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" 3.5 Supervised Modeling II.

" Bayesian Classifiers (Naive Bayes).
® Support Vector Machines.
" Ensemble Methods.

" 3.6 Unsupervised Modeling.
" Definitions.
® K-means
" Hierarchical model
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3.5 Supervised Modeling I1
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Disclaimer

" This presentation has slides adapted from Tan et al., 2019, while some were made by Angel Jiménez.

" Tan, P, Steinbach, M., Rumar, V. (2019). Introduction to Data Mining, Pearson Higher Education.

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



Bayesian Classifiers
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Bayes Classifier

" A probabilistic framework for solving classification problems

" Conditional Probability:

Py Ly = PEGD)
P(X)
pox 17y PEGD)
P(Y)
" Bayes theorem:
Py ) - PE NP

P(X)




Using Bayes Theorem for Classification

® Consider each attribute and class label as random
variables

" Given a record with attributes (X, X,,..., X,), the
goal 1s to predict class Y

" Specitically, we want to find the value of Y that maximizes
P(Y| X, X,,..., X4)

" Can we estimate P(Y | X, X,,,..., X, ) directly from
data?
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Using Bayes Theorem for Classification

" Approach:
" Compute posterior probability P(Y | X, X,, ..., X,) using the Bayes theorem

" Maximum a-posteriorz: Choose Y that maximizes P(Y | X,, X,, ..., Xy)

" Equivalent to choosing value of Y that maximizes P(X,, X,, ..., X4|Y) P(Y)

" How to estimate P(X, X,, ..., X4 | Y )?

Source: Tan et al., 2019
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Example Data

Given a Test Record: X =(Refund = No, Divorced, Income =120K)

Tid Refund Marital Taxable .
Status  Income Evade ® We need to estimate

1 |Yes Single  [125K  |No " P(Evade = Yes | X) and P(Evade = No | X)
2 |No Married |100K No
3 [No Single 70K No . .
" In the following we will replace

4 |Yes Married |120K No

. Evade = Yes by Yes, and
9 |No Divorced |95K Yes
6 |No  |Married |60K  [No Evade = No by No
7 |Yes Divorced |220K No
8 |[No Single 85K Yes
9 |No Married |75K No
10 |No Single 90K Yes

Source: Tan et al., 2019
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Example Data

Given a Test Record: X =(Refund = No, Divorced, Income =120K)

Tid Refund Marital Taxable
Status Income Evade

1 |Yes |Single 125K  |No Using Bayes Theorem:

2 |No Married | 100K No

3 [No Single 70K No H P(Yes | X) - P(X | Ylf(s))(;)(Yes)

4 |Yes Married |120K No

5 |No Divorced |95K Yes (] P(No | X) = P(X| l;gz;)(No)

6 [No Married |60K No

7 |Yes Divorced 220K No

I Single | 85K Yes How to estimate P(X | Yes) and P(X | No)?
9 [No Married |75K No

10 |No Single 90K Yes

Source: Tan et al., 2019
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Conditional Independence

" X and Y are conditionally independent given Z if P(X|YZ) = P(X|Z)

" Example: Arm length and reading skills
" Young child has shorter arm length and limited reading skills, compared to adults.
" If age 1s fixed, no apparent relationship between arm length and reading skills.

" Arm length and reading skills are conditionally independent given age.

Source: Tan et al., 2019
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Naive Bayes Classifier

" Assume independence among attributes X, when class is given:
p 8 8
® Now we can estimate P(X;| Y;) for all X; and Y; combinations from the training data

® New point is classified to Y;if P(Y;) IT P(X;] Y;) is maximal.

Source: Tan et al., 2019
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Naive Bayes on Example Data

Given a Test Record: X = (Refund = No, Divorced, Income =120K)

Tid Refund Marital Taxable
Status Income Evade
P(X | Yes) =

1 |Yes Single 125K No
P(Refund = No | Yes) x
2 |No Married |[100K No _
P(Divorced | Yes) x
3 |No Single 70K No
_ P(Income = 120K | Yes)
4 |Yes Married |120K No
9 |No Divorced |95K Yes
. P(X|No) =
6 |No Married |60K No
_ P(Refund = No | No) x
7 |Yes Divorced |220K No _
_ P(Divorced | No) x
8 [No Single 85K Yes
P(Income = 120K | N
9 |No Married |75K No ( come 0 | O)
10 |No Single 90K Yes

Source: Tan et al., 2019
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Estimate Probabilities from Data

Tid Refund Marital Taxable

Status  Income Evade " P(y) = fraction of instances of class y, e.g.:
1 |Yes Single  |125K No " P(No)=17/10
2 |No Married |100K  |No " P(Yes) = 3/10
3 No Single 70K No
. ] ] .= =

4 |Yes Married | 120K No For categorical attrll?utes, P(X; c.| y)=n./ n |

: > " Where | X, =c| 1s number of instances having
> [No Divorced | 95K s attribute value X; =c and belonging to class y.
6 No Married |60K No
7 |Yes Divorced |220K No " Examples:
8 |No Single 85K Yes " P(Status=Married | No) = 4/7
9 |No Married |75K No " P(Retund=Yes| Yes)=0
10 [No Single 90K Yes

Source: Tan et al., 2019
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Estimate Probabilities from Data

® For continuous attributes:

" Use discretization, l.e., partition of the range into bins:

" Replace continuous value with bin value (attribute changed from continuous to ordinal)

" Probability density estimation:
® Assume attribute follows a normal distribution.
" Use data to estimate parameters of distribution, e.g., mean and standard deviation.

" Once probability distribution 1s known, use it to estimate the conditional probability P(Xi|Y).

Source: Tan et al., 2019
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Estimate Probabilities from Data

Tid Refund Marital Taxable " Normal distribution:
Status Income Evade
(Xi_/ui')z
1 |Yes Single 125K No 1 _sz
_ i
2 |No Married [100K  |No P(X, |Y]) = S €
3 |No Single 70K No 72-01']'
4 Yes Married |120K No
5 No Divorced |95K Yes C < .
" One for each (X1,Y1) pair.
6 No Married |60K No
7 Yes Divorced |220K No
| " For (Income, Class=No):
8 No Single 85K Yes
9 No Married |[75K No " [t Class=No
10 |No Single 90K Yes ® Sample mean = 110

® Sample variance = 2975

1 (120-110)?

P(Income =120| No) = 27(54.54) e ™ =0.0072
7 (54.

