FI3102-1 Física Moderna.

Profesor: Álvaro Núñez. Auxiliar: Miguel Letelier. Ayudante: Matías Araya.

Tarea 5

Fecha de entrega: 10 de Octubre del 2022.

P1. El lagrangiano de un oscilador armónico está dado por

$$L = \frac{m}{2}(\dot{x}^2 - \omega^2 x^2) \tag{1}$$

Muestre que el propagador entre dos instantes t_a y t_b está dado por

$$U = F(T) \exp\left\{\frac{im\omega}{2\hbar \sin(\omega T)} \left[(x_b^2 + x_a^2) \cos \omega T - 2x_a x_b \right] \right\}$$
 (2)

donde $T=t_b-t_a,\,x_a=x(t_a)$ y $x_b=x(t_b).$ La expresión de F(T) tiene la forma:

$$F(T) = \left(\frac{m\omega}{2\pi i\hbar \sin \omega T}\right)^{1/2} \tag{3}$$

Bonus: Realice una animación de la evolución de la función de onda de un oscilador armónico.

P2. Encuentre el propagador de una partícula bajo el efecto de un campo externo constante, cuyo lagrangiano tiene la forma:

$$L = \frac{m}{2}\dot{x}^2 + fx\tag{4}$$

El resultado es

$$U = \left(\frac{m}{2\pi i\hbar T}\right)^{1/2} \exp\left\{\frac{i}{\hbar} \left[\frac{m(x_b - x_a)^2}{2T} + \frac{fT(x_b + x_a)}{2} - \frac{f^2T^3}{24m}\right]\right\}$$
 (5)

Bonus: Realice una animación de la evolución de la función de onda de la partícula bajo un campo externo constante.

P3. Muestre que la ecuación diferencial que describe la evolución temporal de la función de onda de una partícula bajo un potencial $V(\vec{r},t)$ es:

$$\frac{\partial \psi(\vec{r},t)}{\partial t} = -\frac{i}{\hbar} \left[-\frac{\hbar^2}{2m} \nabla^2 \psi(\vec{r},t) + V(\vec{r},t) \psi(\vec{r},t) \right]$$
 (6)

Para esto, considere como evoluciona el estado inicial de la función de onda y expanda a primer orden en taylor. Esta es la famosa ecuación de Schrödinger.

 $\mathbf{P4}$. El lagrangiano de una partícula con carga e en un campo magnético es:

$$L = \frac{m}{2}\dot{\vec{r}}^2 + \frac{e}{c}\dot{\vec{r}}\cdot\vec{A}(\vec{r},t) - e\phi(\vec{r},t)$$
 (7)

Donde \vec{A} es el potencial vector y ϕ es el potencial escalar. Muestre que la ecuación de Schrödinger de esta partícula es:

$$\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} \left[-\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \frac{e}{c} \vec{A} \right) \cdot \left(\frac{\hbar}{i} \nabla - \frac{e}{c} \vec{A} \right) \psi + e \phi \psi \right] \tag{8}$$

Por lo tanto el hamiltoniano es

$$\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \frac{e}{c} \vec{A} \right) \cdot \left(\frac{\hbar}{i} \nabla - \frac{e}{c} \vec{A} \right) \psi + e \phi \tag{9}$$