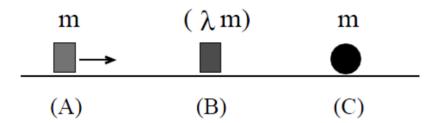
FI1000-1 Introducción a la Física Clásica

Profesor: Ignacio Bordeu

Auxiliares: Javier Cubillos & Berenice Muruaga Auxiliares taller: Pablo González & Alejandro Cartes

Ayudante: Amaru Moya


Auxiliar #14: Momento lineal y colisiones

P1. Una partícula colisiona a una segunda partícula de igual masa que estaba inicialmente en reposo. Si colisionan elásticamente sobre un plano horizontal libre de roce, determine el ángulo ϕ de salida de la partícula inicialmente en reposo si la primera partícula se desvía un ángulo θ con respecto a la dirección que traía antes de la colisión.

hint: Recuerde que $\vec{V} \cdot \vec{V} = V^2$ y que $\vec{A} \cdot \vec{B} = AB \cos(\alpha)$

- **P2.** Considere que los cuerpos de la figura se encuentran sobre una superficie horizontal pulida. El bloque A de masa m posee una velocidad v_0 y choca al bloque B de masa m en reposo. Después de la colisión, ambos bloques quedan adheridos y posteriormente chocan elásticamente con la bola C de masa m que se encuentra inicialmente detenida.
 - (a) Determine las velocidades adquiridas por los bloques y la bola.
 - (b) Verifique su resultado para el caso $\lambda \to 0$ e interprete.

- **P3.** Sobre una plataforma horizontal sin roce se colocan en línea recta 99 bloques separados entre sí una cierta distancia, en donde el n-ésimo bloque tiene masa (n+1)m. Desde la izquierda incide un bloque de masa m con velocidad v_0 . Todos los choques son perfectamente elásticos.
 - (a) Calcule la velocidad del bloque de masa 2m inmediatamente después de la primera colisión.
 - (b) Calcule la velocidad del bloque de masa 2m inmediatamente después que experimenta el segundo choque.
 - (c) Después de un tiempo suficientemente largo se observa que ningún bloque permanece sobre la plataforma. ¿Cuántos bloques cayeron al lado izquierdo y cuántos al lado derecho?