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Agenda

§ 3.5 Supervised Modeling II.
§ Bayesian Classifiers (Naïve Bayes).
§ Support Vector Machines.
§ Ensemble Methods.

§ 3.6 Unsupervised Modeling.
§ Definitions.
§ K-means
§ Hierarchical model
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3.5 Supervised Modeling II
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Disclaimer

§ This presentation has slides adapted from Tan et al., 2019, while some were made by Ángel Jiménez.
§ Tan, P., Steinbach, M., Kumar, V. (2019). Introduction to Data Mining, Pearson Higher Education.
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Bayesian Classifiers
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Bayes Classifier

§ A probabilistic framework for solving classification problems

§ Conditional Probability:

§ Bayes theorem:
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Using Bayes Theorem for Classification

§ Consider each attribute and class label as random 
variables

§Given a record with attributes (X1, X2,…, Xd), the 
goal  is to predict class Y

§ Specifically, we want to find the value of Y that maximizes
P(Y| X1, X2,…, Xd )

§ Can we estimate P(Y| X1, X2,…, Xd ) directly from 
data?

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

categoric
al

categoric
al

contin
uous

class

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 7
Source: Tan et al., 2019



Using Bayes Theorem for Classification

§Approach:
§ Compute posterior probability P(Y | X1, X2, …, Xd) using the Bayes theorem

§Maximum a-posteriori: Choose Y that maximizes P(Y | X1, X2, …, Xd)

§Equivalent to choosing value of  Y that maximizes P(X1, X2, …, Xd|Y) P(Y)

§How to estimate P(X1, X2, …, Xd | Y )?

)(
)()|()|(

21

21
21

d

d
n XXXP

YPYXXXPXXXYP
!

!
! =

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 8
Source: Tan et al., 2019



Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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120K)IncomeDivorced,No,Refund( ===XGiven a Test Record:

§We need to estimate

§ P(Evade = Yes | X) and P(Evade = No | X)

§ In the following we will replace 

Evade = Yes by Yes, and 

Evade = No by No
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Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 

 

categoric
al

categoric
al

contin
uous

class 120K)IncomeDivorced,No,Refund( ===XGiven a Test Record:
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Conditional Independence

§ X and Y are conditionally independent given Z if  P(X|YZ) = P(X|Z)

§ Example: Arm length and reading skills 
§ Young child has shorter arm length and limited reading skills, compared to adults.

§ If age is fixed, no apparent relationship between arm length and reading skills.

§ Arm length and reading skills are conditionally independent given age.
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Naïve Bayes Classifier

§ Assume independence among attributes Xi when class is given: 

§ P(X1, X2, …, Xd |Yj) = P(X1| Yj) P(X2| Yj)… P(Xd| Yj)

§ Now we can estimate P(Xi| Yj) for all Xi and Yj combinations from the training data

§ New point is classified to Yj if P(Yj) P P(Xi| Yj) is maximal.
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Naïve Bayes on Example Data

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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class 120K)IncomeDivorced,No,Refund( ===XGiven a Test Record:

P(X | Yes) = 
P(Refund = No | Yes) x 
P(Divorced | Yes) x 
P(Income = 120K | Yes)

P(X | No) = 
P(Refund = No | No) x 
P(Divorced | No) x 
P(Income = 120K | No)
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Estimate Probabilities from Data

§ P(y) = fraction of  instances of  class y, e.g.:
§ P(No) = 7/10
§ P(Yes) = 3/10

§ For categorical attributes, P(Xi =c| y) = nc/ n
§ Where |Xi =c| is number of  instances having 

attribute value Xi =c and belonging to class y.

§ Examples:
§ P(Status=Married|No) = 4/7
§ P(Refund=Yes|Yes)=0

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Estimate Probabilities from Data

§ For continuous attributes: 
§ Use discretization, i.e., partition of the range into bins:

§ Replace continuous value with bin value (attribute changed from continuous to ordinal)

§ Probability density estimation:
§ Assume attribute follows a normal distribution.
§ Use data to estimate parameters of  distribution, e.g., mean and standard deviation.
§ Once probability distribution is known, use it to estimate the conditional probability P(Xi|Y).
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Estimate Probabilities from Data

§Normal distribution:

§One for each (Xi,Yi) pair.

