f(xq)) is a pos-
itive semidefinite matrix, then f(x) is a convex function at xo. If H(f(xp)) is positive
definite, then f(x) is strictly convex af xg.

This theorem can be used to check whether a critical point is a minimum of f. If x*
is a critical point of f and H(f(x*)) is positive definite, then f is convex at x* and x* is
thus a local minimum of f.

It will be necessary to compute derivatives of quadratic forms.

Theorem C.2 Let f(x) = x Ax, where A is an n by n symmetric matrix. Then

Vf(x) = 2Ax (C.3)
and
H(f(x)) =2A. (C.4)
Definition C.3 Given a vector-valued function of a vector, F(x), where
Si(x)
S(x)
F(x) = . , (C.5)
S (%)
the Jacobian of F is
Coh Oh . 94T
dx1 0x2 dxy
3961 8.9(2 axvl
Jw=|" (C.6)
o fim
L3x1  9x2 77 Ox,

Some authors use the notation VF(x) for the Jacobian. Note that the rows of J(x)
are the gradients (C.1) of the functions f (x), £ (X), . . . , fu(X).
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C.2. TAYLOR’S THEOREM

In the calculus of single-variable functions, Taylor’s theorem produces an infinite series
for f(x 4 Ax) in terms of f(x) and its derivatives. Taylor’s theorem can be extended to a
function of a vector f (x), but in practice, derivatives of order higher than 2 are extremely
inconvenient. The following form of Taylor’s theorem is often used in optimization
theory.

Theorem C.3 Suppose that f (x) and its first and second partial derivatives are continuous. For
any vectors X and AX, there is a vector ¢, with ¢ on the line between x and x + Ax, such that

fx+ Ax) = f(x) + Vf(x) T Ax + %AXTH( f(c))Ax. (C.7)

This form of Taylor’s theorem with remainder term is useful in many proofs.
However, in computational work there is no way to determine c. For that reason, when
Ax is a small perturbation, we often make use of the approximation

fx+ Ax) ~ f(x) + Vf(x) T Ax+ %AXTH( f(x)Ax. (C.8)

An even simpler version of Taylor’s theorem, called the mean value theorem, uses
only the first derivative.

Theorem C.4 Suppose that f (x) and its first partial derivatives are continuous. For any vectors
X and AX there is a vector ¢, with ¢ on the line between x and x + Ax such that

Fx+ Ax) = f(x) + Vf(c)T Ax. (C.9)

We will make use of a truncated version of (C.8):

fx+Ax) ~f(x)+ Vf(x)T Ax. (C.10)

By applying (C.10) to each of the functions fi(x), f2(x), . . ., fu(X), we obtain the
approximation

F(x+ Ax) ~ F(x) +J(x) Ax. (C.11)

C.3. LAGRANGE MULTIPLIERS

The method of Lagrange multipliers is an important technique for solving optimiza-
tion problems of the form:

min f(x)

o(x) =0, (C.12)



342 Appendix C Review of Vector Calculus

where the scalar-valued function of a vector argument, f(x), is called the objective
function.

Figure C.1 shows a general situation. The solid contour represents the set of points
where the (nonconstant) function ¢g(x) = 0, and the dashed contours are those of another
function f(x) that has a minimum as indicated. Moving along the ¢(x) = 0 contour, we
can trace out the curve x(f), parameterized by the variable > 0, where g(x(¢)) =0
and t increases as we progress counter-clockwise. At any point x(f) on the contour, the
gradient of ¢(x(f)) must be perpendicular to the contour because the function is constant
along this curve. Note that in Figure C.1, ¢g(x) increases in the outward direction relative
to the contour, so the gradient of g(x) will be outward.

By the chain rule,

Fx(0)) =x' (0T VI(x(r), (C.13)

where x/(t) is the counter-clockwise tangent to the contour g(x) = 0. For the point
x1 = x(#1) in Figure C.1, Vf(x1) and X'(#1) are at an obtuse angle, and their dot product
f/(x1) (C.13) will therefore be negative. Thus, f(x) is decreasing as we move counter-
clockwise around the contour g(x) = 0 from x1, and x; cannot satisfy (C.12).

