Departamento de Ingeniería Matemática MA2001-4 Cálculo en Varias Variables

Profesor: Angel Pardo

Otoño 2022

Auxiliar 7: TVM y Derivadas de Orden Superior

Auxiliares: Martín Berríos, Luciano Villarroel

Recordemos el Teorema del Valor medio en \mathbb{R}^n : Si $f: \Omega \subseteq \mathbb{R}^n \longrightarrow \mathbb{R}$ es diferenciable y $[a,b] \subseteq \Omega$, entonces $\exists c \in (a,b)$ tal que

$$f(b) - f(a) = \langle \nabla f(c), b - a \rangle$$

En clase se vio como corolario que si $\Omega \subseteq \mathbb{R}^n$ es $convexo^1$ y $f : \Omega \longrightarrow \mathbb{R}$ es una función diferenciable tal que $\nabla f(x) = 0$ para todo $x \in \Omega$, entonces f es constante.

P1. Considere $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ definida por

$$f(x) = \begin{cases} 1 & , x > 0 \\ -1 & , x < 0 \end{cases}$$

Pruebe que $\forall x \in \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$, f'(x) = 0, pero f no es constante. ¿Por qué esto no contradice el corolario anterior?

Para la siguiente pregunta, es útil el caso particular² de la regla de la cadena que vimos en la auxiliar pasada: Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ y $g: \mathbb{R}^n \longrightarrow \mathbb{R}$ son diferenciables, entonces $\forall j = 1, \ldots, n$:

$$\frac{\partial (g \circ f)}{\partial x_j}(x_0) = \sum_{i=1}^m \frac{\partial g}{\partial x_i}(f(x_0)) \frac{\partial f_i}{\partial x_j}(x_0)$$

Recordemos también el Teorema de Schwarz: Si f es de clase C^2 , se tiene la igualdad de derivadas cruzadas³

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

P2. Sea $\Omega \subseteq \mathbb{R}^2$. Para $f: \Omega \longrightarrow \mathbb{R}$ de clase C^2 , se define su laplaciano como

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Considere coordenadas polares $(r, \theta), r > 0$ y $\theta \in [0, 2\pi)$ y

$$x = r\cos(\theta)$$
 y $y = r\sin(\theta)$

Muestre que si escribimos f en coordenadas polares $\varphi(r,\theta) = f(r\cos(\theta), r\sin(\theta))$, su laplaciano en estas coordenadas viene dado por

$$\Delta f = \frac{\partial^2 \varphi}{\partial r^2} + \frac{1}{r} \frac{\partial \varphi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \varphi}{\partial \theta^2}$$

¹Recuerde que Ω es convexo si $\forall a, b \in \Omega, [a, b] \subseteq \Omega$

 $^{^2 {\}rm Lo}$ particular de este caso es que el espacio de llegada es $\mathbb{R}.$

³Recuerde que f es de clase C^2 si sus derivadas de segundo orden existen y además son continuas.