P_{1}
Auxiliar 4

Comsidetc $\quad y=x^{2} \quad A=(1,0)$

$$
y=m x \operatorname{tn}:=L
$$

a) Enitonces lo que me pides os intorsectat la tecta com la parábolo

- Se que la testa pasa por A

$$
\begin{aligned}
& \Rightarrow(1,0) \in L \Rightarrow y=m x+n \Rightarrow 0=m+m \\
& \Rightarrow m=-m
\end{aligned}
$$

$$
\Rightarrow y=m x-m
$$

Intor sectando $\Rightarrow m x-m=x^{2}$
$0=x^{2}-m x+m$ Intersección.
Como quiero 10 más $^{G} \Rightarrow \Delta \geqslant 0 \quad$ Recondemos que si $\Delta \geqslant 0$ La cuadratioa. tiom 201 soluciór.
b) $m \in \mathbb{R}$. $\operatorname{sea} P \wedge Q$ pontos da intarsección.

$$
\begin{aligned}
& f(x)=x^{2}=m x+m \rightarrow \text { su sulución } \Leftrightarrow x^{2}-m x-m= \\
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} ; a=1 ;-m=b ;-m=c \\
& \\
& \text { Calculo } M \text { com di punto }
\end{aligned}
$$

Calculo M con al punto modio de

$$
X_{1,2}=\frac{m \pm \sqrt{m^{2}+4 m}}{2} \Rightarrow \frac{X_{1}+X_{2}}{2}=X_{M}
$$

\qquad posdo calcolot

$$
\Rightarrow \frac{\frac{m+\sqrt{m^{2}+4 m}}{2}+\frac{m-\sqrt{m^{2}+4 m}}{2}}{2}
$$ - M solo sacamro punto matio.

Liverecimiontogs ecomotente.

$$
X_{M}=\frac{2 m}{4}=\left(\left.\frac{m}{2} \Rightarrow \underset{\substack{2 \\ \text { reomplaza } \\ \text { decta } y \text { o } \\ \text { st co }}}{ } \quad y_{M} \quad \right\rvert\, y_{M}=m \cdot \frac{m}{2}-m=\frac{m^{2}-2 m}{2}\right]
$$

$$
\begin{aligned}
& 0=x^{2}-m x+m \\
& a=1, b=-m, c=m \\
& \Delta=b^{2}-4 a c=m^{2}-4 \cdot 1 \cdot m \\
& \text { otta petábola } \begin{aligned}
&=m^{2}-4 m \geqslant 0 \\
& m(m-4) \geqslant 0 \\
& \text { Oesto es uma parábola }
\end{aligned} \\
& \Rightarrow m^{2}-4 m \leq 0 \text { si } m \in[0,4] \\
& m^{2}-4 m 0^{7 \prime} 0 \text { si } m^{m} \in(-\infty, 0] \cup[4,004) \text {. } \\
& C=\frac{(-\infty, 0] \cup[4,00+1 / \pi}{1 R}
\end{aligned}
$$

Hatemos una comstrucción Para la próximaparto!
Sea $\quad y=a x^{2}+b x+c, a \neq 0, a, b, c \in \mathbb{Q}$.
sabemos que Vértice es $\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right)=\left(x_{0}, y_{0}\right)$
duego la esctibitemos de la forma

$$
y-y_{v}=\frac{1}{4 p}\left(x-x_{0}\right)^{2}
$$

Tomemos !!!

$\rightarrow R_{E} \in$ cotormas $(z+w)^{2}=z^{2}+2 z \omega+\omega^{2}$
Haganos esta forma

$$
\begin{aligned}
& x^{2}+\frac{b}{a} x+\frac{c}{a} \\
& \downarrow \quad \downarrow
\end{aligned}
$$

$$
\Rightarrow \begin{aligned}
& z^{2}=x^{2} \\
& z=x
\end{aligned} \quad 2 z \omega=\frac{b}{a} x
$$

$\operatorname{comoz}=x$

$$
\begin{aligned}
& 2 \not x w=\frac{b}{a} x \\
& y=\overbrace{x^{2}}^{z^{2}}+2 \cdot \frac{b}{2 a} x+\frac{w^{2}}{2 a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=\frac{\omega=\frac{b}{2 a}}{\left(x-\frac{b}{2 a}\right)^{2}+\frac{-b^{2}+4 a c}{4 a^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& y=\left[\left(x-\frac{-b}{2 a}\right)^{2}+\frac{-b^{2}+4 a c}{4 a^{2}}\right] a \\
& y=a\left(x-\frac{-b}{2 a}\right)^{2}+\frac{-b^{2}+4 a c}{4 a} \\
& y-(\underbrace{\frac{-b^{2}+4 a c}{4 a}}_{y_{0}})=a\left(x-\left(\frac{-b}{2 a}\right)\right)^{2} \\
& y-y_{0}=\frac{1}{4 p}\left(\frac{1}{4 a}\right) \\
& \left.d x-\left(\frac{-b}{2 a}\right)\right)^{2} \Leftrightarrow y-y_{0}=\frac{1}{4 p}\left(x-x_{0}\right)^{2} \\
& p:=\frac{1}{4 a} V\left(x_{0}, y_{0}\right) \quad\left(x_{0}, x_{0}+p\right) \quad y=y_{0}-p
\end{aligned}
$$

Cosficiente Vatice foco Direatiz

c) ¿Qué recotte M?

Con esto dejamos
Seque $X_{M}=\frac{m}{2} \Rightarrow 2 X_{M}=m \mathrm{~m}$ como conocido Gin fumaión $d_{G} X_{M}$

$$
\begin{aligned}
y_{M}=m x_{M}-m & =2 x_{M} \cdot x_{M}-2 x_{M} \\
\mid y_{M} & =2\left(x_{M}^{2}-x_{M}\right) \mid \rightarrow \\
y & =2 x^{2}-2 x \\
a=2, b=-2 ; c & =0 \\
V\left(\frac{-b}{2 a}, f\left(\frac{-b}{2 a}\right)\right) & =V\left(\frac{2}{24}, f\left(\frac{-b}{2 a}\right)\right) \\
& \left.=V\left(\frac{1}{2},-\frac{1}{2}\right)\right)
\end{aligned}
$$

$$
\rightarrow \text { Parábla }
$$

quedescribe
X_{4}, y_{M} I|l

\#Recorkanos $p=\frac{1}{4 a}=\frac{1}{8}$ \# Ver tesumen duego $x_{F}, y_{F}+p$ parábolas.
foco $\left(\frac{1}{2},-\frac{1}{2}+\frac{1}{8}\right)=\left(\frac{1}{2},-\frac{3}{8}\right)$
$\left(x_{0}, y_{0}+p\right)$
Sirectriz. $\quad y=y_{f}-p=-\frac{1}{2}-\frac{1}{8}=-\frac{4}{8}-\frac{1}{8}=-\frac{5}{8} / 1$

$$
y=y_{0}-p
$$

Terminamos!
walquier duda a mi correo pyanez@dim. uchile.cl