In Figure C.2, for the point xo =x(fy), Vf(x0) is perpendicular to the curve
¢(x) = 0. In this case, by (C.13), f'(x0) =0, and the point Xy may or may not be a
minimum for f(x) along the contour. Figure C.2 shows that a point xg on the curve
¢(x) =0 can only be a possible minimum point for f(x) if Vg(xg) and Vf(x¢) are
parallel or antiparallel. A point where this occurs is called a stationary point.

9(x)=0 _.-*"Contours of f();)\‘\

VA(x,)

Figure C.1 Thesituation ata point x; = x(#1) along the contour g(x) = 0 that is not a minimum of f(x)
and thus does not satisfy (C.12).
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Finding a stationary point is necessary, but not sufficient, for finding a minimum
of f(x) along the contour g(x) =0, because such a point may be a minimum, maxi-
mum, or saddle point. Furthermore, a problem may have several local minima. Thus
it is necessary to examine the behavior of f(x) at all stationary points to find a global
minimum.

Theorem C.5 (C.12) can only be satisfied at a point xo where
Vf(x0) +AVg(x0) =0 (C.14)
for some A. A is called a Lagrange multiplier.

The Lagrange multiplier condition can be extended to problems of the form

min f(x)

¢ 0. (C15)

Since points along the curve g(x) = 0 are still feasible in (C.15), (C.14) must still hold
true. However, there is an additional restriction. Suppose that Vg(x¢) and Vf(x¢) both
point in the outward direction, as in Figure C.2. In this case, we can move in the opposite
direction, into the feasible region to decrease f(x) (e.g., in the situation depicted in
Figure C.2, the solution to (C.15) is simply the indicated minimum of f(x)). Thus, a
point x¢ satistying (C.14) cannot satisfy (C.15) unless the gradients of ¢(x¢) and f(x¢)
point in opposite directions.

Theorem C.6 (C.15) can only be satisfied at a point xo where
Vf(xo) +AVg(x0) =0 (C.16)

for some Lagrange multiplier . > 0.

g(x)=0 Contours of f(x)
7 V£(xq)
XVl Vgtxo)
Xo

Figure C.2 The situation at a point xo = x(fy) along the contour g(x) = 0 that is a minimum of f(x)
and thus satisfies (C.12). Note that Vg(x) and Vf(xy) are parallel.



344 Appendix C Review of Vector Calculus

®
Example C.1

Consider a simple example in two variables where f(x) defines linear contours and
¢(x) = 0 defines a unit circle

min x1 + xp

242 —1<0. (C.17)

The Lagrange multiplier condition is

1 ZX1 .
H + A [sz] =0. (C.18)

One stationary point solution to this nonlinear system of equations is x1 = 0.7071,
xp = 0.7071, with A = —0.7071. This is the maximum of f(x) subject to g(x) < 0. The
second solution to (C.18) is x1 = —0.7071, x» = —0.7071, with A = 0.7071. Because
this is the only solution with A > 0, so that Vf(x) and Vg(x) are antiparallel, this solves
the minimization problem.

Note that (C.16) is (except for the non-negativity constraint on A) the necessary
condition for a minimum point of the unconstrained minimization problem,

min f(x) + Ag(x). (C.19)

Here the parameter A can be adjusted so that, for the optimal solution, x*, g(x*) < 0. We
will make frequent use of this technique to convert constrained optimization problems
into unconstrained optimization problems.