Source: Tan et al., 2019
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Numeric Example of Naive Bayes Classifier

Given a Test Record: X = (Refund = No, Divorced, Income =120K)

" Naive Bayes Classifier: " P(X | No) = P(Refund=No | No)
" P(Refund = Yes | No) = 8/7 x P(Divorced | No)
" P(Refund = No | No) = 4/17 X P(Income:lQOK | No)
" P(Refund = Yes | Yes) =0 = 4/7 X 1/7 X 0.0072 = 0.0006

" P(Refund = No | Yes) =1

" P(Marital Status = Single | No) = 2/7

" P(Marital Status = Divorced | No) = 1/7 " P(X | Yes) = P(Refund=No | Yes)

® P(Marital Status = Married | No) = 4/7 x P(Divorced | Yes)

" P(Marital Status = Single | Yes) =2/3 X P(Income:]QOK | Yes)

u P(Marital Status = Divorced | YGS) =1/3 — 1X1/89%X1.2X%X 10-9 =4 X 10-10
" P(Marital Status = Married | Yes) = 0

® Since P(X|No)P(No) > P(X| Yes)P(Yes)

" For Taxable Income: ® Therefore P(No|X) > P(Yes|X) => Class = No

" [t class = No, sample mean = 110, sample variance = 2975
" It class = Yes, sample mean = 90, sample variance = 25

Source: Tan et al., 2019
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Naive Bayes Classifiers can make decisions with partial information about

attributes in the test record

" Even in absence of information about any attributes, we can use Apriori Probabilities of Class Variable, 1.e.:
" P(Yes)=3/10
" P(No)=7/10.

" If we only know that marital status is Divorced, then:
" P(Yes | Divorced) = 1/3 x 8/10 / P(Divorced)
" P(No | Divorced) = 1/7 x 7/10 / P(Divorced)

" If we also know that Refund = No, then:
" P(Yes | Refund = No, Divorced) = 1 x 1/3 x 8/10 /P(Divorced, Refund = No)
" P(No | Refund = No, Divorced) = 4/7 x 1/7 x 7/10 /P(Divorced, Refund = No)

" If we also know that Taxable Income = 120, then:

" P(Yes | Refund = No, Divorced, Income = 120) =1.2 x10° x 1x 1/38 x 8/10 / P(Divorced, Refund = No, Income =
120)

" P(No | Refund = No, Divorced Income = 120) = 0.0072 x 4/7 x 1/7 x 7/10 /P(Divorced, Refund = No, Income =
120)

Source: Tan et al., 2019
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[ssues with Naive Bayes Classifier

Given a Test Record: X = (Married)

" Naive Bayes Classifier:

P(Refund = Yes | No) = 8/7

P(Refund = No | No) = 4/7

P(Refund = Yes | Yes) =0 P(Yes) = 3/10

P(Refund = No | Yes) =1
(Marital Status = Single | No) = 2/7 P(No) =17/10
(Marital Status = Divorced | No) = 1/7
(
(
(
(

P(Marital Status = Married | No) = 4/7 i )
P(Y M d)=0x3/10/ P(M d
P(Marital Status = Single | Yes) = 2/83 ( €S | arrie ) x 8/ / ( arrie )

P(Marital Status = Divorced | Yes) = 1/3 P(No | Married) = 4/7 x 7/10 / P(Married)
P(Marital Status = Married | Yes) = 0

E E E E E E E N EHE N
o T

" For Taxable Income:
® It class = No, sample mean = 110, sample variance = 2975
" If class = Yes, sample mean = 90, sample variance = 25

Source: Tan et al., 2019
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[ssues with Naive Bayes Classifier

Consider the table with Tid = 7 deleted

Naive Bayes Classifier:

Tid Refund Marital Taxable
Status Income Evade P(Refund = Yes | No) = 2/6

P(Refund = No | No) = 4/6

No D o 5 K Yes P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0/3
For Taxable Income:

(
(
(
(
P(Marital Status = Single | No) = 2/6
(
(
(
(

1 Yes Single 125K No % P(Refund = Yes | Yes) =0

2 |No Married |100K  [No P(Refund = No | Yes) = 1

B N© Single 70K No » P(Marital Status = Divorced | No) =0
4 |Yes Married |120K No P(Marital Status = Married | No) = 4/6
)

6

No Married 60K No

8 |No Single 85K Yes It class = No: sample mean = 91

_ sample variance = 685
R No [ETHEC 75K e [t class = No: sample mean = 90
10 |No Single 90K Yes sample variance = 25

Given X = (Retund = Yes, Divorced, 120R)

P(X | No)=2/6 X 0 X 0.0083 =0
!
P(X | Yes) =0X 1/3X 1.2 X 107 =0 Yes or No!

Naive Bayes will not be able to classify X as

Source: Tan et al., 2019
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[ssues with Naive Bayes Classifier

" It one of the conditional probabilities is zero, then the entire expression becomes zero

" Need to use other estimates of conditional probabilities than simple fractions.

" Probability estimation:

original: P(X; = cly) = %
" n: number of training instances belonging to class y.
no+1 " nc: number of instances with Xi =cand Y = .
Laplace Estimate: P(X; = c|y) = nC+ v ® v: total number of attribute values that Xi can take.
" p: initial estimate of (P(Xi = ¢|y) known apriori.
m — estimate: P(X; = c|y) = n;l-.:—?nw " m: hyper-parameter for our confidence in p.

Source: Tan et al., 2019
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Numeric Example of Naive Bayes Classifier

Name Give Birth Can Fly |Live in Water| Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes |yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark |yes no yes no non-mammals
turtle no no sometimes |yes non-mammals
penguin no no sometimes |yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander |no no sometimes |yes non-mammals
gila monster |no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly [Live in Water| Have Legs Class
yes no yes no ?

Angel Jiménez M. -

DII (Department of Industrial Engineering)

A: attributes
M: mammals

N: non-mammals

PA|M)y=2x2x2 %% ~0.06
7777777
PAIN)=Lx 1053 4 60042
13713713 13

P(A| M)P(M)=0.06x 270 =0.021

P(A| N)P(N) = 0.004 x ;f) =0.0027

P(A|M)P(M) > P(A |N)P(N) => Mammals

Source: Tan et al., 2019

- University of Chile



Naive Bayes (Summary)

Robust to isolated noise points

Handle missing values by ignoring the instance during probability estimate calculations

Robust to irrelevant attributes

Redundant and correlated attributes will violate class conditional assumption
" Use other techniques such as Bayesian Belief Networks (BBN)

Source: Tan et al., 2019
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Naive Bayes

" How does Naive Bayes perform on the following dataset?

