Video D1 Análisis: Topología I

Claudio Muñoz

Curso de Análisis 2021

23 de abril de 2021

En esta nueva parte del curso, comenzaremos a estudiar los **espacios topológicos**, la base de todo el Análisis Matemático.

La idea de las topologías es capturar, de la forma más simple posible, formas y figuras de conjuntos, sobre la base de que las formas están codificadas en la cantidad de subconjuntos abiertos que posee el conjunto.

Definición. Sea $X \neq \emptyset$ un conjunto, y $\tau \subseteq \mathscr{P}(X)$ una familia no vacía de subconjuntos de X.

Diremos que au es una **topología sobre** X si se cumplen

- 1. \emptyset y X están en τ ;
- 2. si $A, B \in \tau$, entonces $A \cap B \in \tau$;
- 3. si $(A_{\lambda})_{\lambda \in \Lambda} \subseteq \tau$ es una familia arbitraria, entonces $\cup_{\lambda \in \Lambda} A_{\lambda} \in \tau$.

Los elementos de τ se llaman abiertos, y (X, τ) espacio topológico.

La intersección en el punto 2 se puede reemplazar por cualquier familia finita de abiertos, pero no por una numerable. Ejemplo:

 $A_n := \left(-\frac{1}{n}, \frac{1}{n}\right)$ que intersectan $\{0\}$, que no es abierto en \mathbb{R} .

Ejemplos de topologías:

- 1. En cualquier X, $\tau := \{\emptyset, X\}$ es topología (la grosera o indiscreta, o más pequeña en el sentido de la inclusión).
- 2. En cualquier X, $\tau := \mathscr{P}(X)$ es la llamada **topología discreta** de X, la más grande posible topología sobre X.
- 3. En $X=\{0,1\},\ \tau:=\{\emptyset,\{0\},X\}$ es la llamada **topología de Sierpinski**, muy útil en contraejemplos.

Ejercicios. Sea $X \neq \emptyset$ conjunto.

- 1. Si $(\tau_{\lambda})_{\lambda \in \Lambda}$ es una familia de topologías sobre X, entonces $\cap_{\lambda \in \Lambda} \tau_{\lambda}$ también es topología en X (la más grande incluida en cada τ_{λ}).
- 2. Por qué lo anterior no contradice el ejemplo de intersección numerable de abiertos?
- 3. La unión de topologías **no es necesariamente topología** (dé un ejemplo).
- 4. Por qué lo anterior no contradice la propiedad topológica de unión arbitraria de abiertos?

Ejemplo importante. En \mathbb{R} , definimos la **topología canónica** au_c como

$$A \in \tau_c \iff \text{para todo } x \in A, \text{ existe } \varepsilon > 0 \text{ t.q. } (x - \varepsilon, x + \varepsilon) \subseteq A.$$

(A es abierto si en cada punto x de A es posible incluir un intervalo abierto, incluido en A.)

Veamos que au_c es topología:

- 1. \emptyset y \mathbb{R} están en τ_c ; OK.
- 2. si $A, B \in \tau_c$, entonces $A \cap B \in \tau_c$;
- 3. si $(A_{\lambda})_{\lambda \in \Lambda} \subseteq \tau_c$, entonces $\cup_{\lambda \in \Lambda} A_{\lambda} \in \tau_c$. OK.

Veamos 2.

PDQ: si $A, B \in \tau_c$, entonces $A \cap B \in \tau_c$.

Si $x \in A \cap B$, entonces está en A y en B.

Para A, tenemos $(x - \varepsilon_A, x + \varepsilon_A) \subseteq A$. Para B, tenemos $(x - \varepsilon_B, x + \varepsilon_B) \subseteq B$.

Tomando $\varepsilon := min\{\varepsilon_A, \varepsilon_B\}$, tenemos $(x - \varepsilon, x + \varepsilon) \subseteq A \cap B$, lo pedido.

Definición. Dado $X \neq \emptyset$ y τ_1, τ_2 topologías sobre X, diremos que τ_1 **es más fina que** τ_2 si se tiene $\tau_2 \subseteq \tau_1$. (Igual que con las particiones en sumas de Riemann.)

Ejemplo. Siempre $\tau_d = \mathscr{P}(X)$ es más fina que cualquier otra topología sobre X.

Más ejercicios. En $X = \mathbb{R}$, sean

$$\tau_+ := \{ A \subseteq \mathbb{R} : \forall x \in A, \exists \varepsilon > 0 \text{ t.q. } (x - \varepsilon, \infty) \subseteq A \},$$

(abiertos semi-infinitos hacia infinito), y

$$\tau_{-} := \{ A \subseteq \mathbb{R} : \forall x \in A, \exists \varepsilon > 0 \text{ t.q. } (-\infty, x + \varepsilon) \subseteq A \},$$

(abiertos semi-infinitos hacia menos infinito).

