MA3403-3. Probabilidades y Estadística.

Profesor: Servet Martínez. Auxiliar: Sebastián López. Fecha: Jueves 21 de Abril, 2022.

Auxiliar 6: Variables aleatorias.

X	Parámetros	Rango	Densidad
Bernoulli(p)	$p \in [0, 1]$	$\{0,1\}$	$p_X(0) = 1 - p, \ p_X(1) = p$
Binomial(n, p)	$n\in\mathbb{N},p\in[0,1]$	$\{0,1,,n\}$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$
Geométrica(p)	$p \in [0, 1]$	$\{1,2,\} = \mathbb{N} \setminus \{0\}$	$p_X(k) = p(1-p)^{k-1}$
$\mathrm{Poisson}(\lambda)$	$\lambda > 0$	N	$p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

Problemas

P1. Sea $X: \Omega \to I$ una v.a. discreta, $h: I \to J$ una función. Muestre que $h \circ X$ es una v.a. discreta a valores en h(I) tal que:

$$\mathbb{P}(h \circ X = j) = \sum_{i \in I: h(i) = j} \mathbb{P}(X = i)$$

P2. Sean $(X_n : n \in \mathbb{N})$ v.a's independientes, todas distribuidas igual $X_n \sim Bernoulli(p)$. Sea Z una v.a. independiente de todos los X_n , con $Z \sim Poisson(\lambda)$. Pruebe que la v.a.:

$$Y = \sum_{n=0}^{Z} X_n$$

distribuye $Poisson(\lambda p)$.

- **P3.** Suponga que usted tiene un dado equilibrado, que lanza n veces. Calcule la probabilidad de que, de esos n lanzamientos, se obtenga n_1 veces el número 1, n_2 veces el número 2, y así sucesivamente hasta n_6 veces el número 6.
- P4. Sean las familias de intervalos:

$$\mathcal{L}_1 = \{(-\infty, x] : x \in \mathbb{R}\}$$

$$\mathcal{L}_2 = \{(x, y) : x, y \in \mathbb{R}\}$$

Muestre que $\sigma(\mathcal{L}_1) = \sigma(\mathcal{L}_2)$. A esta σ -álgebra se le llama la Sigma álgebra de Borel $\mathcal{B}(\mathbb{R})$.