20 T T T T T T T T T

Source: Tan et al., 2019
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Bayesian Beliet Networks

" Provides graphical representation ot probabilistic relationships

among a set of random variables.

" Consists of a directed acyclic graph (DAG):
" Each node corresponds to a variable.

" Each arc corresponds to dependence relationship between

a pair of variables.

" A probability table associating each node to its immediate

parent.

Source: Tan et al., 2019
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Conditional Independence

D is parent of C
A is child of C

B is descendant of D

D is ancestor of A

" A node in a Bayesian network 1s conditionally independent of all of its nondescendants, if its
parents are known.

Source: Tan et al., 2019
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Conditional Independence

" Naive Bayes assumption:

Xy Xy Xy Xy mm (X

Source: Tan et al., 2019
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Probability Tables

" If X does not have any parents, table contains prior probability P(X).
" If X has only one parent (Y), table contains conditional probability P(X|Y)

" If X has multiple parents (Y, Y,,..., Y}), table contains conditional probability
PX|Y,, Ys,-.., Yy

Source: Tan et al., 2019
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Example of Bayesian Beliet Network
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Exercise=Yes 0.7 Diet=Healthy 0.25
Exercise=No 0.3 Diet=Unhealthy | 0.75
D=Healthy |D=Healthy |D=Unhealthy |D=Unhealthy
E=Yes E=No E=Yes E=No
0.25 0.45 0.55 0.75
0.75 0.55 0.45 0.25
Blood
Pressure
HD=Yes|HD=No HD=Yes|HD=No
CP=Yes 0.8 0.01 BP=High 0.85 0.2
CP=No 0.2 0.99 BP=Low 0.15 0.8

Source: Tan et al., 2019




Numeric Example of Inferencing using BBN

" Given: X = (E=No, D=Yes, CP=Yes, BP=High)
" P(HD |E,D,CPBP) ?

" P(HD=Yes| E=No,D=Yes) = 0.55 ™
P(CP=Yes| HD=Yes) = 0.8
P(BP=High| HD=Yes) = 0.85

- P(HD=Yes| E=No,D=Yes,CP=Yes,BP=High)
o€ 0.55 X 0.8 X 0.85 = 0.374 Classife X

assify

=" P(HD=No| E=No,D=Yes) = 0.45 > as Yes
P(CP=Yes| HD=No) = 0.01

P(BP=High| HD=No) = 0.2

- P(HD=No | E=No,D=Yes,CP=Yes,BP=High)
o€ 0.45 X 0.01 X 0.2 = 0.0009 /

Source: Tan et al., 2019
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Support Vector Machines
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Ensemble Methods

" Construct a set of base classifiers learned from the training data

" Predict class label of test records by combining the predictions made by multiple classifiers (e.g., by taking
majority vote)

Source: Tan et al., 2019
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Example: Why Do Ensemble Methods Work?

® Suppose there are 25 base classifiers
— Each classifier has error rate, € = 0.35
— Majority vote of classifiers used for classification
— If all classifiers are identical:
¢ Error rate of ensemble = € (0.35)

— If all classifiers are independent (errors are
uncorrelated):

¢ Error rate of ensemble = probability of having more
than half of base classifiers being wrong

25 95 | |
Censemble — Z ( : )ez(l - 6)25_Z = 0.06

: 1
1 =13

Source: Tan et al., 2019
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Necessary Conditions for Ensemble Methods

" Ensemble Methods work better than a single base classifier if:

1. All base classitfiers are independent ot each other.

2. All base classifiers perform better than random guessing
(error rate < 0.5 for binary classification)

-

D N o

Classification error for an ensemble
R T e e of 25 base classifiers, assuming
their errors are uncorrelated.

N W s

© o 0o o o 9o o o ©
3

Ensemble classifier error

' | I |
0 0.2 04 ] _0.6 08 1
Base classifier error

Source: Tan et al., 2019
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Rationale for Ensemble Learning

®" Ensemble Methods work best with unstable base classifiers.

" Classifiers that are sensitive to minor perturbations in training set, due to hzgh model complexity
" Examples: Unpruned decision trees, artificial neural networks, etc.

Source: Tan et al., 2019
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Bias-Variance Decomposition

" Analogous problem of reaching a target y by firing projectiles from z (regression
problem)

/\
y VN
/\
Yavg Yavg
<> <>
Variance Noise
N /
NG

Bias

" For classification, the generalization error of model m can be given by:

gen.error(m) = c¢; + bias(m) + c,Xvariance(m)

Source: Tan et al., 2019
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Bias-Variance Trade-oft and Overfitting

o «>
Overfitti ng Low Bias
< >
High Variance
@ 7
ol
Low Vari
Underfitting T HighBies .

" Ensemble methods try to reduce the variance of complex models (with low bias) by
aggregating responses of multiple base classifiers

Source: Tan et al., 2019
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General Approach of Ensemble Learning

@ Training Data

v
+ v v v
Step 1:

v
v

Step 2:
Combine
Classifier Resposes

Using majority vote or
welghted majority vote
(weighted according to their
accuracy or relevance)

Source: Tan et al., 2019
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Constructing Ensemble Classifiers

" By manipulating training set.

" Example: bagging, boosting, random forests.

" By manipulating input features.

" Example: random forests.

" By manipulating class labels.

" Example: error-correcting output coding.

" By manipulating learning algorithm.

" Example: injecting randomness in the initial weights of artificial neural network (ANN)

Source: Tan et al., 2019
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Bagging (Bootstrap Aggregating)

" Bootstrap sampling: sampling with replacement

Original Data 1 2 3 4 3 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 S 10 5 5 9 6 3 7

® Build classitfier on each bootstrap sample.

" Probability of a training instance being selected in a bootstrap sample is:
"1—(1-1/n)" (n: number of training instances)
" ~0.632 when n 1s large.

Source: Tan et al., 2019
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Bagging Algorithm

Algorithm 4.5 Bagging algorithm.

: Let k be the number of bootstrap samples.
: for 2 =1 to k£ do

Create a bootstrap sample of size N, D;.

Train a base classifier C; on the bootstrap sample D,.
end for

. C*(z) = arg;nax > 0(Ci(x) =v).

