
 

 

DZone, Inc.  |   www.dzone.com

Effective Process Modeling
with BPM & BPMN
By Matjaz Juric and Ana Sasa

About business Process MAnAgeMent

B
P

M
 &

 B
P

M
N

  
  

  
  

  
  

  
  

  
  

w
w

w
.d

zo
n

e.
co

m
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

G
e

t 
M

o
re

 R
e

fc
ar

d
z!

 V
is

it
 r

ef
ca

rd
z.

co
m

 
#51

Business activity monitoring (BAM) is real-time 
observation of key performance indicators.

Hot 
Tip

BPM (Business Process Management) is a set of related 
activities, such as process modeling and design, process 
execution, process monitoring, and process optimization. This 
Refcard provides an overview of the BPM lifecycle together 
with the roles and results of business process modeling. It 
gives an overview of the BPMN (Business Process Modeling 
Notation) and presents the most important BPM patterns. 

BPM: Business Process Lifecycle
A business process lifecycle covers the following phases 
(Figure 1): 
     • Process modeling - definition of the process models using 
        the selected methodology and notation (such as BPMN).
     • Process implementation – implementation of end-to-end 
        IT support for the process. SOA provides technologies 
        and tools to make the implementation phase quick and 
        efficient.
     • Process execution and monitoring – execution of the 
        process and monitoring of the process to gather the Key      
        Performance Indicators (KPI). 
     • Process simulation – simulated execution of the process 
        with the objective gathering KPIs and identifying 
        optimization points.
     • Process optimization – improving the process efficiency, 
        effectiveness, agility, flexibility, and transparence.

Figure 1: BPM process lifecycle  

KPIs are financial and non-financial metrics used to 
help an organization define and measure process 
efficiency. Examples of a KPI are “Average revenue 
per customer”, “Average time for response to a 
customer call”, “ Average order amount”, etc.

Hot 
Tip

BPM: Modeling
Why do we Model Business Processes?

Design new business 
processes

Focus on business goals, KPIs, customer needs, and business partner 
expectations.

Model existing 
business processes

Assure the right flow of activities.
Identify normal flows and possible exceptional flows.
Identify inputs and outputs of activities.
Identify key documents and sources.
Identify business rules.

Restructure existing 
business processes

Focus on the activities and their added value.
Focus on lines of business and their relations.
Model responsibilities and roles.

Development of end-
to-end IT support for 
business processes

Detailed modeling of process flow.
Detailed modeling of data, documents, business objects, and 
interfaces.
Detailed exception handling.

Who should take part in process modeling?
The team should include different profiles and encourage 
looking at the process from different angles. This is particularly 
important for optimizations. Four to six people is usually an 
optimal team size. The following table lists the various profiles 
that should comprise the team:

Role Responsibility

Line of Business 
Expert

Good, in-depth knowledge of the process.

Process Owner Responsible for the overall execution of the process, approves process 
modifications.

Moderator Responsible for the meeting, for asking questions for leading the 
discussion into the right direction.

Modeling Expert Responsible for design the process model (during and after the meeting).

QA Owner Responsible for the alignment of processes in aspect of total quality 
management.

How do we model?
Approach Problems

Top-down We start with the process architecture. 
First we identify the major process 
activities and their flow. Then we model 
each activity into more detail.

• High level process modeling 
requires good knowledge about the 
process and some experience.
• Modeling lower levels can reveal 
inconsistencies on higher-levels.

contents incLuDe:
n	 About Business Process Management
n	 About BPMN
n	 Other Constructs
n	 Exception Flow
n	 Workflow patterns with BPMN
n	 Hot Tips and more...

n  Authoritative content
n  Designed for developers
n  Written by top experts
n  Latest tools & technologies
n Hot tips & examples
n  Bonus content online
n  New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

2
BPM & BPMN

Bottom-up We start with the identification of 
activities. We model sub processes and 
business transactions and merge them 
into processes.

• We get lost in the details. 
• Getting overview of processes 
and their relations can become very 
difficult.
• We can focus on too many details.

Inside-out We start with core processes. We 
expand them with adding support 
processes around core processes.

• It can be difficult to identify core 
processes and how to progress into 
the right direction.

