Appendix 1: The Case of Swissmetro

Context

Innovation in the market for intercity passenger transportation is a difficult en-
terprise, as the existing modes: private car, coach, rail as well as regional and
long-distance air services continue to innovate in their own right by offering new
combinations of speeds, services, prices and technologies. Consider for example
high-speed rail links between the major centers or direct regional jet services be-
tween smaller centuries. The Swissmetro SA in Geneva is promoting such an in-
novation: a mag-lev underground system operating at speeds up to 500 km/h in
partial vacuum connecting the major Swiss conurbations, in particular along the
Mittelland corridor (St. Gallen, Zurich, Bern, Lausanne and Geneva).

Data Collection

The Swissmetro is a true innovation. It is therefore not appropriate to base fore-
casts of its impact on observations of existing revealed preferences (RP) data. It
is necessary to obtain data from surveys of hypothetical markets/situations, which
include the innovation, to assess the impact. Survey data was collected on rail-
based travels, interviewing 470 respondents. Due to data problems, only 441 are
used here. Nine stated choice situations were generated for each of 441 respondents,
offering three alternatives: rail, Swissmetro and car (only for car owners).

A similar method for relevant car trips with a household or telephone survey
was deemed impractical. The sample was therefore constructed using license plate
observations on the motorways in the corridor by means of video recorders. A total
of 10529 relevant license plates were recorded during September 1997. The central
Swiss car license agency had agreed to sending up to 10000 owners of these cars
a survey-pack. Until April 1998, 9658 letters were mailed, of which 1758 were re-
turned. A total of 1070 persons filled in the survey completely and were willing to
participate in the second SP survey, which was generated using the same approach
used for the rail interviews. 750 usable SP surveys were returned, from the license-
plate based survey

Variables and Descriptive Statistics

The variables of the dataset are described in Tables 1, 2, and 3. The descriptive
statistics are summarized in Table 4. A more detailed description of the dataset as



well as the data collection procedure is given in Bierlaire et al. (2001).



Variable Description

GROUP Different groups in the population

SURVEY Survey performed in train (0) or car (1)

SP It is fixed to 1 (stated preference survey)

ID Respondent identifier

PURPOSE | Travel purpose. 1: Commuter, 2: Shopping, 3: Busi-
ness, 4: Leisure, 5: Return from work, 6: Return from
shopping, 7: Return from business, 8: Return from
leisure, 9: other

FIRST First class traveller (0 = no, 1 = yes)

TICKET Travel ticket. 0: None, 1: Two way with half price
card, 2: One way with half price card, 3: Two way
normal price, 4: One way normal price, 5: Half day, 6:
Annual season ticket, 7: Annual season ticket Junior or
Senior, 8: Free travel after 7pm card, 9: Group ticket,
10: Other

WHO Who pays (0: unknown, 1: self, 2: employer, 3: half-
half)

LUGGAGE | 0: none, 1: one piece, 3: several pieces

AGE It captures the age class of individuals. The age-class
coding scheme is of the type:
1: age<24, 2: 24<age<39, 3: 39<age<b4, 4: bd<age<
65, 5: 65 <age, 6: not known

MALE Traveler’s Gender 0: female, 1: male

INCOME Traveler’s income per year [thousand CHF|
0 or 1: under 50, 2: between 50 and 100, 3: over 100,
4: unknown

GA Variable capturing the effect of the Swiss annual sea-
son ticket for the rail system and most local public
transport. It is 1 if the individual owns a GA, zero
otherwise.

ORIGIN Travel origin (a number corresponding to a Canton, see

Table 3)

Table 1: Description of variables

10




Variable Description

DEST Travel destination (a number corresponding to a Can-
ton, see Table 3)

TRAIN_AV | Train availability dummy

CAR_AV Car availability dummy

SM_AV SM availability dummy

TRAIN_TT | Train travel time [minutes|. Travel times are door-
to-door making assumptions about car-based distances
(1.25*crow-flight distance)

TRAIN_CO | Train cost [CHF| without considering GA.

TRAIN_FR | Train frequency (headway) [minutes|
Example: If there are two trains per hour, the value of
TRAIN_FR is 30.

SM_TT SM travel time [minutes| considering the future Swiss-
metro speed of 500 km/h

SM_CO SM cost [CHF| calculated at the current relevant rail
fare, without considering GA, multiplied with a fixed
factor (1.2) to reflect the higher speed.

