Video D8 Análisis: Topología, Espacios de Hausdorff. Redes y Convergencia.

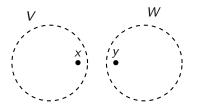
Claudio Muñoz

Curso de Análisis 2021

23 de mayo de 2021

En estos slides veremos de manera más profunda los espacios T2, o de Hausdorff.

Definición. Diremos que (X, τ) es T2 (o de Hausdorff, o separado) si para todo $x \neq y$ existen vecindades disjuntas $V \in \mathcal{N}_x$, $W \in \mathcal{N}_y$.



Primeros resultados. Para (X, τ) et., son equivalentes:

- 1. (X, τ) es Hausdorff.
- 2. Para $x \in X$ e $y \neq x$ existe $V \in \mathcal{N}_x$ con $y \notin \text{adh}(V)$.
- 3. Para todo $x \in X$, $\bigcap \{ adh(V) : V \in \mathcal{N}_x \} = \{x\}$.
- 4. La diagonal $D := \{(x,x) : x \in X\}$ es cerrada en $(X \times X, \tau \otimes \tau)$.

Demostración.

- $1. \implies 2.$ Ejercicio.
- $2. \implies 3.$
- (\supseteq) Si $V \in \mathcal{N}_x$, $x \in V \subseteq adh(V)$. Luego, $x \in \bigcap \{adh(V) : V \in \mathcal{N}_x\}$.
- (⊆) Si $y \in \bigcap \{adh(V) : V \in \mathcal{N}_x\}$ es distinto de x, por hipótesis existe $V \in \mathcal{N}_x$ con $y \notin adh(V)$, contradicción.

$3. \implies 4.$

Probemos que D^c es abierto. Sea $(x,y) \in D^c$, es decir $x \neq y$. Luego, $y \notin \bigcap \{adh(V) : V \in \mathcal{N}_x\}$.

Luego, para cierto, $V \in \mathcal{N}_x$, $y \notin \operatorname{adh}(V)$. Sean A abierto tal que $x \in A \subseteq V$, y $B := (\operatorname{adh}(V))^c$ abierto con $y \in B$. Entonces $A \times B$ es abierto contenido en D^c , y $(x,y) \in A \times B$. OK.

$4. \implies 1.$

Si $x \neq y$, $(x,y) \notin D$. Como D es cerrado, D^c es abierto en $X \times X$. Luego, existen A, B abiertos en τ tales que $(x,y) \in A \times B \subseteq D^c$.

Consecuentemente $x \in A$ e $y \in B$, y $A \cap B = \emptyset$ porque si no lo fuese $A \times B$ intersectariá la diagonal D. OK.

Más propiedades.

- 1. Todo subespacio de un Hausdorff es Hausdorff. (Ejercicio)
- 2. El producto arbitrario de Hausdorff es Hausdorff.

Probemos la segunda afirmación. Sean $(X_{\lambda}, \tau_{\lambda})_{\lambda \in \Lambda}$ Hausdorff, y $X = \Pi_{\lambda \in \Lambda} X_{\lambda}$, con topología $\tau := \bigotimes_{\lambda \in \Lambda} \tau_{\lambda}$.

Sean $x \neq y$ en X. Luego, existe $\lambda \in \Lambda$ tal que $x_{\lambda} \neq y_{\lambda}$. Como X_{λ} es Hausdorff, existen abiertos A_{λ} , B_{λ} disjuntos que contienen a x_{λ} e y_{λ} respectivamente.

El resultado final se obtiene considerando los cilindros abiertos $C_A:=A_\lambda \times \Pi_{\mu\neq\lambda} X_\mu$ y $C_B:=B_\lambda \times \Pi_{\mu\neq\lambda} X_\mu$, que contienen a x e y respectivamente, y que son disjuntos. OK.

Ejercicio. Probar que es un ssi: Π es Hausdorff ssi cada uno es Hausdorff.

Otro ejemplo de espacio que no es Hausdorff.

X = [0,1] con la base de vecindades (abiertas) $(\beta_x)_{x \in [0,1]}$ siguiente:

$$x \in (0,1) \implies \beta_x := \{(x-\varepsilon, x+\varepsilon) \cap [0,1]\}_{\varepsilon > 0}.$$

Si x = 0, 1, tomamos

$$\beta_0 = \beta_1 := \{[0, \varepsilon) \cup (1 - \varepsilon, 1]\}_{\varepsilon > 0}.$$

X con la topología generado no es Hausdorff, porque no puedo separar al 0 del 1. (En realidad, X es muy similar a un círculo, pero no es igual.)

