Video E1 Análisis: Espacios Métricos 1.

Claudio Muñoz

Curso de Análisis 2021

12 de junio de 2021

Definición. Recordemos que un par (X,d) es un **espacio métrico** (e.m.) si $d: X \times X \to \mathbb{R}$ define una **distancia**, es decir, para todo $x,y,z \in X$,

- 1. $d(x,y) \ge 0$, $d(x,y) = 0 \iff x = y$.
- 2. d(x,y) = d(y,x),
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

Ejemplo. Todo espacio vectorial normado $(X, \|\cdot\|)$ es métrico, donde $d(x,y) := \|x - y\|$.

Obs./Recuerdos. 1. Toda métrica define una topología sobre X, llamada la topología métrica, cuya base de abiertos son las bolas abiertas $B_d(x,\varepsilon) = \{y \in X : d(x,y) < \varepsilon\}.$

2. Todo e.m. satisface el PAN (base de vecindades numerable para cada punto de X), por lo que la convergencia se puede caracterizar por sucesiones.

Definición. Una sucesión $(x_n) \subseteq X$ se dirá de Cauchy si para todo $\varepsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que, si $n, m \ge n_0$, entonces $d(x_n, x_m) < \varepsilon$.

Ejercicio. Toda sucesión convergente es de Cauchy. El converso no es cierto en general, y motiva la siguiente definición.

Definición. Un e.m. se dirá **completo** si toda sucesión de Cauchy converge. Si el espacio es normado completo, diremos que es **Banach**.

Ejemplos. 1. $(\mathbb{R}^d, \|\cdot\|)$ es Banach.

2. $(C([0,1],\mathbb{R}),\|\cdot\|_{\infty})$ es Banach (lo vamos a probar en realidad). Aquí, $\|f\|_{\infty}:=\sup_{x\in[0,1]}|f(x)|$.

Ejemplo importante. $(C([0,1],\mathbb{R}),\|\cdot\|_1)$, donde $\|f\|_1 := \int_0^1 |f(x)| dx$ es evn, pero no es Banach. Sean $f_n(x)$ dada por

$$f_n(x) = \begin{cases} 0, & x \le \frac{1}{2} \\ n(x - \frac{1}{2}), & x \in \left[\frac{1}{2}, \frac{1}{2} + \frac{1}{n}\right] \\ 1 & x \ge \frac{1}{2} + \frac{1}{n}. \end{cases}$$

Cada f_n es continua, (f_n) es de Cauchy, pero no converge puntualmente a una función continua, por lo que no puede ser Banach. Chequear los detalles!

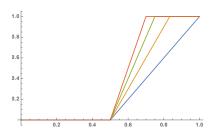


FIGURA: f_2, f_3, f_4, f_5

Teorema (Completación de e.m.). Para cada e.m. (X,d) existe un e.m. completo (X^*,d^*) y una función inyectiva $\varphi:X\to X^*$ tal que

- 1. $\varphi(X)$ es densa en X^* (con la topo. generada por d^*).
- 2. φ es isometría: $d^*(\varphi(x), \varphi(y)) = d(x, y)$ para todo $x, y \in X$. Luego, $\varphi: X \to \varphi(X)$ es biyección.

En otras palabras, todo e.m. es isométrico a un subconjunto denso de un e.m. completo. Además, (X^*, d^*) es único salvo isometría.

Ejemplo básico: $(\mathbb{Q}, |\cdot|)$ no es completo, pero su completación es $(\mathbb{R}, |\cdot|)$. Acá, $\varphi(x) = x$ para $x \in \mathbb{Q}$.

Teorema ultra útil. Sea (X,d) e.m. completo y (F_n) una sucesión de cerrados no vacíos y tales que están encajonados: $F_{n+1} \subseteq F_n$. Si $\operatorname{diam}(F_n) \to 0$, entonces $\bigcap_{n \ge 0} F_n$ es un singleton.

Aquí, diam(A) = $\sup_{x,y \in A} d(x,y)$.

Demostración. Unicidad. Si $x, y \in \bigcap_{n \geq 0} F_n$, están en cada F_n . Pero $d(x,y) \leq \sup_{a,b \in F_n} d(a,b)$ que tiende a cero por dato, luego x = y.

Existencia. Tomemos $x_n \in F_n$. Notar que $(x_m)_{m \ge n} \subseteq F_n$.

Entonces (x_n) es de Cauchy, porque si $m \ge n \ge n_0$, $d(x_n, x_m) \le \sup_{x,y \in F_n} d(x,y)$ que puede ser tan chico como se desee, si n_0 es grande.

Como (X, d) e.m. completo, (x_n) converge a \bar{x} . Pero la subsecesión $(x_m)_{m \ge n}$ está en F_n , y también converge al mismo límite \bar{x} .

Como F_n es cerrado, $\bar{x} \in F_n$ para todo n, lo que prueba el resultado.

Ejercicios.

- 1. El producto numerable de e.m. completos es completo. Ejemplo: $\mathbb{R}^d = \mathbb{R} \times \cdots \times \mathbb{R}$. Ojo a la defn. de la métrica en el caso infinito!
- 2. Si (X,d) es e.m. completo y $F\subseteq X$ es cerrado no vacío, entonces $(F,d|_F)$ es e.m. también.

