Video F5 Análisis: Análisis Funcional V. Operadores Lineales 2 / Hanh-Banach 1.

Claudio Muñoz

Curso de Análisis 2021

5 de junio de 2021

Recordemos que estábamos viendo operadores lineales.

Operadores lineales. Sean E, F evt., $y : E \to F$ lineal (es decir, $L(x+\lambda y) = Lx + \lambda Ly$, para todo $x, y \in E$, $\lambda \in \mathbb{K}$). Un tal L se denomina usualmente **operador lineal**.

Denotábamos $||L|| = \sup_{||x||_{E} \le 1} ||Lx||_{F} = \sup_{||x||_{E} = 1} ||Lx||_{F}$.

Lema. Si E, F son evn. y $L: E \rightarrow F$ es lineal, son equivalentes:

- 1. L es continua (en 0)
- 2. $||L|| < +\infty$
- 3. L es acotada sobre $\overline{B}_E(0,1)$
- 4. L transforma acotado en acotado

Teorema. Sean E, F evn. y

$$\mathscr{LC}(E,F) := \{L : E \to F : L \text{ es lineal continua}\}.$$

Entonces $(\mathcal{LC}(E,F),\|\cdot\|_{E,F})$ es evn., y si F es además Banach, entonces $\mathcal{LC}(E,F)$ también lo es.

Definición muy importante. Sean E evt. con E ev. sobre el cuerpo $\mathbb{K} = \mathbb{R}, \mathbb{C}$. Denotamos por $E^* := \mathscr{LC}(E, \mathbb{K})$ al **espacio dual** de E. Los elementos ℓ de E^* se llaman **funcionales lineales continuos**.

Corolario. Si E es evn., entonces E^* es Banach para la norma $\|\ell\|_* := \sup_{\|x\|_E \le 1} |\ell(x)|$.

Hoy día partiremos con un teorema importante que caracteriza los funcionales lineales sobreyectivos.

Teorema (Aplicación abierta). Sean E,F Banach y $L:E\to F$ lineal continua. Si L es sobreyectiva, entonces es abierta, es decir, envía abierto en abierto. En particular, si L es biyección, entonces su inversa es continua (homeomorfismo).

Observaciones.

- 1. No toda función lineal es abierta. Por ejemplo, $L: \mathbb{R} \to \mathbb{R}$ dada por $Lx \equiv 0$ envía \mathbb{R} en 0 (cerrado no abierto). Pero $L: \mathbb{R} \to \mathbb{R}$ dada por Lx = x es abierta porque es sobreyectiva.
- 2. No confundir L abierta (imagen de abierto es abierto) con L continua, que quiere decir que preimagen de abierto es abierto.

Demostración. Para esta demostración usaremos el siguiente lema técnico. Para la demostración, ver la parte final.

Lema de Robinson. Si E, F son dos evn. con E Banach, y $C \subseteq E \times F$ es convexo cerrado tal que $\Pi_E C$ es acotado. Entonces

$$\operatorname{int}(\Pi_F C) = \operatorname{int}(\overline{\Pi_F C}).$$

Asumamos este lema, y supongamos primero que $L(\overline{B}(0,1)) \in \mathcal{N}_0(\tau_{\|\cdot\|_F})$ (imagen por L de la bola cerrada es vecindad del cero en F). Si esto es cierto, entonces L es abierta.

En efecto, sea $\Theta \in \tau_{\|\cdot\|_E}$; PDQ $L\Theta \in \tau_{\|\cdot\|_F}$.

Sea $\bar{y} \in L\Theta$. Luego, existe $\bar{x} \in E$ tal que $L\bar{x} = \bar{y}$. Como Θ es abierto, existe $\overline{B}(\bar{x}, \varepsilon) \subseteq \Theta$.

Pero $\overline{B}(\bar{x},\varepsilon) = \bar{x} + \varepsilon \overline{B}(0,1)$, de donde $L(\overline{B}(\bar{x},\varepsilon)) = \bar{y} + \varepsilon L(\overline{B}(0,1))$, por lo que si $L(\overline{B}(0,1)) \in \mathscr{N}_0(\tau_{\|\cdot\|_F})$ entonces $L(\overline{B}(\bar{x},\varepsilon))$ es vecindad de \bar{y} , que es lo pedido.