{6(-) = 1 if its argument is true and 0 otherwise.}

Source: Tan et al., 2019
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Bagging Example

® Consider 1-dimensional data set:

Original Data:

X 0.1 02 ( 0.3 | 04 )05 ]| 06 |07 |08 09 1
y 1 1 1 -1 -1 -1 -1 1 1 1

" Classifier 1s a decision stump (decision tree of size 1)

" Decision rule: x <k versus x > k
® Split point k is chosen based on entropy

True False

Yieft Vright

Source: Tan et al., 2019
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Bagging Example

Bagging Round 1:

x 1011021021 03] 041]04]059]06])097]09] ,__g355y=1
vy 1 13 1114313113 -1]-1]-1] 1] 1] x>0353y=-

Bagging Round 2:

=0.7>y=1
x Jo1jo2jo3josajobfosfoo) 1 1 11 11 755770
oy 11 1+ 311+ 4114317131111 1

Bagging Round 3: <= 035y =1
. x J 01 ] 02Q)03fJo4Jo4Jo5]Jo07]o7]jos8]fo9] x>0335Iy=-
-y j1i11p1i1 1] 1] 13173131971

Bagging Round 4:

x<=03=2>y=1
x J 01)01p02]041]04]05]105]07]081]09] y5039y=1
oy 111+ y1 413131313 q1yo1

Bagging Round 5: x<=0.353y=1

x 1 01101402]05)061]06]06]) 1) 11 1] x>035>y=-1
vy 1 1114195193193 -19]-1] 1] 1] 1

Source: Tan et al., 2019
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Bagging Example

Bagging Round 6:
_x ] 021041051 06]07)07]07]08})09] 1

x<=0.75=2>y=-1

I B N I N I N N N D DI Py ey

Bagging Round 7:

x J 011041021067 07108109105 09 1 ] x:=0753y=-
vy 1 1+ {14193 -] -14q 1414y 13 1]1] THPFY

Bagging Round 8:

X 1011023051051 051 071071081091 1 1 > o>uy
vy 1 1+1 1413131114143 131711

Bagging Round 9:

_x $01103]041041063 071073081 1 ] 1 | xs=0755y=-
vy 1 13 111313131313 131751 ey

Bagging Round 10:
(kK JOTToT o T 07T 0505080809 00] xs=0053y=1
.y § 11 13141413151 y1qyryo1 my

Source: Tan et al., 2019
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Bagging Example

® Summary of Trained Decision Stumps:

Left Class JRight Class

o o
W ~

N

_Round
6
A
8
9
10

A
LY QLY QEELY QLY QRN ! ! ! — !
— el — —
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Bagging Example

" Use majority vote (sign of sum of predictions) to determine class of ensemble classifier:

Round | x=0.1]x=0.2] x=0.3] x=0.4] x=0.5] x=0.6] x=0.7§ x=0.8] x=0.9] x=1.0
2 J+Jj+J1 4yt J 1t J 1 J 1 31010 1]
HEETE N N N N N N N N e
4 J 1+ J1 1 jJ1 31131431 Q1414 -1
5 j 1117 J1 194111 J] 1431 p 17310 -1
6 1 1] 1413141431431 Q1014 1]
s J 11 11134111 J 1431 Q1310 1]
9 |1 11]1 1414y 14131431 Q1414 1]
Sum | 2 J 21 2} 6] 61 61 6121 2 ]| 2|
Predicted

Class

" Bagging can also increase the complexity (representation capacity) of simple classifiers
such as decision stumps.

Source: Tan et al., 2019
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Boosting

" An iterative procedure to adaptively change distribution of training data by focusing
more on previously misclassified records.

" Initially, all N records are assigned equal weights (for being selected for training)
" Unlike bagging, weights may change at the end of each boosting round

Source: Tan et al., 2019
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" Records that are wrongly classified will have their weights increased in the next round

" Records that are classified correctly will have their weights decreased in the next round

Original Data
Boosting (Round 1)
Boosting (Round 2)

1 2

7 3

5 4
Boosting (Round 3) @ @

OIOIN|W
oo~
N |O|O
—
o
WlHA|O|©

7 10
4 3
1 2
@] s O]

.
o
|-

* Example 4 1s hard to classify.

* [ts weight is increased, therefore it is more
likely to be chosen again in subsequent rounds.

Source: Tan et al., 2019
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AdaBoost

" Base classifiers: C,, C,, ..., Ct

® Error rate of a base classifier:

N
1 .
_ E (1)
€; —N - 1VVj 5(Cl(x]) iy])
J=

In ((1-¢)/¢)

" Importance of a classitier:

| l1—¢
o, =—In| —
2 g

l

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



AdaBoost Algorithm

" Weight update:
O (e _
L _ W e ifGi(n) =
J Zi \e“i if Cl(x]) +* y]

Where Z; is the normalization factor

" [f any intermediate rounds produce error rate higher than 50%, the weights are reverted
back to 1/n and the resampling procedure is repeated

B Classification:
T

C*(x) = arg maxz a;0(C;i(x) =y)

Y =1

Source: Tan et al., 2019
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AdaBoost Algorithm

Algorithm 4.6 AdaBoost algorithm.
1. w={w; =1/N|j=1,2,...,N}. {Initialize the weights for all N examples.}
2: Let k£ be the number of boosting rounds.
3: fori=1to k do

4:  Create training set D; by sampling (with replacement) from D according to w.

5:  Train a base classifier C; on D;.

6: Apply C; to all examples in the original training set, D.

6= [Z; w; 6(Ci(x;) #yj)| {Calculate the weighted error.}

8: if ¢, > 0.5 then

9: w={w;=1/N|j=1,2,...,N}. {Reset the weights for all N examples.}
10: Go back to Step 4.
11: end if

12: ;=32 ln —£

13: Update the Welght of each example according to Equation 4.103.
14: end for

15: C*(x) = argmaxz _, 2;0(C(x) =y)).

Yy

Source: Tan et al., 2019
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AdaBoost Example

® Consider 1-dimensional data set:

Original Data:

X 0.1 02 1 03 |04 05|06 |07 | 08| 0.9 1
y 1 1 1 -1 -1 -1 -1 1 1 1

" Classifier 1s a decision stump

" Decision rule: x <fversus x >k
" Split point k 1s chosen based on entropy

True False

Yieft Y right

Source: Tan et al., 2019
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AdaBoost Example

" Training sets for the first 3 boosting rounds:

Boosting Round 1:

® Summary:

Source: Tan et al., 2019
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AdaBoost Example

" Weights

_Round | x=0.1]x=0.2] x=0.3] x=0.4] x=0.5] x=0.6 ] x=0.7  x=0.8 ] x=0.9§ x=1.0

0.311§0.31140.311
0.029]0.029]0.029] 0.228] 0.228] 0.228] 0.228] 0.009] 0.009] 0.009

B Classification

x=0.7 x=0.8] x=0.9 x=1.0
Predicted

Class

Source: Tan et al., 2019
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Random Forest Algorithm

" Construct an ensemble of decision trees by manipulating training set as well as features.