The Inside-out approach is usually the most 
pragmatic approach to prcess modeling. Provide a 
brief explanation of why it is the most pragmatic 
approach.

Hot 
Tip

How do we model?

As-Is model We model the process as it is currently executed. Knowing the 
current as-is state is necessary for any future optimizations. 
We need to clarify whether we will model the process as it should be 
performed, or as it is performed in reality. Often there are significant 
differences between the two.
When we model the as-is process we should not make on-the-fly 
modifications - not even those which seem obvious. We should 
however make notes of all possible modifications for the to-be 
process model. 

To-Be model We model the optimized model, where we should consider:
• Extent of changes – do we want evolutionary or revolutionary 
changes
• How radical the changes to the process can be
• Organizational and other limitations
• How the to-be model will be accepted by the involved people and 
what organizational changes will it require

How to approach designing a process model:
We should model the process to understand the detailed 
structure of it. We should identify at least the following:
     • Process activities, on various levels of details (depending 
        on the selected approach)
     • Roles responsible for carrying-out the process activities
     • Events, which trigger the process execution and events 
        that interrupt the process flow
     • Input and output documents exchanged within the 
        process
     • Business rules that are part of the process

Below is the most conventional approach for designing a 
process model, in order of occurrence:
1) Identify the roles
2) Identify the activities
3) Connect the activities with roles
4) Define the order of activities
5) Add events
6) Add documents

 

Figure 3: Results of Business Process Modeling

 
Figure 2: Process model for each individual process

About bPMn

Figure 4: Activity types and markers

BPMN (Business Process Modeling Notation) is a graphical 
notation for business process modeling. The objective of 
BPMN is to support business process modeling for business 
and technical users. It provides a notation that is intuitive 
yet able to represent complex process semantics. BPMN is 
maintained by the Object Management Group.

Flow Objects
Flow objects are the main BPMN constructs that define the 
behavior of a business process. There are three categories of 
flow objects:

     • Activities: they represent the work performed within a 
        business process (see Figure 4).
     • Gateways: they represent how a sequence flow diverges or 
        converges in a business process (see Figure 5).
     • Events: they depict that something happens in a business 
        process (see Figure 6).

 

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

3
BPM & BPMN

Figure 5: Types of gateways

Figure 6: Events, event triggers and results

Figure 8: Construct that can be connected via sequence flow (blue shaded 
field represent a legal connection)

other constructs

 
Figure 13: Swimlanes and pools

Figure 9: Message Flow

Figure 10: Construct that can be connected via message flow (blue shaded 
field represent a legal connection)

Events
Start 
Event

Intermediate 
Event

End Event

Catching Throwing

None

Message

Timer

Conditional

Signal

Error

Cancel

Compensation

Terminate

Link

Multiple

Connecting Objects
Connecting objects are used to connect flow objects to each 
other and to other information. There are three categories of 
connecting objects: Sequence flow ( see Figure 7), Message 
flow ( see Figure 9), Association ( see Figure 11).

Figure 7: Sequence Flow

Defines the order of execution of flow objects.

Sequence flow with a condition (conditional flow).

Default flow, which is chosen if none of the conditions are satisfied.

 

From\To

 

 

 

 

       

Shows the flow of messages between two entities.

From\To

 

 

 

 

 

         

Figure 11: Association

Associates information and artifacts with flow objects.

It is used to assign “undo” activities to compensation 
intermediate events.

 

 

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

4
BPM & BPMN

Figure 14: Artifacts

In order to model an exception flow, we use intermediate events attached to the boundary 
of an activity. If such event is triggered during the activity execution, the flow is redirected 
through the intermediate event.

Example: The activity 
Check With Supplier 
of the example 
process has an 
intermediate timer 
event attached to 
its boundary. If the 
supplier does not 
provide a response 
within a certain 
timeframe, we 
remove the item from 
the order.

 

excePtion FLow

workFLow PAtterns with bPMn

sequence

Workflow Pattern Description: 
An activity starts after completion of another activity.

BPMN: 

Activities are connected by a sequence flow directed towards the subsequent activity.

Example:  After 
checking if the 
supplier can provide 
the necessary items 
in the Check With 
Supplier task, we 
notify the customer 
about their order in 
the Notify Customer 
task.