Teorema. Sea X conjunto e (Y, d) e.m. completo. Para $x_0 \in X$ fijo, definimos

$$\mathscr{B}_{x_0}(X,Y) := \{ f: X \to Y : \sup_{x \in X} d(f(x), f(x_0)) < +\infty \}.$$

Si $d_{\infty}(f,g) := \sup_{x \in X} d(f(x),g(x))$, entonces $(\mathscr{B}_{x_0}(X,Y),d_{\infty})$ es e.m. completo.

Obs. $\mathscr{B}_{x_0}(X,Y)$ es un espacio de funciones acotadas c/r a una referencia fija $f(x_0)$ (podría ser 0, pero 0 no tiene por qué alcanzarse en Y).

Demostración. Ejercicio. Probar que d_{∞} está bien definida y define una métrica.

Probemos la completitud. Sea (f_n) de Cauchy en \mathscr{B}_{x_0} . Luego, $d_{\infty}(f_n, f_m) \to 0$ si $n, m \to \infty$.

Pero para cada $x \in X$, $d(f_n(x), f_m(x)) \le d_{\infty}(f_n, f_m)$, luego, $(f_n(x))$ es de Cauchy en Y, e.m. completo. Por lo tanto, $f_n(x)$ converge a f(x).

Probemos que $f \in \mathcal{B}_{x_0}(X,Y)$. Para ello, notemos que si $m \ge n$ son grandes, $\sup_{x \in X} d(f_n(x), f_m(x)) < 1$.

Luego, para x fijo, $d(f_n(x), f_m(x)) < 1$ (\star). Pasando al límite en m (d es continua!), $d(f_n(x), f(x)) < 1$. Pero si n_0 es fijo,

$$d(f(x), f(x_0)) \le d(f(x), f_{n_0}(x)) + d(f_{n_0}(x), f_{n_0}(x_0)) + d(f_{n_0}(x_0), f(x_0))$$

$$< 1 + C + 1 < \tilde{C}.$$

Esto por (\star) y por $f_{n_0} \in \mathcal{B}_{x_0}(X,Y)$. Pasando al sup en x, se obtiene lo pedido.

Finalmente, probemos $d_{\infty}(f_n,f) \to 0$. Para ello, notemos que si n,m son grandes, $\sup_{x \in X} d(f_n(x),f_m(x)) < \varepsilon$. Tomando x fijo y pasando al límite en m,

$$d(f_n(x), f(x)) < \varepsilon$$
 por lo que $\sup_{x \in X} d(f_n(x), f(x)) < \varepsilon$,

que era lo pedido.

Corolarios. 1. Para (X, τ) e.t. e (Y, d) e.m., $x_0 \in X$, sea

$$\mathscr{BC}(X,Y) := \{ f \in \mathscr{B}_{x_0}(X,Y) : f \text{ es continua} \}.$$

Entonces $\mathscr{BC}(X,Y)$ es cerrado en $\mathscr{B}_{x_0}(X,Y)$ y por ende e.m. completo con d_{∞} . (\mathscr{BC} = "bounded continuous")

2. Si además (X, τ) es compacto, entonces $\mathscr{BC}(X, Y) = \mathscr{C}(X, Y)$ (funciones continuas) y por lo tanto $(\mathscr{C}(X, Y), d_{\infty})$ es e.m. completo.

Demostración. 2. Basta probar \supseteq . Si (X,τ) es compacto y f continua en X, $d(f(x),f(x_0))$ es función continua sobre compacto, por lo que alcanza su máximo (finito). De la parte 1, $(\mathscr{C}(X,Y),d_\infty)$ es e.m. completo.

1. Basta probar $\mathscr{BC}(X,Y)$ cerrado en $\mathscr{B}_{x_0}(X,Y)$ (por qué?).

Sean $(f_n) \subseteq \mathscr{BC}(X,Y)$ y $f \in \mathscr{B}_{x_0}(X,Y)$ tales que $d_{\infty}(f_n,f) \to 0$. PDQ $f \in \mathscr{BC}(X,Y)$, es decir, f es además continua.

Sea $x \in X$ y $\varepsilon > 0$. Probaremos que existe vecindad $V \in \mathcal{N}_X$ tal que $d(f(y), f(x)) < \varepsilon$ si $y \in \mathcal{N}_X$. Primero notemos que si n es grande (pero fijo!),

$$d(f(y), f(x)) \leq d(f(y), f_n(y)) + d(f_n(y), f_n(x)) + d(f_n(x), f(x))$$

$$\leq 2d_{\infty}(f, f_n) + d(f_n(y), f_n(x))$$

$$< \frac{2}{3}\varepsilon + d(f_n(y), f_n(x)).$$

Finalmente, como $f_n \in \mathscr{BC}(X,Y)$, es continua, y por lo tanto existe $V \in \mathscr{N}_X$ tal que $d(f_n(y),f_n(x)) < \frac{1}{3}\varepsilon$ si $y \in \mathscr{N}_X$. Esto concluye la demostración.