C.4. EXERCISES
1. Let
(x) = a3 — 2x1x2 + x5 — 3x2x2 + 12x1x0 — 12x + 6. C.20
1%2 2T X 1

Find the gradient, Vf(x), and Hessian, H(f(x)). What are the critical points of f?
Which of these are minima and maxima of f?
2. Find a Taylor’ series approximation for f(x + Ax), where

fx) = =G’ (C.21)

x = B] (C.22)

is near the point
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3. Use the method of Lagrange multipliers to solve the problem,

min 2x1 + xp

457 +3x3 —5 <0. (C23)

4. Derive the formula (A.89) for the 2-norm of a matrix. Begin with the maximization
problem,
max ||Ax|)3. (C.24)
lIx[l>=1
Note that we have squared ||Ax|[>. We will take the square root at the end of the
problem.

i. Using the formula [x|, =+vxT

x, rewrite the above maximization problem
without norms.

ii. Use the Lagrange multiplier method to find a system of equations that must be
satisfied by any stationary point of the maximization problem.

iii. Explain how the eigenvalues and eigenvectors of AT A are related to this system
of equations. Express the solution to the maximization problem in terms of the
eigenvalues and eigenvectors of ATA.

iv. Use this solution to get ||All>.

5. Derive the normal equations (2.3) using vector calculus, by letting
f(m) = Gm —d]); (C.25)

and minimizing f(m). Note that in problems with many least squares solutions, all
of the least squares solutions will satisfy the normal equations.
i. Rewrite f(m) as a dot product and then expand the expression.
ii. Find Vf(m).
ii. Set Vf(m) = 0, and obtain the normal equations.

C.5. NOTES AND FURTHER READING

Basic material on vector calculus can be found in many calculus textbooks. How-
ever, more advanced topics, such as Taylor’s theorem for functions of a vector, are
often skipped in basic texts. The material in this chapter is particularly important in
optimization, and can often be found in associated references [58, 105, 119].



This page intentionally left blank



APPENDIX D

Glossary of Notation

* o, B, ¥, ..: Scalars.
e a4, b, ¢, ...:Scalar-valued functions or scalars.
e a, b, c,..: Column vectors.

e ga;: ith element of vector a.

e A, B, C, ...: Scalar-valued functions or random variables.
« A, B, C, ... Fourier transforms.
e A, B, C, ...: Vector-valued functions or matrices.

* A, .: ith row of matrix A.

* A ;: ith column of matrix A.

* A j: (i, j)th element of matrix A.

« A~ Inverse of matrix A.

« AT: Transpose of matrix A.

* x*: Complex conjugate of matrix x.

« AH: Complex conjugate transpose of matrix A.

* a®b: Vector constructed by element-by-element multiplication of vectors a and b.
* a@b: Vector constructed by element-by-element division of vector a by b.
« AT Transpose of matrix A~

* R": Space of n-dimensional real vectors.

* N(A): Null space of matrix A.

*  R(A): Range of matrix A.

e rank(A): Rank of matrix A.

o Tr(A): Trace of matrix A.

* |Ix]|: Norm of vector x. A subscript is used to specify the 1-norm, 2-norm, or
infinity norm.

* ||All: Norm of matrix A. A subscript is used to specify the 1-norm, 2-norm, or
infinity norm.

« G': Generalized inverse of matrix G.

« m;: Generalized inverse solution m; = G'd.

Parameter Estimation and Inverse Problems, Second Edition. DOI: 10.1016/B978-0-12-385048-5.00016-1
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Appendix D Glossary of Notation

G*: A regularized generalized inverse of matrix G.

E[X]: Expected value of random variable X.

a: Mean value of elements in vector a.

N(u,02): Normal probability distribution with expected value y and variance o2
Cov(X,Y): Covariance of random variables X and Y.

Cov(x): Matrix of covariances of elements of vector x.

p(X,Y): Correlation between random variables X and Y.

Var(X): Variance of random variable X.

f(d|m): Conditional probability density for d, conditioned on a particular model m.
L(m|d): Likelihood function for a model m, given a particular data vector d.

o: Standard deviation.

o2: Variance.

Vf(x): Gradient of function f(x).

J(x): Jacobian of vector-valued function, F(x).