§ For (Income, Class=No):
§ If Class=No

§ Sample mean = 110

§ Sample variance = 2975

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Numeric Example of  Naïve Bayes Classifier

120K)IncomeDivorced,No,Refund( ===X

§ P(X | No) = P(Refund=No | No)
´ P(Divorced | No)
´ P(Income=120K | No)

= 4/7 ´ 1/7 ´ 0.0072 = 0.0006

§ P(X | Yes) = P(Refund=No | Yes)
´ P(Divorced | Yes)
´ P(Income=120K | Yes)

= 1 ´ 1/3 ´ 1.2 ´ 10-9 = 4 ´ 10-10

§ Since P(X|No)P(No) > P(X|Yes)P(Yes)

§ Therefore P(No|X) > P(Yes|X) => Class = No

Given a Test Record:

§ Naïve  Bayes Classifier:
§ P(Refund = Yes | No) = 3/7
§ P(Refund = No | No) = 4/7
§ P(Refund = Yes | Yes) = 0
§ P(Refund = No | Yes) = 1
§ P(Marital Status = Single | No) = 2/7
§ P(Marital Status = Divorced | No) = 1/7
§ P(Marital Status = Married | No) = 4/7
§ P(Marital Status = Single | Yes) = 2/3
§ P(Marital Status = Divorced | Yes) = 1/3
§ P(Marital Status = Married | Yes) = 0

§ For Taxable Income:
§ If  class = No, sample mean = 110, sample variance = 2975
§ If  class = Yes, sample mean = 90, sample variance = 25
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Naïve Bayes Classifiers can make decisions with partial information about 
attributes in the test record

§ Even in absence of  information about any attributes, we can use Apriori Probabilities of  Class Variable, i.e.:
§ P(Yes)=3/10
§ P(No)=7/10.

§ If  we only know that marital status is Divorced, then:
§ P(Yes | Divorced) = 1/3 x 3/10 / P(Divorced)
§ P(No | Divorced) = 1/7 x 7/10 / P(Divorced)

§ If  we also know that Refund = No, then:
§ P(Yes | Refund = No, Divorced) = 1 x 1/3 x 3/10 /P(Divorced, Refund = No)
§ P(No | Refund = No, Divorced) = 4/7 x 1/7 x 7/10 /P(Divorced, Refund = No)

§ If  we also know that Taxable Income = 120, then:
§ P(Yes | Refund = No, Divorced, Income = 120) =1.2 x10-9 x  1 x 1/3 x 3/10 / P(Divorced, Refund = No,  Income = 

120 )
§ P(No | Refund = No, Divorced Income = 120) = 0.0072  x 4/7 x 1/7 x 7/10 /P(Divorced, Refund = No, Income = 

120)
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Issues with Naïve Bayes Classifier

P(Yes) = 3/10

P(No) = 7/10

P(Yes | Married) = 0 x 3/10 / P(Married)

P(No | Married) = 4/7 x 7/10 / P(Married)

X = (Married)Given a Test Record:
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§ Naïve  Bayes Classifier:
§ P(Refund = Yes | No) = 3/7
§ P(Refund = No | No) = 4/7
§ P(Refund = Yes | Yes) = 0
§ P(Refund = No | Yes) = 1
§ P(Marital Status = Single | No) = 2/7
§ P(Marital Status = Divorced | No) = 1/7
§ P(Marital Status = Married | No) = 4/7
§ P(Marital Status = Single | Yes) = 2/3
§ P(Marital Status = Divorced | Yes) = 1/3
§ P(Marital Status = Married | Yes) = 0

§ For Taxable Income:
§ If  class = No, sample mean = 110, sample variance = 2975
§ If  class = Yes, sample mean = 90, sample variance = 25



Issues with Naïve Bayes Classifier

Tid Refund Marital 
Status 

Taxable 
Income Evade 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Naïve  Bayes Classifier:

P(Refund = Yes | No) = 2/6
P(Refund = No | No) = 4/6
P(Refund = Yes | Yes) = 0
P(Refund = No | Yes) = 1
P(Marital Status = Single | No) = 2/6
P(Marital Status = Divorced | No) = 0
P(Marital Status = Married | No) = 4/6
P(Marital Status = Single | Yes) = 2/3
P(Marital Status = Divorced | Yes) = 1/3
P(Marital Status = Married | Yes) = 0/3
For Taxable Income:
If  class = No: sample mean = 91

sample variance = 685
If  class = No: sample mean = 90

sample variance = 25

Consider the table with Tid = 7 deleted

Given X = (Refund = Yes, Divorced, 120K)

P(X | No) = 2/6 X 0 X 0.0083 = 0
P(X | Yes) = 0 X 1/3 X 1.2 X 10-9 = 0

Naïve Bayes will not be able to classify X as 

Yes or No!
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Issues with Naïve Bayes Classifier

§ If  one of  the conditional probabilities is zero, then the entire expression becomes zero

§ Need to use other estimates of  conditional probabilities than simple fractions.