 

Parallel split

Workflow Pattern Description: A path diverges into two or more parallel subsequent paths. 
The subsequent paths execute concurrently.

BPMN: The pattern can be implemented in several ways:
     • We use several outgoing sequence flows for a flow object;
     • We use a parallel gateway to divide a sequence flow into several sequence flows.
     • We use an expanded sub-process in which we place the activities to be performed in 
        parallel.
     • We use an inclusive gateway with equivalent conditions.

Example 1: After receiving payment for the order we prepare the ordered items for shipment 
and issue the receipt concurrently.

Solution 1: Parallel split 
with outgoing sequence 
flows.

Solution 2: Parallel split using 
a parallel gateway

Solution 3: Parallel split using 
an expanded sub-process

Example 2: If the order items are in stock we send the confirmation of the order to the 
customer and reserve the ordered items in the inventory. These tasks are performed in 
parallel. Otherwise we check if the supplier can deliver the items.

 

Solution 1: Parallel split using an inclusive 
gateway

Solution 2: Parallel split using a parallel 
gateway

   

synchronization

Workflow Pattern Description: Two or more paths converge into one subsequent path. The 
subsequent path is enabled when all the preceding paths complete (and-join).

BPMN: The Pattern can be implemented in two ways:
     • We use a parallel gateway to merge several sequence flows into a single flow. The 
        outgoing flow activates when all the incoming sequence flows are enabled.
     • We use an expanded sub-process in which we place the activites to be performed in 
        parallel. Expanded sub-process completes after all the activities it contains complete.

Example 1: After preparing the ordered items for shipment and issuing the receipt, we ship 
the package to the customer.

Solution 1: Synchronization using a parallel 
gateway.

Solution 2: Synchronization using an 
expanded sub-process.

exclusive choice

Workflow Pattern Description: A path diverges into two or more subsequent paths. When 
the incoming path is enabled exactly one of the subsequent paths is selected and enabled.

BPMN: We use an exclusive gateway.

After analyzing the order 
we check whether the 
customer has provided 
a promotional code. 
If a promotional code 
is provided we collect 
discount information and 
use it to calculate final 
price. Otherwise, we 
calculate final price for the 
order without discounts.

Example 1: Exclusive choice with data-based exclusive 
gateway

After we notify the 
customer about the 
earliest possible delivery 
of the ordered items, the 
customer may change the 
ordered items, confirm the 
proposed date or cancel 
the order. If the customer 
does not respond in a 
certain timeframe an 
intermediate timer event is 
triggered.

Example 2: Exclusive choice with event-based exclusive 
gateway

 

simple Merge

Workflow Pattern Description: Two or more alternative paths converge into a single 
subsequent path.

BPMN: The pattern can be implemented in two ways:
     • We use an exclusive merge gateway to merge alternative paths.
     • We use a flow object with two or more incoming sequence flows. The incoming 
        sequence flows represent the ends of alternative paths. Any one of the incoming 
        sequence flows trigger the flow object.
Note: The behavior is the same in both cases provided that the incoming sequence flows are 
alternative.

Example: The two alternative paths used to calculate the final price of the ordered items are 
merged using the exclusive merge or by sequence flows leading to the “Check Inventory” 
task.

Solution 1: Simple merge with exclusive 
merge gateway

Solution 2: Simple merge with sequence 
flows to a flow object

http://www.dzone.com
http://www.refcardz.com


DZone, Inc.  |   www.dzone.com

5
BPM & BPMN

ADvAnceD brAnching AnD synchronizAtion PAtterns

Multi-choice

Workflow Pattern Description: A path is diverged into two or more subsequent paths. One or 
more subsequent paths may be executed.

BPMN: The pattern can be implemented in several ways:
     • We use an inclusive gateway.
     • We use a collection of contidional sequence flows.
     • We use a complex gateway.

Example 1: Based on requirements the customer specified in the order, we confirm the order 
via e-mail, by regular mail or both. Example solutions 1 nd 2 represent equivalent behavior.

Solution 1: Multi-Choice with an inclusive 
gateway

Solution 2: Multi-Choice with conditional 
sequence flows

Example 2: An order from the received order 
list may concern one or more departments. 
Depending on this, one, two or all three 
subsequent branches can be executed.