SM FR SM frequency (headway) [minutes]
Example: If there are two Swissmetros per hour, the
value of SM_FR is 30.

SM_SEATS | Seats configuration in the Swissmetro (dummy). Air-
line seats (1) or not (0).

CAR.TT Car travel time [minutes]

CAR_CO Car cost [CHF] considering a fixed average cost per
kilometer (1.20 CHF /km)

CHOICE Choice indicator. 0: unknown, 1: Train, 2: SM, 3: Car

Table 2: Description of variables
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Number | Canton
1 ZH
2 BE
3 LU
4 UR
5 SZ
6 oW
7 NW
8 GL
9 ZG
10 FR
11 SO
12 BS
13 BL
14 Schaffhausen
15 AR
16 Al
17 SG
18 GR
19 AG
20 TH
21 TI
22 VD
23 VS
24 NE
25 GE
26 JU

Table 3: Coding of Cantons

12



Variable Min | Max | Mean | St. Dev.
GROUP 2 3 2.63 0.48
SURVEY 0 1 0.63 0.48
SP 1 1 1.00 0.00
ID 1 1192 | 596.50 344.12
PURPOSE 1 9 2.91 1.15
FIRST 0 1 0.47 0.50
TICKET 1 10 2.89 2.19
WHO 0 3 1.49 0.71
LUGGAGE 0 3 0.68 0.60
AGE 1 6 2.90 1.03
MALE 0 1 0.75 0.43
INCOME 0 4 2.33 0.94
GA 0 1 0.14 0.35
ORIGIN 1 25 13.32 10.14
DEST 1 26 10.80 9.75
TRAIN_AV 1 1 1.00 0.00
CAR_AV 0 1 0.84 0.36
SM_AV 1 1 1.00 0.00
TRAIN_TT 31 1049 | 166.63 77.35
TRAIN_CO 4 5040 | 514.34 | 1088.93
TRAIN_FR 30 120 70.10 37.43
SM_TT 8 796 | 87.47 53.55
SM_CO 6 6720 | 670.34 | 1441.59
SM_FR 10 30 20.02 8.16
SM_SEATS 0 1 0.12 0.32
CAR_TT 0 1560 | 123.80 88.71
CAR_CO 0 520 | 78.74 55.26
CHOICE 0 3 2.15 0.63

Table 4: Descriptive statistics
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Model Log likelihood | Number of coefficients
Male -3680.00 9
Female -1110.62 9
Restricted model -4927.17 9

Table 5: Values for the market segmentation test

Market Segmentation

Fuiles to use with BIOGEME:

Model files: SpecTest SM male.mod,
SpecTest_SM_female.mod,
SpecTest SM_full.mod,

Data file: swissmetro.dat

In this example, the segmentation is made on the gender variable. We first
create two market segments as follows:

e Male: all observations where MALE=1 belong to this subgroup.
e Female: all observations where MALE=0 belong to this subgroup.

Following the procedure described in Ben-Akiva and Lerman (1985) (pages 194-
204), we estimate a model on the full data set. Then we run the same model for
each gender group separately. Note that we make use of the [Exclude] section
in the model specification file to define which observations should be excluded in
the estimation. We obtain the values reported in Table 5. The expressions of
the utility functions are the same for all models. Note that we define the dummy
variable SENIOR which takes the value 1 for individuals with age above 65 and 0
otherwise.

Vear = ASCear + BtimeCAR TT + Bear cost CAR_CO + B SENIOR
Virain = PBtime TRAIN_TT + Birain cost TRAIN_.COST + B TRAIN_FR +
BgGA
Vom = ASCsu + BrimeSM_TT + Bsu cos SM_COST + B SM_FR +
BageSENIOR + B.CGA

The null hypothesis is of no taste variations across the market segments:

HO . BMale - BFemale

Note that in the above equation Male and Female refer to market segments and
not to variables in the dataset.
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The likelihood ratio test (with 18-9=9 degrees of freedom) yields

G
[R = )= > In(B9)
g=1
= —2(—4927.17 + 3680.00 + 1110.62) = 273.10

Xé.95,9 = 16.92

and we can therefore reject the null hypothesis at a 95% level of confidence.