H( f(x)): Hessian of scalar-valued function f(x).
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Note: Bold entries signify the introduction and/or definition of a topic.

oo-norm, 305, 305-307, 313

0O-norm, 174

1-norm, 6, 43—48, 50, 53, 305, 306, 307, 313

2-norm, 6, 26, 59, 109, 114, 243, 298, 301, 305,
306, 311, 345

A

acceptance ratio, 271

adjoint equation, 252

advection—diffusion equation, 12-17, 170

algebraic reconstruction technique, 146, 146-149,
166

aliasing, 201, 202

ART, see algebraic reconstruction technique

augmented matrix, 284, 285, 293

automatic differentiation, 228

averaging kernel, 64, 135, 135-139

B
B-splines, 140
Backus—Gilbert method, 64, 134-139
basis, 58, 62, 65, 67, 70, 71, 80, 81, 113, 121, 140,
150-151, 154, 198, 199, 281, 296, 303, 314
Fourier, 196, 200, 213
orthogonal, 139, 299, 300, 301
orthonormal, 55-56, 60, 139, 297, 299, 309
standard, 22, 296
Bayes’ theorem, 256, 327
Bayesian statistics, 255-280, 316
biased estimator, 19, 32, 62, 63, 99, 102, 281
bounded variables least squares problem, 170,
170-174
BVLS, see bounded variables least squares problem

C

CDE see cumulative distribution function

central limit theorem, 30, 330

CG, see conjugate gradient method

CGLS, see conjugate gradient least squares method
characteristic equation, 302

checkerboard resolution test, 87, 91, 249

chi—square test, 29, 34, 226, 246

Cholesky factorization, 141, 154, 262, 278, 304,
314, 330

circular convolution, 202

collocation, 15, 16, 90, 103, 124, 137, 202

column space, see range

compact form of the singular value decomposition,
56

complex conjugate, 310

complex number, 310

absolute value, 310

compressive sensing, 183

condition number, 65, 67, 76, 81, 91, 119, 120,
139, 140, 246, 306, 307

conditional distribution, 27, 256, 328

conditional expected value, 328

conditional probability, 327

confidence ellipsoids, see confidence regions

confidence intervals, 32, 39—41, 48-50, 102, 226,
230, 232, 234, 253, 254, 262, 281, 333,
333-334, 336, 337

confidence regions, 34, 34-37, 39, 49, 228

conjugate distribution, 259

conjugate gradient least squares method, 155,
155-159, 167, 168, 254

conjugate gradient method, 150, 150-155, 252

continuous inverse problem, 2, 3, 91, 134, 140,
281

contour plot, 227-228

convex function, 45, 150, 230, 340

convolution, 4, 8, 9, 12, 17, 76, 156, 193-203, 215

convolution theorem, 197, 203, 213

correlation, 35, 49, 234, 323

covariance, 36, 262, 279, 323, 336

covariance matrix, 31-36, 40, 48-51, 62, 101, 102,
224-226, 233, 236, 260-269, 329, 336

critical point, 339, 340

cross-well tomography, 13, 125, 126, 240-244, 251

cumulative distribution function, 321, 322, 324,
326, 328, 331, 336
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D
damped least squares problem, 94, 95, 103, 124,
240, 244, 245
damped SVD method, 97
data kernels, see representers
data null space, 56, 58, 61, 71, 90
deconvolution, 4, 76-81, 84, 177, 193, 202-207,
213, 215
delta function, 75, 135, 193, 198, 279
denoising, 187
dense matrix, 141, 141-142, 157
determinant, 302
DFT, see discrete Fourier transform
diagonalization of a matrix, 35, 303
discrepancy principle, 67, 77, 95, 98, 99, 102, 124,
125, 127, 156, 241, 243, 244
discrete Fourier transform, 199, 199-216
discrete ill-posed problem, 20, 74, 74-87, 93, 121,
156
mildly ill-posed, 74
moderately ill-posed, 74, 108
severely ill-posed, 74, 81
discrete inverse problem, 2, 3, 19, 25, 28, 74, 91,
215, 239, 296
distribution
chi-square, 29, 34, 67, 253, 319, 329
double-sided exponential, 43, 319
exponential, 319, 328, 336, 337
Gaussian, see distribution, normal
multivariate normal, 26, 28, 30-32, 34, 38, 39,
43, 47-49, 62, 145, 220, 224, 225, 232,
244, 252, 253, 257, 260269, 281, 329,
329-330, 332-334, 336, 337
normal, 30, 32, 39, 43, 259, 317, 330-337
Student’s ¢, 39, 52, 319, 333
uniform, 30, 52, 232, 278, 317
dot product, 65, 67, 298, 299, 305, 311, 342, 345
double-sided exponential distribution, see
distribution, double-sided exponential