Probar que $\tau_+ \subseteq \tau_c$ y $\tau_- \subseteq \tau_c$ (τ_c topología canónica de \mathbb{R}), y que $\tau_+ \cap \tau_- = \tau_g$ (topología grosera de \mathbb{R}).

Definición. Sea X no vacío y $\mathscr{A} \subseteq \mathscr{P}(X)$. Denotaremos por $\sigma(\mathscr{A})$ a la **topología inducida por** \mathscr{A} , es decir la intersección de todas las topologías que contienen a \mathscr{A} :

$$\sigma(\mathscr{A}) := \cap \{\tau : \tau \text{ top. en } X, \mathscr{A} \subseteq \tau\}.$$

Además, es la **topología menos fina** (más pequeña) que contiene a $\mathscr A$ (ejercicio).

Por ejemplo,

- 1. Si $\mathscr{A} = \tau$ es topología en X, $\sigma(\tau) = \tau$,
- 2. Si $\mathscr{A} = \{\emptyset, \{0\}\}$ en $X = \{0,1\}$, entonces sólo $\{\emptyset, \{0\}, X\}$ y $\mathscr{P}(X)$ son las topologías que contienen a \mathscr{A} . Luego,

$$\sigma(\mathscr{A}) = \{\emptyset, \{0\}, X\} = \text{Sierpinski.}$$

3. $\sigma(\tau_+ \cup \tau_-) = \tau_c$ (ejercicio).

Último ejemplo: En $X = \mathbb{R}^d$, la topología canónica de CVV:

$$\tau_c := \{ A \subseteq \mathbb{R}^d : \forall x \in A, \exists \varepsilon > 0 \text{ t.q. } B(x, \varepsilon) \subseteq A \},$$

donde $B(x,\varepsilon)$ son las bolas abiertas

$$B(x,\varepsilon) := \{ y \in \mathbb{R}^d : |x-y| < \varepsilon \}, \quad |z| := \sqrt{\sum_{j=1}^d z_j^2}.$$

Notar que au_c equivale a $ilde{ au}_c$, donde

$$\tilde{\tau}_c := \{ A \subseteq \mathbb{R}^d : \forall x \in A, \exists \varepsilon > 0 \text{ t.q. } \overline{B}(x, \varepsilon) \subseteq A \},$$

y donde $\overline{B}(x,\varepsilon)$ son las bolas cerradas

$$\overline{B}(x,\varepsilon) := \{ y \in \mathbb{R}^d : |x-y| \le \varepsilon \}.$$

Esto viene de las desigualdades $B(x,\varepsilon) \subseteq \overline{B}(x,\varepsilon) \subseteq A$ y $\overline{B}(x,\varepsilon/2) \subseteq B(x,\varepsilon) \subseteq A$.

Definición. Dado X conjunto y $d: X \times X \to \mathbb{R}$ función, diremos que d es **distancia o métrica** si se cumple para cualquier $x, y, z \in X$

- 1. $d(x,y) \ge 0$ y $d(x,y) = 0 \implies x = y$.
- 2. d(x,y) = d(y,x).
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

El par (X,d) se denomina **Espacio Métrico**.

Ejemplos:

- 1. $X = \mathbb{R}^d \text{ con } d(x, y) := |x y|$.
- 2. X cualquiera con d(x,y) := 0 si x = y, y d(x,y) = 1 si $x \neq y$. (Verificar!)
- 3. Cualquier espacio vectorial normado (ver próximo slide).

Veremos más ejemplos avanzando en este capítulo.

Un caso particular de espacio normado lo da el **Espacio vectorial normado**. Si X es e.v. sobre un cuerpo \mathbb{K} (\mathbb{R} o \mathbb{C}), una norma sobre X es una función

$$\|\cdot\|: X \to \mathbb{R},$$

tal que para todo $x,y \in X$, $\lambda \in \mathbb{K}$,

- 1. $||x|| \ge 0$, y ||x|| = 0 ssi x = 0.
- $2. ||\lambda x|| = |\lambda|||x||.$
- 3. $||x+y|| \le ||x|| + ||y||$.

Cada norma induce una distancia $d_{\|\cdot\|}(x,y) := \|x-y\|$.

A $(X, \|\cdot\|)$ se le denomina **Espacio Vectorial Normado** (evn).

Ejemplo clásico: $X = \mathbb{R}^d$ con ||x|| := |x| (norma Euclideana).

Todo espacio métrico (X,d) posee una topología asociada, denominada **topología métrica**, definida como

$$\tau_{\textit{dist}} := \{ A \subseteq X \ : \quad \forall x \in A, \exists \varepsilon > 0 \text{ t.q. } B_d(x, \varepsilon) \subseteq A \}.$$

Aquí,

$$B_d(x,\varepsilon) := \{ y \in X : d(x,y) < \varepsilon \}.$$

(igual que en \mathbb{R}^d !)

Próximo video. Topologías 2: bases de abiertos.