Si X no es Hausdorff, es posible que límite de sucesiones no sean único!

Redes y convergencia.

Resulta que en e.t. arbitrarios, las sucesiones **no son buenas herramientas para medir convergencia** (veremos ejemplos).

En cierta forma, se necesita una mejora (generalización) del concepto de sucesión, para trabajar espacios más generales.

Aquí aparece el concepto de **red**, que naturalmente generaliza el de sucesión.

Definición 1. Sea (Λ, \leq) un conjunto parcialmente ordenado. Diremos que Λ es **dirigido** si para cada $\alpha, \beta \in \Lambda$, existe $\gamma \in \Lambda$ con $\alpha \leq \gamma$ y $\beta \leq \gamma$.

Definición 2. Un subconjunto $B \subseteq \Lambda$ se dice **cofinal** si para todo $\alpha \in \Lambda$, existe $\beta \in B$ con $\alpha \leq \beta$. ("Una subsucesión".)

Ejemplos.

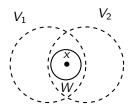
- 1. (\mathbb{N}, \leq) es dirigido, y $2\mathbb{N}$ es cofinal en \mathbb{N} .
- 2. (\mathbb{R}, \leq) es dirigido, pero $(-\infty, 0]$ no es cofinal en \mathbb{R} .
- 3. Todo conjunto cofinal es dirigido (ejercicio).

Otro ejemplo importante: vecindades de un punto como conjunto dirigido.

Sea (X, τ) y $x \in X$ dado. Entonces $\Lambda = \mathcal{N}_x$ con el orden $V \leq W \iff W \subseteq V$ (inclusión inversa) es dirigido.

Es claro que \leq es orden, pero no es total porque no todos los conjuntos están relacionados.

Si $V_1,V_2\in \mathscr{N}_x$, entonces $W:=V_1\cap V_2\in \mathscr{N}_x$ y cumple $V_1\leq W$ y $V_2\leq W$.



Definición. Sea X conjunto y (Λ, \leq) un conjunto dirigido. Una **red** es una función $x : \Lambda \to X$.

Notación: $x = x(\lambda)$ pero es mejor $x = (x_{\lambda})_{\lambda \in \Lambda}$.

Obs. Si $\Lambda = \mathbb{N}$, las llamamos sucesiones.

Ejemplos.

- 1. Cualquier función $f:(\mathbb{R},\leq)\to\mathbb{R}$ es una red.
- 2. En $(\Lambda, \leq) = (\mathscr{P}(X_0), \subseteq)$, para $A \subseteq X_0$, $x_A := 1_A$ es una red con valores en $\mathscr{F}(X, \mathbb{R})$.
- 3. En $X=\{0,1\}$ con la topo de Sierpinski, $\Lambda=\mathcal{N}_1$, entonces $x_V=1$ para $V\in\mathcal{N}_1$ es red a valores en X.

Definición. Sea (X, τ) e.t. Diremos que la red $(x_{\lambda})_{\lambda \in \Lambda} \subseteq X$ **converge** a $\bar{x} \in X$, si

$$\forall V \in \mathscr{N}_{\bar{x}}, \quad \exists \ \lambda_0 \in \Lambda \quad \text{t.q.} \quad \lambda \geq \lambda_0 \implies x_{\lambda} \in V.$$

Ejemplos.

- 1. $x_{\lambda} = \bar{x}$ converge a \bar{x} .
- 2. En $X = \{0,1\}$ con la topo de Sierpinski $\tau = \{\emptyset, \{0\}, X\}$, tomemos $\Lambda = \mathcal{N}_0 = \{\{0\}, X\}$ con la inclusión inversa, y sea la red $x_V = 0$ para $V \in \mathcal{N}_0$.

Entonces $(x_V)_{V \in \mathcal{N}_0}$ converge a ambos, 0 y 1 !!!

En efecto, V=X es la única vecindad de $\bar{x}=1$. Tomando $\lambda_0=\{0\}$, $\lambda=\{0\}\geq \lambda_0$, se tiene $0=x_V\in V=X$.