" Use bootstrap sample to train every decision tree (similar to Bagging)

" Use the following tree induction algorithm:
" Atevery internal node of decision tree, randomly sample p attributes for selecting split criterion
" Repeat this procedure until all leaves are pure (unpruned tree)

Source: Tan et al., 2019
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Characteristics of Random Forest

® Base classifiers are unpruned trees and hence
are unstable classifiers

® Base classifiers are decorrelated (due to
randomization in training set as well as features)

® Random forests reduce variance of unstable
classifiers without negatively impacting the bias

® Selection of hyper-parameter p
— Small value ensures lack of correlation
— High value promotes strong base classifiers

— Common default choices: Vd, log,(d + 1)

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



Gradient Boosting

® Constructs a series of models

" Models can be any predictive model that has a difterentiable loss function
® Commonly, trees are the chosen model
" XGboost (extreme gradient boosting) is a popular package because of its impressive performance

" Boosting can be viewed as optimizing the loss function by iterative functional gradient
descent.

" Implementations of various boosted algorithms are available in Python, R, Matlab, and
more.

Source: Tan et al., 2019
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3.6 Unsupervised Modeling
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What 1s Cluster Analysis?

" Glven a set of objects, place them in groups such that the objects in a group are similar
(or related) to one another and different from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized
minimized

Source: Tan et al., 2019
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Applications of Cluster Analysis

Discovered Clusters Industry Group

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,
1 Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,

[ ]
" Understanding
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,

" Group related documents for browsing, Natl-Semiconduct-DOWN,Orack DOWN,SGL-DOWN,

roup genes and proteins that have similar o) Apple-Comp-DOWN, Autodesk-DOWN, DEC-DOWN,

unctionality, or group stocks with similar B opulor-ASSoe DOWN Cireu City DOWN,

1 Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
p rice ﬂ uc t u atl ons Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN Financial-DOWN

Technologyl-DOWN

Technology2-DOWN

)

Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 0il-UP
Schlumberger-UP

NN

" Summarization
" Reduce the size of large data sets

Clustering precipitation
in Australia

Source: Tan et al., 2019
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Notion of a Cluster can be Ambiguous

e o + *
®e o LIPS o * 4
o ® ® o o © DU g
°® o0 © vV oo O
o o0 v o0
How many clusters? Six Clusters
oy A + *
m ¥ A, +t %
mE AA A vy 00 ©
m A A v 0
Two Clusters Four Clusters

Source: Tan et al., 2019
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Types of Clusterings

" A clustering is a set of clusters
" Important distinction between hierarchical and partitional sets of clusters

" Partitional Clustering

" A division of data objects into non-overlapping subsets (clusters)

" Hierarchical clustering

" A set of nested clusters organized as a hierarchical tree

Source: Tan et al., 2019
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Partitional Clustering

Original Points A Partitional Clustering

Source: Tan et al., 2019
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Hierarchical Clustering

pl
’ ™
pl p2 p3p4

Traditional Hierarchical Clustering Traditional Dendrogram

pl p2  p3p4

Non-traditional Hierarchical Clustering  Non-traditional Dendrogram

Source: Tan et al., 2019
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Other Distinctions Between Sets of Clusters

® Exclusive versus non-exclusive

" In non-exclusive clusterings, points may belong to multiple clusters.

" Can belong to multiple classes or could be ‘border’ points

" Fuzzy clustering (one type of non-exclusive)

" In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
" Weights must sum to 1

" Probabilistic clustering has similar characteristics

" Partial versus complete

" In some cases, we only want to cluster some of the data

Source: Tan et al., 2019
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Types ot Clusters

" Well-separated clusters

" Prototype-based clusters

" Contiguity-based clusters

" Density-based clusters

" Described by an Objective Function

Source: Tan et al., 2019
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Types ot Clusters: Well-Separated

" Well-Separated Clusters:

" A cluster 1s a set of points such that any point in a cluster is closer (or more similar)
to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters

Source: Tan et al., 2019
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Types ot Clusters: Prototype-Based

" Prototype-based

" A cluster is a set of objects such that an object in a cluster is closer (more similar) to
the prototype or “center” of a cluster, than to the center of any other cluster

" The center of a cluster 1s often a centroid, the average of all the points in the cluster,
or a medoid, the most “representative” point of a cluster

4 center-based clusters

Source: Tan et al., 2019
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Types of Clusters: Contiguity-Based

" Contiguous Cluster (Nearest neighbor or Transitive)

" A cluster 1s a set of points such that a point in a cluster is closer (or more similar) to
one or more other points in the cluster than to any point not in the cluster.

.........

8 contiguous clusters

Source: Tan et al., 2019
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Types ot Clusters: Density-Based

" Density-based

" A cluster is a dense region of points, which 1s separated by low-density regions, from
other regions of high density.

" Used when the clusters are irregular or intertwined, and when noise and outliers are
present.

6 density-based clusters

Source: Tan et al., 2019
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Types of Clusters: Objective Function

" Clusters Defined by an Objective Function
" Finds clusters that minimize or maximize an objective function.

" Enumerate all possible ways of dividing the points into clusters and evaluate the

“goodness” of each potential set of clusters by using the given objective function.
(NP Hard)

" Can have global or local objectives.
" Hierarchical clustering algorithms typically have local objectives
" Partitional algorithms typically have global objectives
" A variation of the global objective function approach is to fit the data to a
parameterized model.
" Parameters for the model are determined from the data.

® Mixture models assume that the data 1s a ‘mixture' of a number of statistical distributions.

Source: Tan et al., 2019
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Characteristics of the Input Data Are Important

" Type of proximity or density measure
" Central to clustering
" Depends on data and application

" Data characteristics that affect proximity and/or density are
" Dimensionality
" Sparseness
" Attribute type
" Special relationships in the data
" For example, autocorrelation
" Distribution of the data

® Noise and Outliers

" Often interfere with the operation of the clustering algorithm

" Clusters of diftering sizes, densities, and shapes

Source: Tan et al., 2019
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Clustering Algorithms

® K-means and 1ts variants
" Hierarchical clustering

" Density-based clustering

Source: Tan et al., 2019

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



K-means Clustering

" Partitional clustering approach

" Number of clusters, K, must be specitied

" Each cluster 1s associated with a (center point)

" Each point is assigned to the cluster with the closest centroid

® The basic algorithm is very simple

: Select K points as the initial centroids.
repeat
Form K clusters by assigning all points to the closest centroid.