E

earthquake location problem, 7, 13, 235-236

eigenvalue, 35, 56, 57, 60, 302, 302-304, 306, 313,
345

eigenvector, 35, 56, 57, 60, 302, 302-304, 345

elementary row operations, 284

expected value, 31, 63, 117, 321, 322-324,
328-330, 336

exponential distribution, see distribution,
exponential

F

fast Fourier transform, 200, 202—204, 213

Fermat’s least-time principle, 241

FFT, see fast Fourier transform

filter factors, 96, 100, 104, 107, 108, 113, 166, 168

finite-difference derivatives, 104, 228, 229, 246,
252

forward problem, 2, 4, 6, 16, 22, 27, 202, 203

Fourier basis functions, see basis, Fourier

Fourier transform, 4, 195, 195-216

Frechet derivatives, 252

Fredholm integral equation of the first kind, 3, 14,
74, 140

frequency response, 196

Frobenius norm, 306, 308

full rank least squares problem, see matrix, full rank

G

gamma function, 29, 34, 319

Gauss-Newton method, 222, 222-223, 228-232,
235, 238, 240, 241, 245, 251, 252, 254

Gaussian distribution, see distribution, normal

Gaussian elimination, 283, 283-285

Gaussian point spread function, 156, 167

GCV, see generalized cross-validation

generalized cross-validation, 115, 119, 124, 127,
162

generalized singular value decomposition, 104,
114, 127

Geonics EM-38 ground conductivity meter,
246248

global optimization, 231, 231-234, 238, 254

GN method, see Gauss—Newton method

Gosset, W. S., 319

gradient, 46, 219, 221, 229, 339, 340, 342-344

Gram matrix, 132, 139, 140, 312

Gram-Schmidt orthogonalization process, 301, 314

Green’s function, 194, 215

GSVD, see generalized singular value
decomposition

H

Heaviside step function, 8
Hermitian symmetry, 200, 214
Hermitian transpose, 310
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Hessian, 219, 221, 222, 224, 237, 340, 344
higher-order Tikhonov regularization, 103, 104,
113-115, 117, 124, 125, 215, 254

histogram, 50-52, 330-332, 337

identity matrix, see matrix, identity

IDFT, see inverse Fourier transform, discrete

IFFT, see inverse Fourier transform, fast

IFK, 14, see Fredholm integral equation of the first
kind

ill-posed problem, see discrete ill-posed problem

image deblurring, 156-159, 167, 168

impulse resolution test, see spike resolution test

impulse response, 75, 76, 194, 195, 197, 198,
202-205, 215

indefinite matrix, see matrix, indefinite

independent random variables, 27, 28, 30-32, 38,
39, 44, 47, 62, 88, 136, 225, 244, 252, 253,
257, 262, 320, 323, 323-326, 329, 330,
332, 333, 336

