MA2601-8. Ecuaciones Diferenciales Ordinarias

Profesor: Alexis Fuentes

Auxiliares: Petra Zamorano y Vicente Salinas

Fecha: 26 de Mayo de 2022

Auxiliar 12: Repaso C3

P1. Calcule las transformadas inversas de las siguientes funciones en el dominio de Laplace:

a)
$$G(s) = \frac{1}{s^3} + \frac{2}{s^2 - 7} + \frac{4s}{s^2 + 2} + \frac{e^{-2s}}{s}$$
 $c)$ $G(s) = \ln\left(\frac{s - 3}{s + 1}\right)$

c)
$$G(s) = \ln\left(\frac{s-3}{s+1}\right)$$

b)
$$G(s) = \frac{e^{-2s}}{s^2 + 2s - 1}$$

d)
$$G(s) = \frac{1}{(s^2+1)^2}$$

P2. Use transformada de Laplace para resolver la ecuación diferencial

$$y'' - 4y = \begin{cases} 1 & \text{si } 5 \le t \le 20\\ 0 & \text{en otros casos} \end{cases}$$

Sujeta a la condición inicial y(0) = y'(0) = 0.

P3. Use transformada de Laplace para resolver la ecuación integro-diferencial

$$y' + 2y + \int_0^t y(\tau)d\tau = \begin{cases} t & \text{si } 0 \le t < 1\\ 2 - t & \text{si } 1 \le t < 2\\ 0 & \text{si } 2 < t \end{cases}$$

Sujeta a la condición inicial y(0) = 1.

P4. Resuelva el siguiente sistema lineal, especificando su matriz fundamental canónica:

$$X' = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} X + \begin{pmatrix} 0 \\ e^{2t} \\ -e^{2t} \end{pmatrix}, \qquad X(0) = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

1

Resumen de contenidos

Definición (Transformada de Laplace). Sea $f:[0,\infty)\to\mathbb{R}$ una función integrable. Se define la **Transformada de Laplace** de f como

$$\mathcal{L}\left[f\right]\left(s\right) := \int_{0}^{\infty} e^{-st} f(t) dt$$

para aquellos $s \in \mathbb{R}$ tales que la integral anterior converja. En caso que la integral anterior exista para s > c para c algún número que depende de f, se dirá que c es la **asíntota** de la transformada.

Proposición (Linealidad de $\mathcal{L}[\cdot]$). La Transformada de Laplace es un operador lineal (sobre funciones), es decir, para todo par de funciones f y g integrables y $\lambda \in \mathbb{R}$ se tiene

$$\mathcal{L}\left[f + \lambda g\right] = \mathcal{L}\left[f\right] + \lambda \mathcal{L}\left[g\right]$$

Definición (Función de orden exponencial). Sea $f:[0,\infty)\to\mathbb{R}$ una función. Se dirá que f es de **orden exponencial** si existen constantes $M\geq 0$ y $\alpha\in\mathbb{R}$ tales que $|f(t)|\leq Me^{\alpha t}$ para todo $t\geq 0$. Al menor $\alpha\in\mathbb{R}$ que satisfaga lo anterior se le denomina **orden exponencial** de f y en tal caso denotamos \mathcal{C}_{α} al conjunto de todas las funciones de orden exponencial α .

Definición (Convolución de funciones). Sean $f, g \in \mathcal{C}_{\alpha}$ para algún $\alpha \in \mathbb{R}$. Se define la convolución de f y g como la función

$$(f * g)(t) := \int_0^t f(s)g(t-s)ds = \int_0^t f(t-s)g(s)ds$$

Proposición. El producto de convolución es conmutativo, asociativo y distribuye con respecto a la suma en \mathcal{C}_{α} , es decir, para todas $f, g, h \in \mathcal{C}_{\alpha}$ se tienen:

- 1. f * g = g * f (conmutatividad).
- 2. (f * g) * h = f * (g * h) (asociatividad).
- 3. f * (g + h) = f * g + f * h (distributividad sobre la suma en \mathcal{C}_{α}).

Teorema (Lerch). Si f y g son funciones de orden exponencial tales que $\mathcal{L}[f] = \mathcal{L}[g]$, entonces f = g (salvo, quizás, en la unión de puntos de discontinuidad de f y g).