 

 

iterAtion bAseD PAtterns

structured synchronizing Merge (synchronizing join)

Workflow Pattern Description: Two or more paths converge into a single subsequent path. 
Several incoming paths may be enabled, in which case they are synchronized before the 
subsequent path is activated. In different process instances different number of incoming 
paths may be taken.

BPMN: We use an inclusive gateway.

Example: Based on requirements the 
customer specified in the order, we confirm 
the order via e-mail, by regular mail or both. 
If both activities are required to be executed, 
paths have to be synchronized before the 
process can continue.

Multi-Merge (Multiple Merge)

Workflow Pattern Description: Two or more paths converge into a single subsequent path. 
Each Incoming path activates the subsequent path.

BPMN: We use sequential flow for every ending of a converging path directed towards the 
flow object of the beginning of the subsequent path.

Example: We confirm the order via e-mail, by 
regular mail or both. if either of the activities 
takes place, the order information file needs 
to be updated.

 

Arbitrary cycles (unstructured Loop)

Workflow Pattern Description: Loops that have more than one entry or exit points.

BPMN: Sequence flow connected to an upstream activity.

Example: After providing the customer with additional details or alternative proposals for 
the inquiry, the customer may send an updated inquiry. In this case the process loops back to 
Analyze Inquiry activity.

structured Loop

Workflow Pattern Description: A task or a subprocess is repeated while or until some 
condition is true.

BPMN: We set the attributes of the activity as follows:
     • We set the value of the LoopType attribute to “Standard”,
     • We set the contidion expresion for the attribute LoopCondition,
     • to model a “while” loop we set the value of the attribute TestTime to “Before”,
     • to model an “until” loop we set the value of the attribute TestTime to “After”.

Example: After receiving a list of orders the 
Process Order subprocess is performed 
for every order until the end of orders is 
reached in the list.

 

MuLtiPLe instAnce PAtterns

Multiple instances without synchronization

Workflow Pattern Description: Multiple instances of a task or a subprocess are created. They 
run concurrently and are not synchronized on completion.

BPMN: We set the values of activity attributes as follows:
     • LoopType attribute to “multiInstance”,
     • MI FlowCondition to “None”.
     • we set the value of the MI_Ordering attribute to “Parallel”

Example: For every order in the order list an 
instance of the Process Order subprocess 
is invoked. The subprocess instances are 
executed concurrently. Every instance 
generates a token that continues after the 
instance is completed.

Multiple instances with a Priori run-time knowledge

Workflow Pattern Description: Multiple instances of a task or a subprocess are created. The 
number of instances depends on various run-time factors. Instances run concurrently and are 
synchronized at completion before the process continues.

BPMN: We set the attributes of the activity as follows:
     • we set the value of the LoopType attribute to “MultiInstance”,
     • the expression of the MI_Condition attribute is based on run-time factors and returns 
        the actual number of required instances at run-time,
     • we set the value of the MI_FlowCondition attribute to “All”.
     • we set the value of the MI_Ordering attribute to “Parallel”

Example: The process receives a list of all 
orders. The expression of the MI_Condition 
attribute depends on the number of orders 
in the list, which can be different for every 
process instance. For every order in the 
order list an instance of the Process Order 
subprocess is created. The subprocess 
instances are executed concurrently. After all 
the subprocess instances are completed, the 
process continues.

Multiple instances with a Priori Design-time knowledge

Workflow Pattern Description: Multiple instances of a task or a subprocess are created. The 
number of instances is known at design time. They run concurrently and are synchronized at 
completion before the process continues. 

BPMN:
We set the attributes of the activity as follows:
     • we set the value of the LoopType attribute to “MultiInstance”,
     • the expression of the MI_Condition attribute returns an integer representing the number 
        of instances known at design time,
     • we set the value of the MI_FlowCondition attribute to “All”.
     • we set the value of the MI_Ordering attribute to “Parallel”

Example: If a request for a loan exceeds 
1000 USD the loan needs to be checked for 
approval by 3 eligible employees. 

terMinAtion PAtterns

implicit termination

Workflow Pattern Description: A process or a subprocess instance terminates when there is 
nothing else to be done and it is not deadlocked. The instance has completed successfully.