inner product, 311

inverse Fourier transform, 4, 195, 198, 204, 216

discrete, 200, 201, 214
fast, 200

inverse of a matrix, 34, 58, 290, 291, 292

IRLS, see iteratively reweighted least squares

iterative methods, 46—47, 53, 141-168, 241, 244,
252, 254

iteratively reweighted least squares, 46—48, 50, 53,
167

J

Jacobian, 218, 221, 226, 240, 244, 246, 251, 269,
340

JDE see joint probability density function

joint probability density function, 27, 323, 324,
326, 329

K
Kaczmarz’s algorithm, 142, 142-149, 166

L

L-curve, 95, 97, 98, 108, 119, 124-127, 156—158,
170, 241

Lagrange multipliers, 94, 124, 132, 136, 137, 191,
341, 341-345

Landweber iteration, 166

Laplacian operator, 104, 126, 241, 244, 252

law of total probability, 327, 328

least squares problem, 26-32, 38, 40—46, 48, 49,
51, 52, 55, 5860, 62, 68, 77, 93, 155, 157,
170, 253, 261, 278, 281, 301, 302, 305,
308, 309, 312, 345

least squares solution, see least squares problem

leave-one-out cross-validation, 115

Legendre polynomials, 139

Levenberg-Marquardt method, 222, 222-223,
228-236, 238, 240, 246, 254

likelihood function, see maximum likelihood
estimation

line search, 219, 220

linear combination, 19, 22, 31, 56, 59, 65, 121,
140, 200, 287, 295-298

linear independence, 56, 95, 139, 140, 167, 292,
293, 296, 297, 302, 303, 311-313

linear regression, 4, 25-48, 52, 127, 139, 220,
225-227

linear systems, 3

LM method, see Levenberg—Marquardt method

local minimum points, 219, 230, 232, 235, 237,
240, 251, 254, 269, 282, 343

M
MAP model, see maximum a posteriori model
Markov Chain Monte Carlo method, 270
mathematical model, 2, 11, 12, 30, 43, 44, 49, 90,
156, 198, 214, 226, 246, 252, 253

MATLAB commands

bvls, 170

chi2pdf, 50

chol, 304

cond, 67, 308

conv, 202

dct2, 182

eig, 303

fft, 200

fftn, 216

ifft, 200

ifftn, 216

Isqnonneg, 169

Isqr, 159, 168

norm, 305

normest, 167

null, 296

orth, 297, 301

pinv, 57
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MATLAB commands (continued)
qr, 308
randn, 324
rank, 81, 298
reshape, 70
rref, 285
sqrtm, 261
svd, 55
xcorr, 266
matrix
diagonal, 28, 31, 35, 46, 55, 56, 60, 100, 203,
291
full column rank, 25, 26, 58, 63, 298, 308, 309,
313
full rank, 58, 67, 95, 298, 329
full row rank, 298
identity, 31, 58, 63, 64, 67, 79, 95, 99, 104, 105,
111, 117, 187, 223, 224, 235, 240, 244,
261, 262, 289, 290, 292, 300, 302
indefinite, 304
lower-triangular, 16, 291
orthogonal, 55, 56, 58, 60, 104, 141, 300, 303,
308-309
positive definite, 34, 150, 154, 155, 167, 220,
261, 278, 304, 312, 313, 340
positive semidefinite, 304, 312, 313
rank-deficient, 18, 19, 55, 68, 71, 298
square root, 261, 278
symmetric, 34, 63, 150, 152, 154, 167, 278,
291, 303, 304, 312, 313, 340
upper-triangular, 291, 304, 308
matrix-matrix product, 288
matrix norm, 63, 305, 305-308, 313, 345
matrix-vector product, 287
maximum a posteriori model, 257, 260-269, 279
maximum likelihood estimation, 27, 27-29, 43, 50,
51, 220, 253, 254, 257, 269, 280
maximum likelihood principle, see maximum
likelihood estimation
MCMUC, see Markov chain Monte Carlo method
mean value theorem, 341
measurement matrix, 183
median, 45, 67, 322
Metropolis-Hastings Sampler, 270
midpoint rule, 15, 18, 76
minimum length least squares solution, 59, 59-61
minimum length solution, 94, 144
mode, 322