McFadden ITA Test
Eles to use with BIOGEME:

Model file: SpecTest SM _IIA.mod,
SpecTest_SM_socioec_bis.mod
Data file: swissmetro.dat, swissmetro-IIA.dat

Excel worksheet: swissmetro-IIA.zls

We are studying the impact of the modal innovation, represented by the Swiss-
metro, against traditional transport modes represented by car and train. In this
spirit, it would seem logical to expect some kind of relationship between the tradi-
tional alternatives. They are probably correlated, where the source of this correla-
tion might be the presence of unobserved shared attributes between the car and train
alternatives. In order to test this assumption, we follow the procedure explained in
Ben-Akiva and Lerman (1985) (pages 183-194). That is, first we estimate a MNL
model (SpecTest_SM_socioec_bis.mod) on the full data set swissmetro.dat. We
use the estimated values of the parameters to compute in Excel (or using Biosim)
the choice probabilities for each observation (individual) and for each alternative.
As discussed above, we assume in this case that the subset of alternatives suspected
to be correlated is given by C = {car,train}. We then compute in Excel the two
corresponding auxiliary variables for each observation of the data file to get the file
swissmetro-1IA.zls, which we export in the Text format file swissmetro-IIA.dat.
Now we specify a new model (SpecTest_SM_IIA.mod) which includes the auxiliary
variables in the utility functions associated with train and car. Finally, we estimate
this model on this new data file. We show in Table 6 the estimation results.

The focus in this test is not related to the sign of the estimated IIA parameter.
What is important is the value of the t-statistic for such a coefficient. (A is
significantly different from 0 at a 95% level of confidence. This indicates that
the ITA property does not hold for the car and train alternatives. This kind of
correlation can be captured with GEV models that are treated in the Part 2 of this
case study.
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MNTL for car/train ITA test

Variable a  Variable Coefficient Robust Robust
number name estimate standard error ¢ statistic

1 ASCecar 0.196 0.161 1.22
2 ASCqm 0.489 0.129 3.79
3 Bcost -0.00115 0.000110 -10.51
4 Bear time  -0.0102 0.000974 -10.52
5 Biraintime  -0.0114 0.00114 -9.99
6 Bem time  -0.0112 0.00168 -6.65
7 Br -0.00489 0.00110 -4.45
8 Bga 6.29 0.661 9.51
9 Bria 0.395 0.116 3.40

Summary statistics

Number of observations = 6759
L(0) = —6958.42

L(B) =—=5229.90

p? =0.247

Table 6: MNL for IIA test

Test of Non-Nested Hypothesis

Fuiles to use with BIOGEME:

Model files: SpecTest_ SM_M1.mod, SpecTest_ SM_M2.mod,
SpecTest SM_MC.mod

Data file: swissmetro.dat

In discrete choice analysis, we often perform tests based on the so-called nested
hypothesis, which means that we specify two models such that the first one (the
restricted model) is a special case of the second one (the unrestricted model). For
this type of comparison, the classical likelihood-ratio test can be applied. However,
there are situations in which we aim at comparing models which are not nested,
meaning that one model cannot be obtained as a restricted version of another one.
One way to compare two non-nested models is to build a composite model from
which both models can be derived. We can thus perform two likelihood-ratio tests
for each of the restricted models against the composite model.

Composite Model Test

The composite model test is described in detail in Ben-Akiva and Lerman (1985)
(pages 171-174). Assume that we want to test a model M; against another model
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M, (and one model is not a restricted version of the other). We start by generating
a composite model M ¢ such that both models M; and M, are restricted cases of
Mc. We then test M; against M and M, against M using the likelihood ratio
test. There are three possible outcomes of this test:

e One of the two models is rejected. Then we keep the one that is not rejected.
e Both models are rejected. Then better models should be developed.

e Both models are accepted. Then we choose the model with the highest p?
index.