§ Probability estimation:

§ n: number of  training instances belonging to class y.

§ nc: number of  instances with Xi = c and Y = y.

§ v: total number of  attribute values that Xi can take.

§ p: initial estimate of  (P(Xi = c|y) known apriori.

§ m: hyper-parameter for our confidence in p.

Laplace Estimate: - ./ = 1 2) = 45 + 1
4 + 8

m − estimate: - ./ = 1 2) = 45 + :;
4 +:

original: - ./ = 1 2) = 45
4
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Numeric Example of  Naïve Bayes Classifier

Name Give Birth Can Fly Live in Water Have Legs Class
human yes no no yes mammals
python no no no no non-mammals
salmon no no yes no non-mammals
whale yes no yes no mammals
frog no no sometimes yes non-mammals
komodo no no no yes non-mammals
bat yes yes no yes mammals
pigeon no yes no yes non-mammals
cat yes no no yes mammals
leopard shark yes no yes no non-mammals
turtle no no sometimes yes non-mammals
penguin no no sometimes yes non-mammals
porcupine yes no no yes mammals
eel no no yes no non-mammals
salamander no no sometimes yes non-mammals
gila monster no no no yes non-mammals
platypus no no no yes mammals
owl no yes no yes non-mammals
dolphin yes no yes no mammals
eagle no yes no yes non-mammals

Give Birth Can Fly Live in Water Have Legs Class
yes no yes no ?
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MPMAP
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A: attributes

M: mammals

N: non-mammals

P(A|M)P(M) > P(A|N)P(N) => Mammals
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Naïve Bayes (Summary)

§ Robust to isolated noise points

§ Handle missing values by ignoring the instance during probability estimate calculations

§ Robust to irrelevant attributes

§ Redundant and correlated attributes will violate class conditional assumption
§ Use other techniques such as Bayesian Belief Networks (BBN)
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Naïve Bayes

§ How does Naïve Bayes perform on the following dataset?

Conditional independence of  attributes is violated
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Bayesian Belief  Networks

A B

C

§ Provides graphical representation of  probabilistic relationships 

among a set of  random variables.

§ Consists of  a directed acyclic graph (DAG):

§ Each node corresponds to a variable.

§ Each arc corresponds to dependence relationship between 

a pair of  variables.

§ A probability table associating each node to its immediate 

parent.
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Conditional Independence

A B

C

D

§ A node in a Bayesian network is conditionally independent of  all of  its nondescendants, if  its 
parents are known.

D is parent of  C

A is child of  C

B is descendant of  D

D is ancestor of  A
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Conditional Independence

...X1 X2 X3 X4

y

Xd

§ Naïve Bayes assumption:
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Probability Tables

Y

X

§ If  X does not have any parents, table contains prior probability P(X).

§ If  X has only one parent (Y), table contains conditional probability P(X|Y)

§ If  X has multiple parents (Y1, Y2,…, Yk), table contains conditional probability 
P(X|Y1, Y2,…, Yk)
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Example of  Bayesian Belief  Network

Exercise Diet

Heart 
Disease

Chest Pain Blood 
Pressure

Exercise=Yes 0.7
Exercise=No 0.3

Diet=Healthy 0.25
Diet=Unhealthy 0.75

 
D=Healthy 
E=Yes

D=Healthy 
E=No

D=Unhealthy 
E=Yes

D=Unhealthy 
E=No

HD=Yes 0.25 0.45 0.55 0.75
HD=No 0.75 0.55 0.45 0.25

 HD=Yes HD=No
CP=Yes 0.8 0.01
CP=No 0.2 0.99

 HD=Yes HD=No
BP=High 0.85 0.2
BP=Low 0.15 0.8
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Numeric Example of  Inferencing using BBN

§Given: X = (E=No, D=Yes, CP=Yes, BP=High)
§ P(HD|E,D,CP,BP) ?

