MA2601-8. Ecuaciones Diferenciales Ordinarias

Profesor: Alexis Fuentes

Auxiliares: Petra Zamorano y Vicente Salinas

Fecha: 26 de Mayo de 2022

Auxiliar 14: SNLA

P1. Considere el SNLA

$$\dot{x_1} = x_2$$

$$\dot{x_2} = -x_1 + \frac{1}{3}x_1^3 - x_2$$

- a) Encuentre todos los puntos críticos del sistema.
- b) Clasifique los puntos críticos de acuerdo a tipo y estabilidad.

P2. Considere el SNLA

$$x' = -3x + y^2 + 2$$
$$y' = x^2 - y^2$$

- a) Encuentre todos los puntos críticos del sistema.
- b) Clasifique los puntos críticos de acuerdo a tipo y estabilidad.

P3. Considere la siguiente ecuación diferencial ordinaria de segundo orden no-lineal que modela la dinámica del desplazamiento angular θ con respecto a la vertical de una varilla flexible con una masa en su extremo que oscila:

$$\theta'' - \frac{1}{2}\theta + \theta^3 + \beta\theta' = 0$$

donde β es un parámetro asociado al sistema físico.

- a) Reescriba la ecuación como un sistema no lineal equivalente en las variables $x = \theta$ e $y = \theta'$. Encuentre los puntos críticos de dicho sistema en función de β .
- b) Si $\beta > 0$ y $\beta \neq 2$, clasifique los puntos críticos según tipo y estabilidad para distintos, valores de β . Haga un gráfico cualitativo de cada uno de ellos.
- c) Si $\beta=0$, pruebe que la función $E(x,y)=8y^2-4x^2+4x^4$ es constante a lo largo de las trayectorias del sistema.