En efecto, para cada $\bar{y} \in L\Theta$, $L(\overline{B}(\bar{x}, \varepsilon))$ es vecindad de \bar{y} , lo que prueba que $L\Theta$ es abierto.

Probemos ahora que $L(\overline{B}(0,1)) \in \mathscr{N}_0(\tau_{\|\cdot\|_F})$. Para ello usaremos Robinson. Sea

$$C := \{(x, Lx) : ||x||_E \le 1\} \subseteq E \times F.$$

Tenemos $\Pi_E C = \overline{B}_E(0,1)$, acotada. Además $\Pi_F C = L(\overline{B}_E(0,1))$.

Por último, C es convexo y cerrado pues L es continua. Por Robinson,

$$\operatorname{int}(L(\overline{B}_E(0,1))) = \operatorname{int}(L(\overline{B}_E(0,1))).$$

Pero $\overline{L(\overline{B}_E(0,1))}$ es convexo cerrado, equilibrado y absorbente (ejercicio). Por ende, como F es Banach, es vecindad del origen.

Esto implica que $L(\overline{B}_E(0,1))$ es vecindad del origen, lo que prueba el resultado.

Teorema (Grafo Cerrado). Sean E, F Banachs y $L: E \to F$ lineal. Entonces L es continua ssi $Gr(L) := \{(x, Lx) : x \in E\}$ es cerrado en $E \times F$.

Demostración. Ejercicio. Hint: Usar aplicación abierta para las proyecciones Π_F y Π_E a partir de Gr(L), y que $L = \Pi_F \circ \Pi_E^{-1}$.

El Teorema de Hanh y Banach.

Este es uno de los teoremas más importantes del Análisis Funcional, y trata sobre **extensión de funcionales lineales** definidos sobre sevs..

En lo que sigue, trabajaremos a valores reales. Una función $p: E \to \mathbb{R}$ se dice **sublineal** si para cada $x,y \in E$ y $\lambda > 0$ se tiene

$$p(x+y) \le p(x) + p(y), \qquad p(\lambda x) = \lambda p(x).$$

(Por ejemplo, la norma $\|\cdot\|$ si E es evn.)

Teorema (Hahn-Banach, versión analítica). Sea E evt. real y $p:E\to\mathbb{R}$ una función sublineal. Sean E_0 sev. de E y $\ell_0:E_0\to\mathbb{R}$ lineal tal que $\ell_0(x)\le p(x)$ para cada $x\in E_0$. Entonces existe $\ell:E\to\mathbb{R}$ lineal que extiende a ℓ_0 , i.e. tal que

$$\ell\Big|_{E_0} = \ell_0, \qquad \ell(x) \le p(x), \quad x \in E.$$

Demostración. La idea es usar Zorn. Sea

$$\mathcal{L}:=\left\{(\ell,F)\ :\ F\text{ es sev. de }E,\ E_0\subseteq F,\quad \ell:F\to\mathbb{R}\text{ lineal}\right.$$

$$\left.\ell\right|_F=\ell_0,\quad \ell(x)\le p(x),\quad x\in F.\right\}$$

Sobre \mathscr{L} colocamos el orden parcial siguiente (ejercicio):

$$(\ell_1, F_1) \leq (\ell_2, F_2) \qquad \Longleftrightarrow \qquad (F_1 \subseteq F_2) \quad \wedge \quad \ell_2 \Big|_{F_1} = \ell_1.$$

La idea es probar que $\mathscr L$ posee elemento maximal (ℓ,F) , y ese elemento satisface F=E.

Notar también que \mathscr{L} es no vacío, pues $(\ell_0, E_0) \in \mathscr{L}$.

Sea $(\ell_{\lambda}, F_{\lambda})_{\lambda \in \Lambda}$ una cadena en \mathscr{L} ; probemos que tiene cota superior.

Definimos la cota superior como $\tilde{F}:=\bigcup_{\lambda\in\Lambda}F_{\lambda}$, y para $x\in\tilde{F}$, sea $\tilde{\ell}(x):=\ell_{\lambda}(x)$ si $x\in F_{\lambda}$.