model identification problem, 2

model null space, 56, 58-60, 63, 70, 90, 199

model resolution, 19, 62, 62—64, 73—74, 207, 244,
251

Monte Carlo error propagation, 48

Moore-Penrose pseudoinverse, 57, 63, 66, 67, 87,
141

MRE method, see minimum relative entropy
method

MTSVD, see modified truncated SVD

multicollinearity, 127

multistart method, 232, 232-234, 240

MVN, see distribution, multivariate normal

N
Newton’s method, 218, 218-220, 237
damped, 219

NNLS, see nonnegative least squares method

non-negative least squares method, 169

nonlinear least squares problem, 220, 223, 232,
236, 239-241, 246, 254, 257, 269, 281

nonlinear regression, 220, 220238

nonnegative least squares method, 170, 172

norm, see vector norm, matrix norm

normal distribution, see distribution, normal

normal equations, 26, 29, 33, 45, 52, 58, 59, 95,
150, 155, 168, 224, 302, 309, 345

null space of a matrix, 19, 56, 58-61, 63, 64, 69,
104, 106, 199, 294, 294-297, 299, 309,
312, 313

Nyquist frequency, 201

(o)

objective function, 103, 223, 232, 240, 252, 341

Occam’s inversion, 244, 244-252

Occam’s razor, 244, 254

ordinary cross-validation, see leave one out
cross-validation

orthogonal basis, see basis, orthogonal

orthogonal functions, 21, 311-312

orthogonal matrix, see matrix, orthogonal

orthogonal polynomials, 139

orthogonal projection, see projection

orthogonal subspaces, 299

orthogonal vectors, 61, 104, 151, 152, 299

orthonormal basis, see basis, orthonormal, 132

outliers, 6, 42, 42—45, 50

over-fitting of data, 67
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P
p-value
chi—square test, 29, 29-30, 226228, 233
t-test, 335, 336, 337
Parseval’s theorem, 197
PCR, see principle components regression
PDE see probability density function
perpendicular, see orthogonal
Picard condition, 67, 99
pivot column, 285, 297, 298, 312
point spread function, 156, 167
poles of a transfer function, 199
posterior distribution, 255, 255-280
power of a hypothesis test, 335
power of a matrix, 290
preconditioning, 168
principal axes, error ellipsoid, 35
principle of indifference, 255
prior distribution, 255, 255-280
probability density function, 27, 29, 316, 316-320,
336
projection, 35, 59, 62, 64, 65, 70, 142, 143, 300,
300-301, 305, 311, 312
proportional effect, 41
proposal distribution, 271
pseudoinverse, see Moore—Penrose pseudoinverse

Q

Q-Q plot, 51, 52, 330

QR factorization, 141, 154, 308, 308—309
quadratic form, 303, 303-304, 340

R

random variables, 29-31, 39, 255, 316

range of a matrix, 25, 56, 59, 60, 121-123, 296,
298, 299, 301, 309, 312

rank, 90

rank deficient least squares problem, see matrix,
rank deficient

rank of a matrix, 18, 56, 60, 63, 69, 104, 298, 308,

312

ray-paths, 7, 13, 18, 68-74, 88-91, 142, 146-149,
240-244

reduced row echelon form, 285, 293, 295-298,
312

regularization by discretization, 87
regularization by truncated singular value
decomposition, 68

regularization parameter, 94, 98, 102, 109, 115,
117, 119, 120, 122, 124, 125, 127, 156, 243

representers, 14, 133-134

residual vector, 26

residuals, 6, 26, 29, 31, 38—43, 45—47, 49, 51, 67,
98, 147, 151, 152, 154, 155, 204, 220, 225,
226, 233

