FI2002-2 Electromagnetismo.

Profesor: Marcel Clerc.

Auxiliares: Roberto Gajardo, David Pinto.

Auxiliar 12: Inducción y ecuaciones de Maxwell.

23 de Noviembre del 2022

P1. Espira circular:

Una espira circular rota alrededor de uno de sus diámetros con rapidez angular ω constante en presencia de un campo magnético de intensidad B, el cual es perpendicular al eje de rotación. Si la espira tiene una resistencia R y una inductancia propia L, determine la intensidad de corriente I_E que circula por la bobina en el régimen estacionario (es decir, más allá de cualquier transiente que pueda existir al iniciar la rotación de la espira).

P2. Solución tipo ondas para las ecuaciones de Maxwell:

- a) A partir de las ecuaciones de Maxwell en el vacío, muestre que existen soluciones tipo onda para los campos \vec{E} y \vec{B} .
- b) Demuestre que $\vec{E}(\vec{r},t) = E_0 \cos(kz \omega t)\hat{i}$ es solución a la ecuación de ondas mostrada anteriormente. Encuentre una relación entre k y ω en función de ε_0 y μ_0 .
- c) Suponga que una onda como la de la parte anterior entra a un medio dieléctrico sin cargas ni corrientes libres, pero donde se tiene que la permitividad eléctrica varía en el espacio, es decir, $\varepsilon = \varepsilon(\vec{r})$. ¿Es posible llegar a una ecuación de ondas en ese caso?
- d) A partir del resultado de la parte anterior, discuta qué ocurre si la permitividad eléctrica sólo varía en la dirección de propagación de la onda, es decir, $\varepsilon = \varepsilon(z)$.