Chequeemos que ℓ es lineal: si $x,y\in \tilde{F}$, existe λ tal que $x,y\in F_{\lambda}$ (es cadena), por lo que $x+y\in F_{\lambda}$ y se tiene

$$\tilde{\ell}(x+y) = \ell_{\lambda}(x+y) = \ell_{\lambda}x + \ell_{\lambda}y = \tilde{\ell}x + \tilde{\ell}y.$$

Chequear que $\tilde{\ell}(x) \leq p(x)$ para todo $x \in \tilde{F}$. Luego, $(\tilde{\ell}, \tilde{F})$ es cota superior de la cadena $(\ell_{\lambda}, F_{\lambda})_{\lambda \in \Lambda}$ en \mathscr{L} . Por Zorn, existe elemento maximal (ℓ, F) .

Probemos que F = E, lo que concluye el resultado.

Supongamos que F no es E, y existe $x_0 \in F^c$. Sea

$$\hat{F} := \{x + tx_0 : x \in F, t \in \mathbb{R}\}$$

el sev. mínimo que contiene (estrictamente) a F y x_0 . Extendemos ℓ a \hat{F} de la forma

$$\hat{\ell}(x + tx_0) := \hat{\ell}(x) + t\hat{\ell}(x_0) = \ell(x) + tm, \quad m := \ell(x_0) \text{ (libre)}.$$

Notar que $\hat{\ell}$ está bien definida y sigue siendo lineal por construcción. Además, $\hat{\ell}=\ell$ sobre F.

Basta probar que $\hat{\ell} \leq p$ sobre \hat{F} para concluir una contradicción. Para ello, escogeremos el valor de $m = \ell(x_0)$ adecuadamente.

Notemos primeramente que si t=0 no hay nada que probar: $\ell(x) \le p(x)$ por dato.

Supongamos $t \neq 0$. Tenemos ahora que para cualquier $x \in F$, $t \in \mathbb{R}$,

$$\ell(x) + tm \le p(x + tx_0) \iff tm \le p(x + tx_0) - \ell(x).$$

Si t > 0, tenemos

$$m \leq \frac{1}{t}(p(x+tx_0)-\ell(x)) \implies m \leq \inf_{t>0} \frac{1}{t}(p(x+tx_0)-\ell(x)).$$

Si t < 0, tenemos ahora

$$m \ge \frac{1}{t}(p(x+tx_0)-\ell(x)) \implies m \ge \sup_{t<0} \frac{1}{t}(p(x+tx_0)-\ell(x)).$$

Basta entonces probar que

$$\mathsf{sup}_{t < 0, x \in F} \ \frac{1}{t} \big(p\big(x + t x_0 \big) - \ell \big(x \big) \big) \leq \mathsf{inf}_{t > 0, x \in F} \ \frac{1}{t} \big(p\big(x + t x_0 \big) - \ell \big(x \big) \big),$$

(se puede escoger m entre estos dos números).

Sean ahora $x_1, x_2 \in F$, $t_1, t_2 > 0$. Queremos ver que lo siguiente es verdadero:

$$-\frac{1}{t_1}(p(x_1-t_1x_0)-\ell(x_1))\leq \frac{1}{t_2}(p(x_2+t_2x_0)-\ell(x_2)),$$

esto es

$$\ell(t_2x_1+t_1x_2) \leq t_1p(x_2+t_2x_0)+t_2p(x_1-t_1x_0).$$

Pero

$$\ell(t_2x_1+t_1x_2) \leq p(t_2x_1+t_1x_2) = p(t_2(x_1-t_1x_0)+t_1(x_2+t_2x_0)),$$

y usando la subaditividad y positiva homogeneidad de p, se obtiene lo pedido:

$$\ell(t_2x_1+t_1x_2) \leq t_1p(x_2+t_2x_0)+t_2p(x_1-t_1x_0).$$

Esto termina la demostración.

Ejercicio. Si E es evn. con $C\subseteq E$ convexo de interior no vacío, entonces el interior de C es el interior de su adherencia, y su adherencia es la adherencia de su interior. (Pensar en las bolas C=B(0,1) y $\overline{B}(0,1)$ para hacerse una idea.)