We report in the following the expressions of the utility functions used for the
three different models M, M, and M. M; has the following systematic utilities

Vcar = AS Ccar + Bcar-timeCAR—Tr + Bcar_costCAR—CO
Vtrain - Btrain_timeTRAIN 1T + Btrain_costTRAIN _CO
Vsm = ASCsm + BsmtimeSMTT + BsmcostSM_CO

where both the time and cost related coefficients are alternative specific. The
systematic utilities of M, are

Vear = ASCear + BtimeCARTT + Bearcost CAR_CO
Virain = Btime IRAINTT + Brain_cost IRAIN_CO +
B TRAIN.FR + BaGA
Vsm = ASCsm + BtimeSMTT + Bsm costSM_CO + B#SM_FR
+BaGA

where only the cost related attribute is assumed to be alternative specific, frequency
of train and SM has been added, and one socio-economic variable has been added to
the model. We now define the composite model M with the following systematic
utilities
VCO.T - ASCCO.T + BC(lT_timeCAR*TI— + BCO.T_COSJLCAR*CO
Vtrain - Btrain_timeTRAIN—-rr + Btrain_costTRAIN CO+
B TRAINFR + B,,GA
VSM - ASCSM + BSNLtimeSM—Tr + BSNLcostSM—CO +
BeSM_FR + 34,GA

In Table 7, we summarize the differences between the various models and we
report in Tables 8, 9 and 10 the estimation results for the M, M, and M models
respectively.
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Models used for the composite test

Model

Parameters

Description

M,

8

two ASC, three alternative specific t2me coef-
ficients and three alternative specific cost co-
efficients

M,

two ASC, one generic tzme coefficient, three al-
ternative specific cost coefficients, one generic
frequency parameter and one socio-economic
variable

10

two ASC, three alternative specific t2zme co-
efficients, three alternative specific cost coef-
ficients, one generic frequency parameter and
one socio-economic variable

Table 7: Summary of the different model specifications

M; model: estimation results

Variable Variable Coefficient Robust Robust
number name estimate standard error ¢ statistic
1 ASCear -0.260 0.138 -1.89
2 ASCsm 0.113 0.106 1.06
3 Bearcost -0.00785 0.00149 -5.26
4 Birain cost  -0.0308 0.00193 -15.98
5 Bsm_cost -0.0113 0.000790 -14.24
6 Bear time  -0.0129 0.00163 -7.91
7 Biraintime -0.00870 0.00118 -7.34
8 Bsm tme  -0.0112 0.00178 -6.25

Summary statistics

Number of observations = 6759
L(0) = —6958.42
L(B) = —5065.90
p? =0.271

Table 8: Estimation results for the M; model
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M, model: estimation results

Variable Variable Coefficient Robust Robust
number name estimate standard error t statistic
1 ASCear -0.872 0.140 -6.24
2 ASCsm -0.410 0.103 -3.99
3 Bearcost  -0.00934 0.00116 -8.02
4 Birain cost  -0.0284 0.00176 -16.08
5 Bsm_cost -0.0104 0.000743 -13.99
6 Btime -0.0111 0.00120 -9.22
7 B -0.00533 0.00102 -5.25
8 Bga 0.521 0.191 2.72

Summary statistics

Number of observations = 6759
L(0) = —6958.42

L(B) = —5055.84

p? =0.272

Table 9: Estimation results for the M, model

M model: estimation results

Variable Variable Coefficient Robust Robust

number name estimate standard error ¢ statistic
1 ASC.ar -0.529 0.158 -3.35
2 ASCsm -0.126 0.116 -1.08
3 Bearcost  -0.00776 0.00150 -5.18
4 B train_cost -0.0300 0.00200 -14.97
5 Bsmcost  -0.0108 0.000828 -12.99
6 Bear_time -0.0129 0.00162 -7.94
7 Birain time  -0.00866 0.00120 -7.22
8 Bsv tme  -0.0111 0.00179 -6.19
9 e -0.00535 0.00101 -5.31
10 Bga 0.513 0.194 2.65

Summary statistics
Number of observations = 6759
L(0) = —6958.42

L(B) = —5047.21
p?=0.273

Table 10: Estimation results for the M model
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At this point, we can apply the likelihood ratio test for M; against M. In this
case the null hypothesis is:

HO:BfT:Bga:O

As usual, —2(L(M;) — L(M¢)) is x? distributed with K = 2 degrees of freedom.
In this case, we have:

—2(—5065.90 + 5047.21) = 37.38 > 5.991

The result of this first test is that we can reject the null hypothesis. Applying
the same test on M, against M, we have

HO . Bcar_time - Btrain_time - BSM_time-

In this case, the likelihood ratio test with K = 2 degrees of freedom gives
—2(—5055.84 + 5047.21) = 17.26 > 5.991

and we can therefore reject the null hypothesis in this case as well. Since both mod-
els are rejected, better models should be developed. If both models were accepted,
we would choose the one with the higher p? index.