BPMN: The pattern can be implemented in one of the following ways:
     • We end every path of the process or subprocess with an end event. If we use a start 
       event we must use at least one end event. 
     • An end of a path in the process is indicated by a flow object without an outgoing 
        sequence flow. The process completes when all tokens that were generated for the 
        instance are consumed.
Note: We must either conclude all paths with an end event (with an exception of 
compensation activities) or not use end event for the given process/subprocess.

http://www.dzone.com
http://www.refcardz.com


 

 

Design PatternsBy Jason McDonald

CONTENTS INCLUDE:

n	 Chain of Responsibility

n	 Command
n	 Interpreter

n	 Iteratorn	 Mediatorn	 Observern	 Template Method and more...

DZone, Inc.  |   www.dzone.com

D
es

ig
n 

Pa
tt

er
ns

  
  

  
  

  
  

  
  

  
  

  
 w

w
w

.d
zo

ne
.c

om
  

  
  

  
  

  
  

  
  

  
  

  
  

 G
et

 M
o

re
 R

ef
ca

rz
! 

V
is

it
 r

ef
ca

rd
z.

co
m

 

#8

Brought to you by...
Inspired by the GoF BestsellerThis Design Patterns refcard provides a quick reference to the 

original 23 Gang of Four (GoF) design patterns, as listed in  

the book Design Patterns: Elements of Reusable Object-

Oriented Software. Each pattern includes class diagrams, 

explanation, usage information, and a real world example.

Chain of Responsibility, continued

Object Scope: Deals with object relationships that can 

be changed at runtime.

Class Scope: Deals with class relationships that can be 

changed at compile time.
C  Abstract Factory

S
 AdapterS

 Bridge
C

 BuilderB
 Chain of 

 
ResponsibilityB

 CommandS
 Composite

S
 DecoratorS

 FacadeC
 Factory Method

S
 FlyweightB

 InterpreterB  IteratorB
 MediatorB

 Memento

C
 PrototypeS

 Proxy
B

 ObserverC
 SingletonB

 State
B

 StrategyB
 Template Method

B
 Visitor

ABOUT DESIGN PATTERNS

Creational Patterns: Used to construct objects such 

that they can be decoupled from their implementing 

system.
Structural Patterns: Used to form large object 

structures between many disparate objects.

Behavioral Patterns: Used to manage algorithms, 

relationships, and responsibilities between objects.

CHAIN OF RESPONSIBILITY               Object Behavioral

COMMAND                 
          Object Behavioral

successor

Client
<<interface>>Handler+handlerequest( )ConcreteHandler 1

+handlerequest( ) ConcreteHandler 2
+handlerequest( )

Purpose
Gives more than one object an opportunity to handle a request by linking 

receiving objects together.

Use 
When n	Multiple objects may handle a request and the handler doesn’t have to 

   be a specific object.

n	A set of objects should be able to handle a request with the handler

   determined at runtime.

n	A request not being handled is an acceptable potential outcome.

Example
Exception handling in some languages implements this pattern. When an 

exception is thrown in a method the runtime checks to see if the method 

has a mechanism to handle the exception or if it should be passed up the 

call stack. When passed up the call stack the process repeats until code to 

handle the exception is encountered or until there are no more parent 

objects to hand the request to.

Receiver

Invoker

Command
+execute( )

Client

ConcreteCommand

+execute( )

Purpose
Encapsulates a request allowing it to be treated as an object. This allows 

the request to be handled in traditionally object based relationships such 

as queuing and callbacks.

Use 
When n	You need callback functionality.

n	Requests need to be handled at variant times or in variant orders.

n	A history of requests is needed.

n	The invoker should be decoupled from the object handling the invocation.

Example
Job queues are widely used to facilitate the asynchronous processing  

of algorithms. By utilizing the command pattern the functionality to be  

executed can be given to a job queue for processing without any need 

for the queue to have knowledge of the actual implementation it is 

invoking. The command object that is enqueued implements its particular 

algorithm within the confines of the interface the queue is expecting.

upcoming titles
RichFaces
Agile Software Development
BIRT
JSF 2.0
Adobe AIR
BPM&BPMN
Flex 3 Components

Most Popular
Spring Configuration
jQuery Selectors
Windows Powershell
Dependency Injection with EJB 3
Netbeans IDE JavaEditor
Getting Started with Eclipse
Very First Steps in Flex

“Exactly what busy developers need: 
simple, short, and to the point.”

