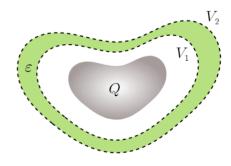

Electromagnetismo Semestre Otoño 2021 Prof. F. Brieva Profs. Aux. L. González

Auxiliar 6 21 de septiembre de 2022

Problema 1

Considere una esfera conductora de radio R_1 , cargada con Q. La cual está rodeada de un manto dieléctrico de permitividad ϵ y radio R_2 , el resto del espacio está vacío. Determine:


- a) El campo eléctrico en todo el espacio.
- **b)** Las densidades de carga libre e inducidas por la polarización en las interfases.
- c) La diferencia de potencial entre la esfera conductora e infinito. ¿Aumenta o disminuye esta tensión debido a la presencia del dieléctrico?

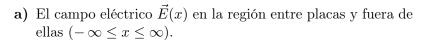
Problema 2

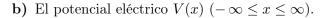
Un conductor de forma arbitraria se encuentra cargado con una carga eléctrica Q. Las superficies equipotenciales (superficies de potencial eléctrico constante) que lo rodean se indican en la figura.

Si el espacio entre las superficies equipotenciales V_1 y V_2 se llena con un medio de permitividad eléctrica ϵ , calcular la energía gastada en polarizar el dieléctrico.

Electromagnetismo Semestre Otoño 2021 Prof. F. Brieva Profs. Aux. L. González

Problema 3

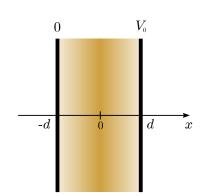

Se tienen dos planos conductores infinitos, paralelos al plano $\{y,z\}$ y ubicados en $x=\pm d$. El espacio entre ambos se llena con un material dieléctrico cuya permitividad depende de la posición,


$$\varepsilon = \varepsilon(x) = \frac{4 \,\varepsilon_0}{\left(\frac{x}{d}\right)^2 + 1} \,,$$

con $\varepsilon_{\scriptscriptstyle 0}$ la permitividad del vacío.

Al aplicar a los conductores un potencial $V(x=d)=V_0$ y V(x=-d)=0, una densidad de carga σ aparece en las placas.

Calcule, en función de σ , ε_0 y d:



- c) Calcule la densidad superficial σ en función de ε_0 , V_0 y d. Suponiendo que la polarización \vec{P} es proporcional al campo eléctrico \vec{E} , calcule en función de ε_0 , V_0 y d:
- d) Las densidades de carga de polarización en volumen ρ_P y en superficie σ_P . ¿Qué relación tienen con σ ?

Suponiendo que los planos son finitos de área A y despreciando los efectos de borde, calcule en función de ε_0 , V_0 , d y A:

- e) La capacidad del sistema.
- ${\bf f)}$ La fuerza entre las placas.