§ P(HD=Yes| E=No,D=Yes) = 0.55
P(CP=Yes| HD=Yes) = 0.8
P(BP=High| HD=Yes) = 0.85

- P(HD=Yes|E=No,D=Yes,CP=Yes,BP=High) 
µ 0.55 ´ 0.8 ´ 0.85 = 0.374

§ P(HD=No| E=No,D=Yes) = 0.45
P(CP=Yes| HD=No) = 0.01
P(BP=High| HD=No) = 0.2

- P(HD=No|E=No,D=Yes,CP=Yes,BP=High) 
µ 0.45 ´ 0.01 ´ 0.2 = 0.0009

Classify X 
as Yes
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Support Vector Machines

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 31



Support Vector Machine
SKM
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Ensemble Methods
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Ensemble Methods

§ Construct a set of  base classifiers learned from the training data

§ Predict class label of  test records by combining the predictions made by multiple classifiers (e.g., by taking 
majority vote)

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 3
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Example: Why Do Ensemble Methods Work?

❦

❦ ❦

❦
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4.10.1 Rationale for Ensemble Method

The following example illustrates how an ensemble method can improve a
classifier’s performance.

Example 4.8. Consider an ensemble of 25 binary classifiers, each of which
has an error rate of ϵ = 0.35. The ensemble classifier predicts the class label of
a test example by taking a majority vote on the predictions made by the base
classifiers. If the base classifiers are identical, then all the base classifiers will
commit the same mistakes. Thus, the error rate of the ensemble remains 0.35.
On the other hand, if the base classifiers are independent—i.e., their errors
are uncorrelated—then the ensemble makes a wrong prediction only if more
than half of the base classifiers predict incorrectly. In this case, the error rate
of the ensemble classifier is

eensemble =
25∑

i=13

(
25

i

)
ϵi(1− ϵ)25−i = 0.06 , (4.101)

which is considerably lower than the error rate of the base classifiers.

Figure 4.42 shows the error rate of an ensemble of 25 binary classifiers
(eensemble) for different base classifier error rates (ϵ). The diagonal line repre-
sents the case in which the base classifiers are identical, while the solid line
represents the case in which the base classifiers are independent. Observe that
the ensemble classifier performs worse than the base classifiers when ϵ is larger
than 0.5.

The preceding example illustrates two necessary conditions for an ensemble
classifier to perform better than a single classifier: (1) the base classifiers
should be independent of each other, and (2) the base classifiers should do
better than a classifier that performs random guessing. In practice, it is
difficult to ensure total independence among the base classifiers. Neverthe-
less, improvements in classification accuracies have been observed in ensemble
methods in which the base classifiers are somewhat correlated.

4.10.2 Methods for Constructing an Ensemble Classifier

A logical view of the ensemble method is presented in Figure 4.43. The
basic idea is to construct multiple classifiers from the original data and then
aggregate their predictions when classifying unknown examples. The ensemble
of classifiers can be constructed in many ways:

1. By manipulating the training set. In this approach, multiple train-
ing sets are created by resampling the original data according to some

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 4
Source: Tan et al., 2019



Necessary Conditions for Ensemble Methods

§Ensemble Methods work better than a single base classifier if:
1. All base classifiers are independent of each other.
2. All base classifiers perform better than random guessing

(error rate < 0.5 for binary classification)

Classification error for an ensemble 
of  25 base classifiers, assuming 
their errors are uncorrelated. 

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 5
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Rationale for Ensemble Learning

§Ensemble Methods work best with unstable base classifiers.
§ Classifiers that are sensitive to minor perturbations in training set, due to high model complexity
§ Examples: Unpruned decision trees, artificial neural networks, etc.

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 6
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Bias-Variance Decomposition

§Analogous problem of  reaching a target y by firing projectiles from x (regression 
problem)

§ For classification, the generalization error of  model ! can be given by:

"#$. #&&'& ! = )* + ,-./ ! + )0×2.&-.$)#(!)

❦

❦ ❦

❦
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made by the base classifiers Ci(x):

C∗(x) = f(C1(x), C2(x), . . . , Ck(x)).

where f is the function that combines the ensemble responses. One simple
approach for obtaining C∗(x) is to take a majority vote of the individual
predictions. An alternate approach is to take a weighted majority vote, where
the weight of a base classifier denotes its accuracy or relevance.

