Auxiliar V Previo C2

Gaspar Fábrega Ragni

Universidad de Chile DIMEC

CHILE 2022.5

Contents

Preguntas Conceptuales

2 EJERCICIOS:

Gráficos:

Preguntas Conceptuales

¿Preguntas conceptuales

- Describa el proceso de vulcanización.
- Esquematicamente, comparar en un grafico log-log la probabilidad de falla (weibull) de un acero 4340 y un hierro fundido gris. Fundamentar su respuesta.
- Explique el proceso de fabricación de paneles de vidrio.
- Describa los factores principales a la hora de diseñar un material compuesto y como afecta sus propiedades.
- Describa el proceso de extracción de oxígeno por membranas.
- Explique el templado del vidrio y por que se debe cortar antes de templar.

EJERCICIOS:

Preguntas:

- P1: Diseñe una barra que tenga una sección transversal redonda y 30 cm de largo. Cuando se aplica una fuerza de 1000 N, no debe estirarse más de 3 mm, utilizando:
 - Epoxi (E: 500.000 psi, densidad: 1,25 g/cm3)
 - Matriz epoxi reforzada con fibra de carbono (la fracción de volumen de la fibra de carbono: 0,2 y E: 530 GPa, densidad: 1,9 g/cm3).

Si epoxi y fibra de carbono cuestan alrededor de 1000 pesos/kg y 3000 pesos/kg, respectivamente,compare el costo de dos barras.

Preguntas:

- P2: Estimar la resistencia al choque térmico ΔT para el vidrio de borosilicato, vidrio sódico y cemento:
- P3: El módulo de Poisson de la perovskita CaTiO3 es de 0,25 y su módulo de corte es de 105,5 GPa. Determinar la resistencia teórica sabiendo que su parámetro de red es de 3,795 [Å] y su energía superficial es de 1,8 [J/m2].

Gráficos:

P2:

	Módulo rotura [Mpa]	Coef. exp. térmica [1/°C]	Módulo de Young [Gpa]
Vidrio borosilicato	55	0,000004	65
Cemento	70	0,000012	25
Vidrio sódico	50	0,0000085	74

Figure: Datos vidrios.