Pero además, si ahora $\bar{x} = 0$, $V = \{0\}, X$ son vecindades de 0. Tomando $\lambda_0 = \{0\}, \lambda = \lambda_0$, en ambos casos de V uno tiene $0 = x_V \in V$.

Teorema. Si (X, τ) es Hausdorff, entonces toda red $(x_{\lambda})_{\lambda \in \Lambda}$ convergente posee un único límite.

Demostración.

Supongamos x_{λ} converge a \bar{x} y \hat{x} diferentes. Como X es Hausdorff, existen vecindades disjuntas V y W de \bar{x} y \hat{x} , respectivamente.

Por otro lado, existe $\lambda_0 \in \Lambda$ tal que si $\lambda \geq \lambda_0$, $x_{\lambda} \in V$. Además, existe $\lambda_1 \in \Lambda$ tal que si $\lambda \geq \lambda_1$, $x_{\lambda} \in W$.

Como Λ es dirigido, existe $\lambda_2 \in \Lambda$ tal que $\lambda_2 \geq \lambda_0$, $\lambda_2 \geq \lambda_1$. En particular, para $\lambda \geq \lambda_2$, $x_\lambda \in V \cap W$, contradicción.

Más resultados sobre redes.

Teorema. Si (X, τ) es e.t. y $A \subseteq X$, entonces $x \in \text{adh}(A)$ ssi existe una red $(x_{\lambda})_{\lambda \in \Lambda} \subseteq A$ con $x_{\lambda} \to x$.

Demostración.

 (\Longrightarrow) Sea $x \in adh(A)$. Luego, para cualquier $V \in \mathcal{N}_x$, $V \cap A \neq \emptyset$.

Para cada $V \in \mathcal{N}_x$, ordenado con la inclusión inversa, sea $x_V \in V \cap A \subseteq A$.

Luego, $(x_V)_{V \in \mathcal{N}_x}$ es red y converge a x, pues para cada $W \in \mathcal{N}_x$, existe $V_0 := W \in \mathcal{N}_x$ tal que para $V \subseteq V_0$, $x_V \in W$.

(\iff) Sea $(x_{\lambda})_{\lambda \in \Lambda} \subseteq A$ red con $x_{\lambda} \to x$. Luego, para cada $V \in \mathcal{N}_{x}$, existe $\lambda_{0} \in \Lambda$ tal que, si $\lambda \geq \lambda_{0}$, entonces $x_{\lambda} \in V$. Luego, $V \cap A \neq \emptyset$. OK.

Teorema. Si (X, τ) y (Y, σ) son e.t. y $f: X \to Y$ función, entonces f es continua en $\bar{x} \in X$ ssi

$$\forall x_{\lambda} \to \bar{x}, \quad f(x_{\lambda}) \to f(\bar{x}).$$

Demostración.

 (\Longrightarrow) Supongamos f continua en \bar{x} , y sea $x_{\lambda} \to \bar{x}$. PDQ $f(x_{\lambda}) \to f(\bar{x})$.

Sea $W \in \mathscr{N}_{f(\bar{x})}$. Por continuidad, existe $V \in \mathscr{N}_{\bar{x}}$ tal que $f(V) \subseteq W$.

Como $x_{\lambda} \to \bar{x}$, existe $\lambda_0 \in \Lambda$ tal que para $\lambda \geq \lambda_0$, $x_{\lambda} \in V$. Luego, para $\lambda \geq \lambda_0$, $f(x_{\lambda}) \in f(V) \subseteq W$. OK.

(\longleftarrow) Por contradicción, supongamos f no continua en \bar{x} . Luego, existe una vecindad $W \in \mathscr{N}_{f(\bar{x})}$ que para cualquier $V \in \mathscr{N}_{\bar{x}}$, satisface $f(V) \not\subseteq W$.

Para cada $V \in \mathcal{N}_{\bar{x}}$, sea $x_V \in V$ tal que $f(x_V) \notin W$. Pero $x_V \to x$ (con conjunto dirigido $\Lambda = \mathcal{N}_{\bar{x}}$ y orden inverso, ejercicio!!), y $f(x_V)$ no converge a $f(\bar{x})$, porque $f(x_V) \notin W$. Contradicción. OK.

Ejercicios.