Tests of Non-Linear Specifications

Files to use with BIOGEME:

Model files: SpecTest_SM_piecewise.mod,
SpecTest SM_powerseries.mod,
SpecTest_SM_bozxcozx.mod

Data file: swissmetro.dat

In the previous case study, the models were specified with linear in parame-
ter formulations of the deterministic part of the utilities (parameters that remain
constant throughout the whole range of the values of each variable). However, in
some cases, non-linear specifications may be more justified. In this section we test
three different non-linear specifications of the deterministic utility functions (see
Ben-Akiva and Lerman (1985), pages 174-179). Namely, piecewise linear approxi-
mation, power series method and Box-Cox transformation are used below.

Piecewise Linear Approximation

In this first example, we want to test the hypothesis that the value of the travel
time related parameter for the train alternative assumes different values for different
ranges of values of the variable itself. We split the range of values for rail travel
time t (which is t € [35,1022], expressed in minutes) into four different intervals:
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[Expressions]

TRAIN_TT1 = min( TRAIN_TT , 90)

TRAIN_TT2 = max(0,min( TRAIN_TT - 90, 90))
TRAIN_TT3 = max(0,min( TRAIN_TT - 180 , 90))
TRAIN_TT4 = max(0,TRAIN_TT - 270)

Figure 1: BIOGEME snapshot concerning the piecewise variables definition

traingg € [0, 90], traing, € 190, 180], trainys € 1180, 270] and traingg > 270. We
show in Figure 1 the corresponding BIOGEME code.
The systematic utility expressions used in this model are

Vear = ASCeiar + Beartime CARTT + Bear cost CAR_CO
Virain = PBrraintimel TRAIN TTT + B train_time2 IRAIN TT2 4
B train time3 TRAIN_TT3 4 Birain times IRAIN_TT4 +
Btrain_cost IRAIN_CO + B TRAIN FR + BgaAGA
Vsm = ASCsm + BsmtimeSM TT + BsmcostSM CO + B#SM FR +
BcaGA

We can see from the estimation results shown in Table 11 that all time co-
efficients related to the piecewise linear expression are negative. The coefficient
associated with very long trips is the largest in magnitude in an absolute sense,
meaning that trips longer than 4 hours and a half are more penalizing the utility
function of the train alternative.

We perform the likelihood ratio test where the restricted model is the one with
linear train travel time (the M model from the previous section) and the unre-
stricted model is the piecewise linear specification. The x? statistic for the null
hypothesis is given by

HO : Btrai‘mtime] - Btrain,timez - Btrain,time.% - Btrain,time4
The test yields

—2(—5047.21 4+ 5041.95) = 10.52

and since X%,o.o5 = 7.815, we can reject the null hypothesis of a linear train travel
time at a 95% level of confidence.

The Power Series Expansion

We introduce here a power series expansion for the train travel time variable. In
principle, we could add a polynomial expression but here we introduce just the
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Piecewise linear model: estimation results

Variable  Variable Coefficient Robust Robust

number name estimate standard error ¢ statistic
1 ASCear -0.990 0.434 -2.28
2 ASCsm -0.583 0.421 -1.39
3 Bearcost -0.00776 0.00150 -5.18
4 Biraincost  -0.0301 0.00204 -14.78
5 Bsm_cost -0.0107 0.000828 -12.97
6 B ear time -0.0129 0.00162 -7.94
7 B train_timel -0.0135 0.00508 -2.65
8 Birain timez  -0.0109 0.00180 -6.05
9 Birain times  -0.00208 0.00224 -0.93
10 Biraintimesa  -0.0179 0.00551 -3.25
11 B sM time -0.0112 0.00179 -6.24
12 e -0.00534 0.00101 -5.30
13 Bga 0.515 0.193 2.67

Summary statistics
Number of observations = 6759
L(0) = —6958.42

L(B) = —5041.95
2 = 0.274

Table 11: Estimation results for the piecewise linear model
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squared term. The subsequent model specification is practically the same as the
M model, with the exception of the train alternative:
Vt'rain - Btrain,timeTRAIN—Tr + Btrain,time,quRAIN—Tr—SQ +
Btrain,costTRAIN—CO + BfTTRAIN_FR +
BcaGA