Recompute the centroid of each cluster.

until The centroids don’t change

Source: Tan et al., 2019
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Example of K-means Clustering

lteration 6

3 ¢ ¢
®»
¢

s
.| ’00 K

00 0““

1.5}
- ¢ 000 0 ‘
¢ ¢ ¢
1+ ¢
¢
0.5
|
OF ‘ #I
|

X Source: Tan et al., 2019
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Example of K-means Clustering

lteration 1 lteration 2 lteration 3
3r * * 3r * * 3r * *
* *
250 0“03 o Q' L ] 250 0“0%70 0’ L2 250 0“‘: * 0’ L 3
2 "‘".3 2 3 3 | o ;n%n 3
V w8 » 6:%2“;‘ R SR
» o * 2904
1.5+ » "‘ 1.5+ .’ " 15} "’ " "
> > % > *
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. L4 * .
1t 1t 1t
. + .
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i i i i -K. - i i i i i i i -K. - i i i i i i i -K. - i i
2 15 1 05 0 05 1 15 2 2 15 1 05 0 05 1 15 2 2 15 1 05 0 05 1 15 2
X X X
lteration 4 lteration 5 lteration 6
3 ¢ 0 3 ¢ 0 3 ¢ 0
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10 10 . 10 .

. . .
0.5 0.5 0.5

Source: Tan et al., 2019




K-means Clustering — Details

Simple iterative algorithm.
" Choose initial centroids
" Repeat {assign each point to a nearest centroid; re-compute cluster centroids}
" Until centroids stop changing.
Initial centroids are often chosen randomly.
" Clusters produced can vary from one run to another

The centroid 1s (typically) the mean of the points in the cluster, but other definitions
are possible (see Table 7.2).

K-means will converge for common proximity measures with appropriately defined
centroid (see Table 7.2)

Most of the convergence happens in the first few iterations.
" Often the stopping condition 1s changed to ‘Until relatively few points change clusters’
Complexityis O(n* R *1* d)
" n = number of points, K = number ot clusters,
[ = number of 1terations, d = number of attributes

Source: Tan et al., 2019
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K-means Objective Function

" A common objective function (used with Euclidean distance measure) is Sum of
Squared Error (SSE)

" For each point, the error is the distance to the nearest cluster center

" To get SSE, we square these errors and sum them.
K
SSE = Z Za’ist2 (m;,x)
i=1 xeC;

" x1s a data point in cluster C; and m; 1s the centroid (mean) for cluster G

" SSE improves In each iteration of K-means until it reaches a local or global
minima.

Source: Tan et al., 2019
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids ...
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Importance of Choosing Initial Centroids
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Importance of Choosing Intial Centroids

" Depending on the choice
of 1nitial centroids, B and

C may get merged or
remain separate.
& C

Source: Tan et al., 2019

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



Problems with Selecting Initial Points

" If there are K ‘real’ clusters then the chance of selecting one centroid from each
cluster 1s small.

" Chance 1s relatively small when K 1s large

" [f clusters are the same size, n, then

number of ways to select one centroid from each cluster KInk K!

P -

KK

number of ways to select K centroids B (Kn)K

" For example, if K = 10, then probability = 10!/10'° = 0.00036

" Sometimes the initial centroids will readjust themselves in right” way, and
sometimes they don’t

"  Consider an example of five pairs of clusters

Source: Tan et al., 2019
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10 Clusters Example

Starting with two initial centroids in one cluster of each pair of clusters

Source: Tan et al., 2019
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10 Clusters Example

lteration 1 lteration 2
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other
have only one.

Source: Tan et al., 2019

Angel Jiménez M. - DII (Department of Industrial Engineering) -  University of Chile



10 Clusters Example

Iteration 2
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

" Multiple runs
" Helps, but probability is not on your side

" Use some strategy to select the k initial centroids and then select among these 1nitial
centroids

" Select most widely separated

" K-means++ is a robust way of doing this selection

® Use hierarchical clustering to determine initial centroids

" Bisecting K-means

" Not as susceptible to initialization issues

Source: Tan et al., 2019
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K-means++

This approach can be slower than random initialization, but very consistently produces
better results in terms of SSE

" The k-means++ algorithm guarantees an approximation ratio

O(log k) in expectation, where k 1s the number of centers

To select a set of 1nitial centroids, C, perform the following:

1.
2.
3.

Select an 1initial point at random to be the first centroid
For k - 1 steps

For each of the N points, x;, 1 £ i < N, find the minimum squared

distance to the currently selected centroids, C;, .., C; 1 < 7 < k,

i.e.,mind?( C;, x; )
J
Randomly select a new centroid by choosing a point with probability
m_ind2( Cj’ X )
proportional to L 1s
Zimjlnd ( G5y x5 )

End For

Source: Tan et al., 2019
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Bisecting K-means

" Bisecting K-means algorithm

® Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.

2: repeat

3.  Select a cluster from the list of clusters

4 for : =1 to number_of _iterations do

5: Bisect the selected cluster using basic K-means
6 end for

7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.

8: until Until the list of clusters containg K clusters

CLUTO: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

Source: Tan et al., 2019
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Bisecting K-means Example

Source: Tan et al., 2019
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Limitations of K-means

" K-means has problems when clusters are of differing
" Sizes
" Densities

" Non-globular shapes

" K-means has problems when the data contains outliers.

" One possible solution 1s to remove outliers before clustering

Source: Tan et al., 2019
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Limitations of K-means: Differing Sizes

3r 3L

4 5 2 a0 1 2 & 4 4 5 2 a4 0 1 2 3 4
X X

Original Points K-means (3 Clusters)

Source: Tan et al., 2019
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Limitations of K-means: Differing Density
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Source: Tan et al., 2019
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)

Source: Tan et al., 2019
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Overcoming K-means Limitations

3 3tk
4 3 2 1 0 1 2 3 A 4 3 2 1 0 1 2 3 4
X X
Original Points K-means Clusters

One solution i1s to find a large number of clusters such that each of
them represents a part ot a natural cluster. But these small clusters

need to be put together in a post-processing step.

Source: Tan et al., 2019
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to find a large number of clusters such that
each of them represents a part ot a natural cluster. But these
small clusters need to be put together in a post-processing step.