Próximo video. Hanh-Banach 2.

Material adicional

Lema de Robinson. Si E,F son dos evn. con E Banach, y $C \subseteq E \times F$ es convexo cerrado tal que $\Pi_E C$ es acotado. Entonces

$$\operatorname{int}(\Pi_F C) = \operatorname{int}(\overline{\Pi_F C}).$$

Demostración. Supongamos $C \neq \emptyset$, sino el resultado es evidente.

Claramente $\operatorname{int}(\Pi_F C) \subseteq \operatorname{int}(\overline{\Pi_F C})$. Probemos la opuesta, que se obtiene de probar antes $\operatorname{int}(\overline{\Pi_F C}) \subseteq \Pi_F C$.

Debemos probar que si $\bar{y} \in \text{int}(\overline{\Pi_F C})$, existe $\bar{x} \in E$ tal que $(\bar{x}, \bar{y}) \in C$, de donde $\bar{y} = \Pi_F(\bar{x}, \bar{y}) \in \Pi_F C$.

Sea $\varepsilon > 0$ tal que $\overline{B}(\overline{y}, \varepsilon) \subseteq \overline{\Pi_F C}$, y tomemos $(x_0, y_0) \in C$ arbitrarios. Definiremos una sucesión $(x_k, y_k) \in C$ de la forma siguiente.

Siempre que $y_k \neq \bar{y}$,

PASO 1 Tomamos
$$\alpha_k := \frac{\varepsilon}{\|y_k - \bar{y}\|}$$
 y $w := \bar{y} + \alpha_k(\bar{y} - y_k)$;

Notar que $w \in \partial \bar{B}(\bar{y}, \varepsilon) \subseteq \bar{B}(\bar{y}, \varepsilon) \subseteq \overline{\Pi_F C}$.

PASO 2 Tomamos
$$(u, v) \in C$$
 tal que $||v - w|| \le \frac{1}{2} ||y_k - \overline{y}||$.

PASO 3 Definimos
$$(x_{k+1}, y_{k+1}) := \frac{\alpha_k}{1 + \alpha_k} (x_k, y_k) + \frac{1}{1 + \alpha_k} (u, v) \in C$$
.

Si el algoritmo se detiene en el paso k, con $y_k = \bar{y}$, tomamos $\bar{x} = x_k$, por lo que $(\bar{x}, \bar{y}) = (\bar{x}, \bar{y}) \in C$ y se tiene $\bar{y} \in \Pi_F C$. Sino, tenemos una sucesión (x_k, y_k) .

Probaremos:

- (1) $y_k \rightarrow \bar{y}$.
- (2) (x_k) es de Cauchy y existe $\bar{x} := \lim_k x_k$.

Si estas dos afirmaciones son ciertas, como $(x_k, y_k) \in C$, se tiene $(\bar{x}, \bar{y}) \in \mathsf{adh}(C) = C$. Luego, $\bar{y} \in \Pi_F C$.

Probemos (1) y (2). Primero,

$$||x_{k+1} - x_k|| = \frac{1}{1 + \alpha_k} ||x_k - u|| \le \frac{1}{\alpha_k} \operatorname{diam}(\Pi_E C) \le M ||y_k - \bar{y}||.$$

Por otro lado,

$$y_{k+1} = \frac{\alpha_k}{1 + \alpha_k} y_k + \frac{v}{1 + \alpha_k}, \qquad \bar{y} = \frac{\alpha_k}{1 + \alpha_k} y_k + \frac{w}{1 + \alpha_k}.$$

Luego,

$$||y_{k+1} - \bar{y}|| = \frac{1}{1 + \alpha_k} ||v - w|| \le ||v - w|| \le \frac{1}{2} ||y_k - \bar{y}||.$$

Recursivamente, $||y_k - \bar{y}|| \le 2^{-k} ||y_0 - \bar{y}|| \to 0$ si $k \to +\infty$.

Luego, $||x_{k+1} - x_k|| \le C2^{-k}$, lo que prueba que es de Cauchy en Banach, luego, converge.