- 1. Si f es continua en \bar{x} , entonces $f(x_n) \to f(\bar{x})$ para $x_n \to \bar{x}$ (aquí, $(x_n)_{n \in \mathbb{N}}$ es red con $\Lambda = \mathbb{N}$).
- (Revisar (\Longrightarrow) de la demo anterior y verificar que $\Lambda=\mathbb{N}$ funciona. Ver dónde (\Longleftarrow) no funciona si $\Lambda=\mathbb{N}$.)
- 2. Mostrar que la recíproca no es cierta en general.

En realidad, la implicación contraria es cierta cuando X posee una **base** de vecindades numerable.

Definiciones.

- 1. (X, τ) e.t. se dice que cumple el **primer axioma de numerabilidad (PAN)** si cada punto $x \in X$ posee una base de vecindades β_x numerable.
- 2. (X, τ) e.t. se dice que cumple el **segundo axioma de numerabilidad (SAN)** si τ admite una base de abiertos numerable.

Observaciones. 1. SAN implica PAN (por qué?)

2. Todo espacio métrico satisface el PAN. Basta tomar $\beta_x = \{B(x, \frac{1}{n+1})\}_{n \in \mathbb{N}}$.

Ejercicios. 1. Si (X, τ) es e.t. que satisface el PAN, y $A \subseteq X$, entonces $x \in \text{adh}(A)$ ssi existe una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq A$ con $x_n \to x$.

2. Si (X,τ) y (Y,σ) son e.t., con X satisfaciendo el PAN, y $f:X\to Y$ función, entonces f es continua en $\bar{x}\in X$ ssi

$$\forall x_n \to \bar{x}, \quad f(x_n) \to f(\bar{x}).$$

Definiciones. Dado (X, τ) e.t., y $A \subseteq X$, diremos que A es denso en X si adh(A) = X. Si ahora X posee un denso numerable, diremos que es **separado**.

Ejemplos. $\mathbb R$ es separable (con la topo canónica), porque $\mathbb Q$ es denso numerable.

Teorema. Si (X, τ) es e.t. que satisface el SAN, entonces satisface el PAN y es separable. La recíproca no es cierta en general !!

Ejercicio. Si (X,d) es e.m. separable, entonces satisface el SAN. Hint: Si $D=\{x_1,x_2,\ldots\}$ es denso numerable en X, tomar $\mathscr{B}:=\{B(x_i,\varepsilon): x_i\in D,\ \varepsilon\in\mathbb{Q}_+\}$ y probar que es base de abiertos para τ_d .

Definiciones.

- 1. Sean Λ, Θ dos conjuntos dirigidos. Diremos que $(y_{\theta})_{\theta \in \Theta}$ es una **subred** de $(x_{\lambda})_{\lambda \in \Lambda}$ si
 - 1. Existe $F:\Theta\to\Lambda$ función con $F(\theta)=\lambda$,
 - 2. Para todo $\lambda \in \Lambda$, existe $\theta \in \Theta$ tal que para cualquier $\theta' \ge \theta$, $F(\theta') \ge \lambda$.
- 2. Sea $(x_{\lambda})_{\lambda \in \Lambda}$ una red en (X, τ) e.t. Diremos que $\bar{x} \in X$ es **punto de acumulación** de $(x_{\lambda})_{\lambda \in \Lambda}$ si para cualquier $V \in \mathscr{N}_{x}$, y para cualquier $\lambda \in \Lambda$, existe $\lambda' \in \Lambda$ tal que $x_{\lambda'} \in V$.

Obs. Ojo a la diferencia entre pto. de acumulación y la definición de convergencia!

La próxima clase veremos:

Teorema 1. Si (X, τ) es e.t. y $(x_{\lambda})_{{\lambda} \in \Lambda}$ es una red convergente a \bar{x} , entonces toda subred de $(x_{\lambda})_{{\lambda} \in \Lambda}$ converge al mismo \bar{x} .

Teorema 2. \bar{x} es punto de acumulación de $(x_{\lambda})_{\lambda \in \Lambda}$ ssi existe una subred $(y_{\theta})_{\theta \in \Theta}$ de $(x_{\lambda})_{\lambda \in \Lambda}$ que converge a \bar{x} .

Próximo video. Más sobre redes y convergencia. Ejemplos de e.t.