Source: Tan et al., 2019
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Overcoming K-means Limitations

15F 15k

101 101

-15 10 15 -15 10 15

Original Points K-means Clusters

One solution is to find a large number of clusters such that each of
them represents a part ot a natural cluster. But these small clusters
need to be put together in a post-processing step.

Source: Tan et al., 2019
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Hierarchical Clustering

" Produces a set of nested clusters organized as a hierarchical tree

" Can be visualized as a dendrogram

" A tree like diagram that records the sequences of merges or splits

0.21

0.15¢

0.1}

0.05}

Source: Tan et al., 2019
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Strengths of Hierarchical Clustering

" Do not have to assume any particular number of clusters

" Any desired number of clusters can be obtained by ‘cutting’ the dendrogram at the
proper level

" They may correspond to meaningful taxonomies

" Example 1n biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Source: Tan et al., 2019
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Hierarchical Clustering

" Two main types of hierarchical clustering
" Agglomerative:

® Start with the points as individual clusters

" At each step, merge the closest pair of clusters until only one cluster (or k
clusters) left

" Divisive:
" Start with one, all-inclusive cluster

" At each step, split a cluster until each cluster contains an individual point (or there
are k clusters)

" Traditional hierarchical algorithms use a similarity or distance matrix
" Merge or split one cluster at a time

Source: Tan et al., 2019
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Agglomerative Clustering Algorithm

" Key Idea: Successively merge closest clusters

" Basic algorithm
1. Compute the proximity matrix
. Let each data point be a cluster
. Repeat
Merge the two closest clusters

Update the proximity matrix

o U1 i W I

.Until only a single cluster remains

" Key operation 1s the computation of the proximity of two clusters

" Different approaches to defining the distance between clusters distinguish the
different algorithms

Source: Tan et al., 2019
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Steps 1 and 2

® Start with clusters of individual points and a proximity matrix

p1 | p2 | p3 | p4|pd
p1
p2
O O O p3
o o .
O :
O Proximity Matrix
O
O O O o

p1 p2 p3 p4 p9 p10 p11 p12

Source: Tan et al., 2019
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Intermediate Situation

" After some merging steps, we have some clusters

Angel Jiménez M. -

C1|C2| C3| C4 |C5

C1

C2
C3

C5

Proximity Matrix

* T *
| I

W !

p1 p2 p10 p11 p12

Source: Tan et al., 2019
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Step 4

" We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

c1|c2| c3| calcs

C1

C2
‘ c3

C4

C5

Proximity Matrix

XXy
.................
o e
.
. ®e
. .
. .
. .
® .

.................... [1 800

p1 p2 p3 p4 P9 p10 p11 p12

Source: Tan et al., 2019
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Step 5

" The question 1s “How do we update the proximity matrix?”

Angel Jiménez M. -

c2
U
c1| cs5| c3 | ca
c1 ?
caucs| | ?| 7| ?
c3 ?
C4 ?

Proximity Matrix
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How to Define Inter-Cluster Distance

p1 | p2 p3 p4 | p5
p1
Similarity?
“ > p2
p3
p4
pS
" MIN
" MAX
® Group Average
" Distance Between Centroids Proximity Matrix

® Other methods driven by an objective
function.

" Ward’s Method uses squared error

Source: Tan et al., 2019
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How to Define Inter-Cluster Similarity

" MIN
" MAX

® Group Average

® Distance Between Centroids

® Other methods driven by an objective

function.

" Ward’s Method uses squared error

Angel Jiménez M. -
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How to Define Inter-Cluster Similarity

" MIN
" MAX
® Group Average

® Distance Between Centroids

® Other methods driven by an objective

function.

" Ward’s Method uses squared error
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How to Define Inter-Cluster Similarity

" MIN
" MAX

" Group Average

® Distance Between Centroids

® Other methods driven by an objective

function.

" Ward’s Method uses squared error
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" MIN
" MAX

® Group Average

How to Define Inter-Cluster Similarity

® Distance Between Centroids

® Other methods driven by an objective

function.

" Ward’s Method uses squared error
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MIN or Single Link

" Proximity of two clusters 1s based on the two closest points in the different clusters
" Determined by one pair of points, 1.e., by one link in the proximity graph

" Example:

0.6 _"" """""""""""""" '
. 1 Distance Matrix:
1
04l 25 - pl | p2 | p3 | p4 | p5 | pb
i *2 pl [0.00 |0.24 | 022[0.37]0.34]0.23
0.3 b 3 e p2 [ 0.24 [ 0.00 [0.15 [ 0.20 | 0.14 [ 0.25
p3 | 0.2210.15 [0.00 [ 0.15 [ 0.28 [ 0.11
L B T S B pd [ 0.37 [0.20 [ 0.15 [ 0.00 [ 0.29 [ 0.22
01 I R p5 | 0.34 [0.14 [ 0.28 [ 0.29 | 0.00 | 0.39
p6 | 0231025 [ 0.11 [ 0.22 [ 0.39 | 0.00
% 0.2 0.4 0.6

Source: Tan et al., 2019
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Hierarchical Clustering: MIN
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Strength of MIN
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* Can handle non-elliptical shapes

Source: Tan et al., 2019
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Limitations
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MAX or Complete Linkage

" Proximity of two clusters 1s based on the two most distant points in the difterent clusters
" Determined by all pairs of points in the two clusters

06 [T :
‘1 Distance Matrix:
R
04 5 pl p2 p3 p4 p5 p6
ol o2 .

| | | pl | 0.00 | 024 | 022 | 0.37 | 0.34 | 0.23
0.3 e 8B G p2 | 0.24 [0.00 [ 0.15 [ 0.20 | 0.14 | 0.25
: | : p3 | 022 [0.15 | 0.00 | 0.15 | 0.28 | 0.11
| | | pd | 0.37 [ 0.20 [ 0.15 | 0.00 | 0.29 | 0.22
0.1 e e o p5 034014 [028[0.29[0.00]0.39

5 | p6 | 0.23 | 0.25 | 0.11 | 0.22 | 0.39 | 0.00

e Hi©

Source: Tan et al., 2019
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Hierarchical Clustering: MAX
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Group Average