Definición (Antitransformada de Laplace). Sean $f:[0,\infty)\to\mathbb{R}$ y $\rho:(s,\infty)\to\mathbb{R}$ funciones, donde f es de orden exponencial y s es la asíntota de la transformada de f, tales que $\mathcal{L}[f]=\rho$. Entonces f se llama la **antitransformada** (de Laplace) de la función ρ y lo denotamos $\mathcal{L}^{-1}[\rho]=f$. El operador $\mathcal{L}^{-1}[\cdot]$ de antitransformada está bien definido gracias al Teorema de Lerch y es lineal.

f(t)	$\mathcal{L}\left[f\right]\left(s\right)$	f(t)	$\mathcal{L}\left[f\right]\left(s\right)$
$e^{\lambda t}$	$\frac{1}{s-\lambda}$	$t \operatorname{sen}(wt)$	$\frac{2ws}{(s^2+w^2)^2}$
$H_a(t)$	$\frac{e^{-as}}{s}$	$e^{\sigma t}\operatorname{sen}(wt)$	$\frac{w}{(s-\sigma)^2 + w^2}$
$P_{ab}(t)$	$\frac{e^{-as} - e^{-bs}}{s}$	$e^{\sigma t}\cos(wt)$	$\frac{s-\sigma}{(s-\sigma)^2+w^2}$
$t^k e^{\lambda t}$	$\frac{k!}{(s-\lambda)^{k+1}}$	$\operatorname{senh}(wt)$	$\frac{w}{s^2 - w^2}$
sen(wt)	$\frac{w}{s^2 + w^2}$	$\cosh(wt)$	$\frac{s}{s^2 - w^2}$
$\cos(wt)$	$\frac{s}{s^2 + w^2}$	$\delta_a(t)$	e^{-as}

Cuadro 1: Transformadas de Laplace más importantes.

Proposición (Propiedades de la Transformada de Laplace). Sean $f:[0,\infty)\to\mathbb{R}$ y $g:[0,\infty)\to\mathbb{R}$ funciones de orden exponencial e integrables, y $a\in\mathbb{R}$. Entonces se tienen las siguientes propiedades:

1. Transformada de Laplace de las derivadas. Para todo $n \in \mathbb{N}$, se tiene que

$$\mathcal{L}[f^{(n)}](s) = s^{n}\mathcal{L}[f](s) - \sum_{k=0}^{n-1} s^{n-1-k} f^{(k)}(0^{+})$$

2. Transformada de Laplace de una primitiva.

$$\mathcal{L}\left[\int_{a}^{t} f(u)du\right](s) = \frac{1}{s}\mathcal{L}\left[f\right](s) - \frac{1}{s}\int_{0}^{a} f(u)du$$

3. Traslación en el dominio temporal.

$$\mathcal{L}\left[H(t-a)f(t-a)\right](s) = e^{-as}\mathcal{L}\left[f\right](s)$$

4. Traslación en el dominio de frecuencias.

$$\mathcal{L}\left[f(t)\right](s-a) = \mathcal{L}\left[e^{at}f(t)\right](s)$$

5. Derivadas de la Transformada de Laplace.

$$\frac{d^n}{ds^n} \mathcal{L}\left[f(t)\right](s) = (-1)^n \mathcal{L}\left[t^n f(t)\right](s)$$

6. Integral de la Transformada de Laplace.

$$\int_{0}^{s} \mathcal{L}\left[f\right](u)du = -\mathcal{L}\left[\frac{f(t)}{t}\right](s) + \int_{0}^{\infty} \frac{f(t)}{t}dt$$

7. Transformada de Laplace de funciones periódicas. Si f es T-periódica, entonces

$$\mathcal{L}\left[f\right]\left(s\right) = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$$

8. Transformada de Laplace de una convolución.

$$\mathcal{L}\left[f*g\right](s) = \mathcal{L}\left[f\right](s)\mathcal{L}\left[g\right](s)$$

Observaciones:

- La Tranformada de Laplace es un operador que actúa **sobre funciones** y entrega **otra función**. Tener muy presente que los objetos $\mathcal{L}[f]$ y $\mathcal{L}[f](s)$ no son lo mismo: el primero es la Transformada de Laplace de f, y el segundo es la Transformada de Laplace de f evaluada en s.
- Cada vez que se escribe $\mathcal{L}[f(t)](s)$ en lugar de $\mathcal{L}[f](s)$ se está cometiendo un **abuso de notación**, pues f denota a la función y f(t) es la función evaluada en t. Cometemos este abuso de notación solamente para reconocer fácilmente la función a la que le estamos calculando su Transformada de Laplace. Por esto, $\mathcal{L}[f(t)]$ siempre debe entenderse como $\mathcal{L}[f]$, y es esta última notación la más formal o rigurosa.
- Las Transformadas de Laplace más importantes se adjuntan en la Tabla 1 y adquieren tal calificativo por constituir la base para el cálculo de transformadas más difíciles, con ayuda de las propiedades de $\mathcal{L}[\cdot]$.
- La Transformada de Laplace convierte **ecuaciones diferenciales** en **ecuaciones algebrai- cas**. Nos despojamos del enfoque típico de los capítulos anteriores, es decir, aplicaremos $\mathcal{L}\left[\cdot\right]$ en nuestras EDO y despejaremos la transformada de nuestra función incógnita, para concluir calculando la antitransformada de la expresión resultante.
- Dado lo anterior, es muy útil (nuevamente) tener presente el procedimiento de descomposición en fracciones parciales.
- Gracias a Pablito Zuñiga por su resumen < 3