Power series model: estimation results

Variable Variable Coefficient Robust Robust

number name estimate  standard error ¢ statistic
1 ASCear -0.684 0.190 -3.59
2 ASCsm -0.280 0.150 -1.87
3 B ear cost -0.00776 0.00150 5.18
4 B train_cost -0.0299 0.00201 -14.86
5 B sM_cost -0.0108 0.000828 -12.99
6 Bear time -0.0129 0.00162 -7.95
7 B train_time -0.0108 0.00191 -5.66
8 Birain timesq 0.00000612  0.00000287 2.13
9 B sM_time -0.0111 0.00178 -6.23
10 B -0.0053 0.00101 -5.31
11 Bga 0.510 0.194 2.63

Summary statistics

Number of observations = 6759

L(0) = —6958.42

L(B) = —5046.57

p?=0.273

Table 12: Estimation results for the power series model

The estimation results for this specification are shown in Table 12. The esti-
mated parameter associated with the linear term of the power series expansion is
negative while the estimated parameter associated with the squared term is pos-
itive. However, the cumulative effect of the travel time on the utility variable is
still negative, as can be easily verified by a plot of utility versus travel time for a
reasonable range of rail travel time.

We perform the likelihood ratio test where the restricted model is the one with
linear train travel time (the M model from the previous section) and the unre-
stricted model is the power series expansion specification. The x? statistic for the
null hypothesis is given by

HO : Btrain,timez =0
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[GeneralizedUtilities]
11 B_TRAIN_TIME * ( ( ( TRAIN_TT ) ~ LAMBDA - 1 ) / LAMBDA )

Figure 2: BIOGEME snapshot of Box-Cox transformation

The test yields
—2(—5047.21 +5046.57) = 1.28

and since X%,o.o5 = 3.841, we can accept the null hypothesis of a linear rail travel
time at a 95% level of confidence.

The Box-Cox Transformation

In this section, we analyze the possibility of testing for non-linear transformations
of variables that are non-linear in the unknown parameters. One possible transfor-
mation is the Box-Cox, expressed as

X —1

A
We apply this transformation to the train time variable. The utilities remain exactly

the same, with the substitution of such a variable with its Box-Cox transformation.
This introduces one more unknown parameter, A. We show in Figure 2 a BIOGEME

, where x > 0.

snapshot from the model specification file to visualize how non-linear in parameters
utility functions are implemented.

The results related to the Box-Cox transformed model are shown in Table 13.
We know that the Box-Cox transformation reduces to a linear function as a special
case, when the parameter A is fixed equal to 1. Looking at the estimated values,
we see that A is significantly different from 1 at a 95 % level of confidence (t-stat
= -2.13). Note though that the parameter {3 qin_time associated with train travel
time is not significant.

We can also perform a likelihood ratio test as follows. The null hypothesis is
given by:

Ho:)\:1

The x? statistic for this null hypothesis is as follows:

AN

“2(L(Bu) — L(Bre)) = —2(—5047.21 + 5045.42) = 3.58
X3.951 = 3.841 > 3.58

Therefore, the null hypothesis of a linear specification is accepted at a 95 % level
of confidence. Note that the t-test and the likelihood ratio test for testing one re-
striction are asymptotically equivalent. Here the t-stat with respect to 1 is equal to
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-2.13, so A is close to being insignificant (w.r.t. 1). Since the parameter Birqin time
associated with train travel time is not significant, we are unable to capture a signif-
icant effect of the train time variable using the Box-Cox transformation. Therefore,
we prefer the linear specification over the Box-Cox transformation in this case.

Box-Cox transformed model: estimation results
Variable Variable Coefficient Robust Robust
number name estimate standard error ¢ statistic

1 ASCear -1.73 1.02 -1.70

2 ASCsm -1.33 1.02 -1.31

3 Bearcost -0.00776 0.00150 -5.18

4 Birain cost  -0.0208 0.00200 -14.90

5 Bsm_cost -0.0107 0.000828 -12.98

6 Bear_time -0.0129 0.00162 -7.95

7 Birain time  -0.129 0.162 -0.80

8 B sM_time -0.0111 0.00178 -6.23

9 B -0.00535 0.00101 -5.30

10 Bga 0.508 0.194 2.62
11 A 0.463 0.252 1.84
Summary statistics
Number of observations = 6759
L(0) = —6958.42
L(B) =—5045.42
p?=0.273

Table 13: Estimation results for the Box-Cox transformed model
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