James Ward, Adobe Systems

Download Now

Refcardz.com

Professional Cheat Sheets You Can Trust

   

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome
refcardz@dzone.com 

Sponsorship Opportunities 
sales@dzone.com 

Copyright © 2009 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical,
photocopying, or otherwise, without prior written permission of the publisher. Reference: Business Process Driven SOA using BPMN and BPEL, Kapil Plant, Matjaz Juric, Packt Publishing September 2008

Version 1.0

$7
.9

5

DZone communities deliver over 4 million pages each month to 

more than 1.7 million software developers, architects and decision 

makers. DZone offers something for everyone, including news, 

tutorials, cheatsheets, blogs, feature articles, source code and more.  

“DZone is a developer’s dream,” says PC Magazine.

About the Author

6
BPM & BPMN

recoMMenDeD book

buy now
books.dzone.com/books/bpmn&bpel

explicit termination

Workflow Pattern Description: Aprocess or subprocess terminates and the remaining work 
is cancelled.

BPMN: We use a terminate end event.

Example: In the example, the process splits into two parallel paths after order analysis. 
If additional documentation is required, the customer is notified. Even though order 
preprocessing activities already take place, if the customer does not send the required 
documentation in time, the process terminates explicitly and all the remaining activities are 
cancelled.

concLusion

BPM is essential for continuous improvement of business 
process efficiency and effectiveness with the overall goal to 
produce business results faster, cheaper, better. This Refcard 
has provided the overview of the BPM lifecycle, presented 
the BPMN notation and demonstrated the most important 
patterns.

Example: In the example process there are two alternative paths that the process instance 
can take. If the order cannot be fulfilled, the customer is notified. After this the end event is 
reached and the process completes. If the order can be fulfilled several activities take place 
and ordered items are shipped. After this the process reaches an end event and completes.

 

Ana Sasa has dedicated the last five years exclusively to the field of SOA. 
She has worked on a number of IT projects for government agencies and 
large companies and has specialized knowledge and experience in the 
technical, business and organizational aspects of BPM and SOA. She is a 
researcher at the University of Ljubljana.

Matjaz B Juric, Ph. D., is associate professor at the University of Maribor 
and the head of the SOA Competency Centre. He has been consultant 
for several large companies on the BPM/SOA projects and has worked on 
projects, such as SOA Maturity Model, SOA in Telcos, performance analysis 
and optimization of RMI-IIOP, etc. Matjaz is author of courses for the BPEL 
and SOA consulting company BPELmentor.com. He is also a member of the 
BPEL Advisory Board.

Learn how to model business processes in an SOA-compliant 
approach using BPMN, translate them into BPEL and execute 
them on the SOA platform. A practical guide with real-world 
examples illustrating all key concepts. This book is for CIOs, 
executives, SOA project managers, business process analysts, 
BPM and SOA architects, who are responsible for improving 
the efficiency of business processes through IT, or for designing 
SOA. It provides a high-level coverage of business process 
modeling, but it also gives practical development examples on 
how to move from model to execution. We expect the readers 
to be familiar with the basics of SOA.

M.B. Juric, R. Loganathan, P. Sarang, F. Jennings: SOA Approach 
to Integration, November 2007.
OMG: Business Process Modeling Notation (BPMN), Version 1.2, 
January 2009.
M.B. Juric, P. Sarang, B. Mathew: Business Process Execution 
Language for Web Services 2nd Edition, January 2006.
H. Gaur, M. Zirn, et al.: BPEL Cookbook: Best Practices for SOA-
based integration and composite applications development, July 
2006.
Wil van der Aalst, Arthur ter Hofstede, et al.: Workflow Patterns,  
http://www.workflowpatterns.com/.

other reFerences AnD resources

ISBN-13: 978-1-934238-54-7
ISBN-10: 1-934238-54-6

9 781934 238547

50795

BUY NOW
books.dzone.com/books/bpmn_bpel

http://refcardz.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
http://books.dzone.com/books/soa-patterns
http://www.refcardz.com
http://refcardz.dzone.com/books/bpmn_bpel