resolution, 248

resolution kernel, see resolution matrix, model, 64

resolution matrix

data, 64, 67
model, 63, 63—64, 67, 71, 79-81, 90, 99, 101,

111, 112

resolution test, 64, 73, 81, 91, 249

ridge regression, 127

Riemann-Lebesgue lemma, 21

robust estimation, 6

robust estimation procedures, 43, 45, 52

robust least squares, 53

roughening matrix, 103, 126, 216, 239, 241, 252

row action methods, 168

row space of a matrix, 298

row-column expansion method, 288

RREEFE see reduced row echelon form

S

saddle point, 339

sample mean, 331, 333, 334, 335, 337

sampling rate, 199, 200-202, 204, 205, 234

seismogram, see seismometer

seismometer, 8, 75-81, 204-207, 214, 215

seminorm, 103, 109, 241, 242, 305

serial convolution, 201, 202

Shaw problem, 11, 11-17, 81-87, 97, 99-102, 123,
166, 262-266

sifting property of the delta function, 193, 198

sighum function, 45

simultaneous iterative reconstruction technique,
148, 148-149, 166

singular value decomposition, 55, 55-61, 68, 69,
89, 91, 93, 95, 99, 100, 102, 121, 141, 154,
157, 166, 167, 213, 254, 278

singular value spectrum, 64, 67, 74

SIRT, see simultaneous iterative reconstruction
technique

slowness, 8, 13, 16, 18, 19, 49, 69, 74, 89, 90, 108,
112, 145, 241

slug test, 226, 226228

solution existence, 19, 23
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solution stability, 20, 21, 23, 64-68, 93, 136, 138,
203, 213
solution uniqueness, 19, 20, 23, 58, 60, 296
sparse, 157
sparse matrix, 141, 142, 156, 254
sparsity regularization, 174
spectral amplitude, 196, 197, 198, 200, 201, 204,
205, 214
spectral division, 203, 204, 205
spectral phase, 196, 198, 200, 201, 214
spectrum, 195, 196, 213
spherical harmonic functions, 140
spike resolution test, 73, 74, 91, 249
standard basis, 229
standard deviation, 28, 30, 31, 38, 41, 43, 44, 49,
51, 52, 88, 125, 136, 138, 145, 220, 225,
226, 232-234, 239, 244, 246, 257-259,
261, 262, 322, 324, 331-334, 337
standard normal distribution, 317, 319, 324, 326,
330
stationary point, 342, 345
steepest-descent method, 223
Student, see Gosset, W. S.
Student’s ¢ distribution, see distribution, Student’s ¢
subspace of R™, 297
subspace of R", 293, 293-294, 298
SVD, see singular value decomposition
system of equations, 283
ill-conditioned, 20, 55, 140, 308
over-determined, 286, 305
under-determined, 286
vector form, 287

T

t-test, 334, 335-337

Taylor’s theorem, 217, 219, 229, 244, 341

TGSVD, see truncated generalized singular value
decomposition

Tikhonov regularization, 94, 124—-127, 141, 156,
157, 170, 223, 239, 244, 254, 255, 262,
266, 281

frequency-domain, 208

Toeplitz matrix, 91

tomography, 12, 23, 68-74, 125, 142-149, 166,
168, 216, 240244, 251

total least squares problem, 53

total variation regularization, 186, 186—191

transfer function, see impulse response, 199

Transition kernel, 270

transpose of a matrix, 290, 292, 297

truncated generalized singular value
decomposition, 113, 114

truncated singular value decomposition, 62, 67, 75,
77,82, 84,91, 99, 125, 145, 149, 204

TSVD, see truncated singular value decomposition

type I error, 335

type II error, 335, 337

U

unbiased estimator, 32, 62, 93, 281
uncorrelated random variables, 323

uniform distribution, see distribution, uniform
uninformative prior distribution, 255

\)

van Genuchten, M. Th., 235

variance, 31, 32, 62, 136, 256, 261, 322, 330, 336

vector norm, 26, 43, 45, 59, 94, 98, 99, 103, 110,
114, 120, 122—-124, 146, 204, 243, 305,
305-306, 309

vertical seismic profiling, 8, 8-9, 107, 110, 113,
114, 117, 119

VSP, see vertical seismic profiling

w

water level regularization, 204, 204-213
wavelets, 140
wrap-around, 202, 203

Y4

zeros of a transfer function, 199
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