MA1001-3 Introducción al Cálculo

Profesores: Cristián Reyes R

Auxiliares: Sebastián López T., Gonzalo Salas V.

Auxiliar 9: Sucesiones

25 de Mayo de 2022

P1. Muestre por definición que la sucesión

$$a_n = \sqrt{3 - \frac{1}{n^2}}$$

converge a $\sqrt{3}$.

P2. Calcule los siguientes límites:

(a)
$$\lim_{n\to\infty} \frac{1}{n+\sin(n^2)}$$
.

(b)
$$\lim_{n\to\infty} \frac{a_n+n}{n\cdot a_n^2+1}$$
, con $a_n\to l>0$.

(c)
$$\lim_{n\to\infty} \frac{\sqrt[3]{n^2}\sin(n!)}{n+1}$$
.

(d)
$$\lim_{n\to\infty} \frac{2^{n+1}+3^{n+1}}{2^n+3^n}$$
.

P3. Considere la sucesión $(P_n)_{n\in\mathbb{N}}$ definida por:

$$P_0 > 0, \quad P_{n+1} = \frac{b \cdot P_n}{a + P_n},$$

donde a, b son constantes positivas.

- (a) Demuestre que si (P_n) es convergente, los únicos valores a los que puede converger son 0 y b-a.
- (b) Pruebe que si a > b, entonces (P_n) es decreciente y converge a 0.
- (c) Suponga que a < b y $0 < P_0 < b a$. Pruebe que $0 < P_n < b a$ $\forall n \in \mathbb{N}$, que (P_n) es creciente y determine el límite de (P_n) .