" Proximity of two clusters 1s the average of pairwise proximity between points in the two

clusters.
> proximity(p,,p;)
pie%IIustteri
- - P;cCluster;
proximity(Cluster;, Cluster;) = JCI ’
| Cluster; | x| Cluster; |
0.6 I e | Distance Matrix:
0.5 1 """"""""""""" pl p2 p3 p4 PO p6
0t By e pl [ 0.00 | 0.24 | 0.22 ] 0.37 | 0.34 | 0.23
0.3 A— B T — p2 [ 0.24 1 0.00 [ 0.15 | 0.20 | 0.14 [ 0.25
0.2k SN S p3 022 [0.15]0.00 | 0.15 [ 0.28 | 0.11
ol —_— —_—— p4 | 0.37 1 0.20 | 0.15 | 0.00 | 0.29 | 0.22
; p5 | 0.34]0.14 [ 0.28 | 0.29 | 0.00 [ 0.39
0 02 0.4 06 p6 | 0.23 10.25 ] 0.11 | 0.22 | 0.39 | 0.00

Source: Tan et al., 2019
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Hierarchical Clustering: Group Average
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Hierarchical Clustering: Group Average

"  Compromise between Single and Complete Link

"  Strengths
" Less susceptible to noise

" Limitations
" Biased towards globular clusters

Source: Tan et al., 2019
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Cluster Similarity: Ward’s Method

" Similarity of two clusters 1s based on the increase in squared error when two clusters are
merged

" Similar to group average 1f distance between points 1s distance squared

" Less susceptible to noise

" Biased towards globular clusters

" Hierarchical analogue of K-means

® Can be used to initialize K-means

Source: Tan et al., 2019
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Hierarchical Clustering: Comparison

Ward’s Methoc

Group Average

Source: Tan et al., 2019
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Hierarchical Clustering: Time and Space requirements

" O(N?) space since 1t uses the proximity matrix.

" N is the number ot points.

" O(N?) time In many cases
" There are N steps and at each step the size, N2, proximity matrix must be updated and

searched

" Complexity can be reduced to O(N? log(N) ) time with some cleverness

Source: Tan et al., 2019
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Hierarchical Clustering: Problems and Limitations

" Once a decision 1s made to combine two clusters, it cannot be undone

" No global objective function is directly minimized

" Different schemes have problems with one or more of the following:
" Sensitivity to noise

" Difficulty handling clusters of different sizes and non-globular shapes

" Breaking large clusters

Source: Tan et al., 2019
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Density Based Clustering

" Clusters are regions of high density that are separated from one another by regions on
low density.

Source: Tan et al., 2019
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Cluster Validity

" For supervised classification we have a variety of measures to evaluate how good our
model is

" Accuracy, precision, recall

" For cluster analysis, the analogous question i1s how to evaluate the “goodness” of the
resulting clusters?

" But “clusters are in the eye of the beholder”!
" In practice the clusters we find are defined by the clustering algorithm

" Then why do we want to evaluate them?
" To avold finding patterns in noise
" To compare clustering algorithms
" To compare two sets of clusters
" To compare two clusters

Source: Tan et al., 2019
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Measures of Cluster Validity

" Numerical measures that are applied to judge various aspects of cluster validity, are
classified into the following two types.

" Supervised: Used to measure the extent to which cluster labels match externally
supplied class labels.

" Entropy
" Often called external indices because they use information external to the data

" Unsupervised: Used to measure the goodness of a clustering structure without
respect to external information.

® Sum of Squared Error (SSE)

" Often called internal indices because they only use information in the data

" You can use supervised or unsupervised measures to compare clusters or clusterings

Source: Tan et al., 2019
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Unsupervised Measures: Cohesion and Separation

" Cluster Cohesion: Measures how closely related are objects in a cluster
" Example: SSE

" C(Cluster Separation: Measure how distinct or well-separated a cluster 1s from other clusters

" Example: Squared Error

" Cohesion 1s measured by the within cluster sum of squares (SSE):

SSE = 2 E(x —m;)?

[ X€EC;
" Separation 1s measured by the between cluster sum of squares:

SSB = ) |Cil(m — my)?
i

Where |C;|is the size of cluster z

Source: Tan et al., 2019
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Unsupervised Measures: Cohesion and Separation

" Example: SSE
® SSB + SSE = constant

m
6 ¢ N P RV
1 mj 2 3 4 m, )
K=1 cluster:

K=2 clusters:

SSE=(1-3)2+2-3)2+0@l-3)?%+(-3)2=10
SSB=4%x(3—-3)>=0
Total =10+ 0 = 10

SSE=(1-15?%+2-15)?+4—-45*+(5-4.5)?=1
SSB=2x%(3—-15)?4+2%x(45-3)>=9
Total=1+9 =10

Angel Jiménez M. -
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Unsupervised Measures: Cohesion and Separation

" A proximity graph-based approach can also be used for cohesion and separation.
" Cluster cohesion 1s the sum of the weight of all links within a cluster.

" Cluster separation 1s the sum of the weights between nodes 1n the cluster and nodes
outside the cluster.

cohesion separation

Source: Tan et al., 2019
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Unsupervised Measures: Silhouette Coefticient

" Silhouette coetticient combines ideas of both cohesion and separation, but for individual
points, as well as clusters and clusterings
" For an individual point, 7
" (Calculate a = average distance of i to the points in its cluster
® (Calculate b = min (average distance of 7 to points in another cluster)
" The silhouette coefficient for a point is then given by

s=(b—a)/ max(ab)

Distances used
to calculate b

" Value can vary between -1 and 1
" Typically ranges between 0 and 1.
®" The closer to 1 the better.

Distances used
to calculate a

" Can calculate the average silhouette coetticient for a cluster or a clustering

Source: Tan et al., 2019
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Measuring Cluster Validity Via Correlation

Two matrices

"  Proximity Matrix

" Ideal Similarity Matrix
" One row and one column for each data point
" Anentryis 1if the associated pair of points belong to the same cluster
" Anentryis O1f the assoclated pair of points belongs to different clusters

Compute the correlation between the two matrices

" Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

High magnitude of correlation indicates that points that belong to the same cluster are
close to each other.

"  Correlation may be positive or negative depending on whether the similarity
matrix 1s a similarity or dissimilarity matrix

Not a good measure for some density or contiguity based clusters.

Source: Tan et al., 2019
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Measuring Cluster Validity Via Correlation

" Correlation of 1deal similarity and proximity matrices for the K-means clusterings ot the
following well-clustered data set.
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Measuring Cluster Validity Via Correlation

" Correlation of 1deal similarity and proximity matrices for the K-means clusterings ot the
following random data set.
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Judging a Clustering Visually by 1ts Similarity Matrix

" Order the similarity matrix with respect to cluster labels and inspect visually.
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Determining the Correct Number of Clusters

" SSE is good for comparing two clusterings or two clusters

® SSE can also be used to estimate the number of clusters
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Determining the Correct Number of Clusters

" SSE curve for a more complicated data set
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