Ensemble methods show the most improvement when used with unstable
classifiers, i.e., base classifiers that are sensitive to minor perturbations in the
training set, because of high model complexity. Although unstable classifiers
may have a low bias in finding the optimal decision boundary, their predictions
have a high variance for minor changes in the training set or model selection.
This trade-off between bias and variance is discussed in detail in the next
section. By aggregating the responses of multiple unstable classifiers, ensemble
learning attempts to minimize their variance without worsening their bias.

4.10.3 Bias-Variance Decomposition

Bias-variance decomposition is a formal method for analyzing the generaliza-
tion error of a predictive model. Although the analysis is slightly different
for classification than regression, we first discuss the basic intuition of this
decomposition by using an analogue of a regression problem.

Consider the illustrative task of reaching a target y by firing projectiles
from a starting position x, as shown in Figure 4.44. The target corresponds to
the desired output at a test instance, while the starting position corresponds
to its observed attributes. In this analogy, the projectile represents the model
used for predicting the target using the observed attributes. Let ŷ denote the

Figure 4.44. Bias-variance decomposition.

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 7
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Bias-Variance Trade-off  and Overfitting 

§Ensemble methods try to reduce the variance of  complex models (with low bias) by 
aggregating responses of  multiple base classifiers

❦

❦ ❦

❦
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(a) Phenomena of Overfitting.

(b) Phenomena of Underfitting.

Figure 4.45. Plots showing the behavior of two-dimensional solutions with constant L2 and L1 norms.

The bias-variance trade-off can be used to explain why ensemble learning
improves the generalization performance of unstable classifiers. If a base clas-
sifier show low bias but high variance, it can become susceptible to overfitting,
as even a small change in the training set will result in different predictions.
However, by combining the responses of multiple base classifiers, we can expect
to reduce the overall variance. Hence, ensemble learning methods show better
performance primarily by lowering the variance in the predictions, although
they can even help in reducing the bias. One of the simplest approaches
for combining predictions and reducing their variance is to compute their
average. This forms the basis of the bagging method, described in the following
subsection.

4.10.4 Bagging

Bagging, which is also known as bootstrap aggregating, is a technique that
repeatedly samples (with replacement) from a data set according to a uniform
probability distribution. Each bootstrap sample has the same size as the
original data. Because the sampling is done with replacement, some instances
may appear several times in the same training set, while others may be

❦

❦ ❦

❦
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(a) Phenomena of Overfitting.

(b) Phenomena of Underfitting.

Figure 4.45. Plots showing the behavior of two-dimensional solutions with constant L2 and L1 norms.

The bias-variance trade-off can be used to explain why ensemble learning
improves the generalization performance of unstable classifiers. If a base clas-
sifier show low bias but high variance, it can become susceptible to overfitting,
as even a small change in the training set will result in different predictions.
However, by combining the responses of multiple base classifiers, we can expect
to reduce the overall variance. Hence, ensemble learning methods show better
performance primarily by lowering the variance in the predictions, although
they can even help in reducing the bias. One of the simplest approaches
for combining predictions and reducing their variance is to compute their
average. This forms the basis of the bagging method, described in the following
subsection.

4.10.4 Bagging

Bagging, which is also known as bootstrap aggregating, is a technique that
repeatedly samples (with replacement) from a data set according to a uniform
probability distribution. Each bootstrap sample has the same size as the
original data. Because the sampling is done with replacement, some instances
may appear several times in the same training set, while others may be

Underfitting

Overfitting

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 8
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General Approach of  Ensemble Learning

❦

❦ ❦

❦
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Figure 4.42. Comparison between errors of base classifiers and errors of the ensemble classifier.

Figure 4.43. A logical view of the ensemble learning method.

sampling distribution and constructing a classifier from each training set.
The sampling distribution determines how likely it is that an example
will be selected for training, and it may vary from one trial to another.
Bagging and boosting are two examples of ensemble methods that
manipulate their training sets. These methods are described in further
detail in Sections 4.10.4 and 4.10.5.

Using majority vote or 
weighted majority vote 

(weighted according to their 
accuracy or relevance)

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 9
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Constructing Ensemble Classifiers

§ By manipulating training set.
§ Example: bagging, boosting, random forests.

§ By manipulating input features.
§ Example: random forests.

§ By manipulating class labels.
§ Example: error-correcting output coding.

§ By manipulating learning algorithm.
§ Example: injecting randomness in the initial weights of artificial neural network (ANN)

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 10
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Bagging (Bootstrap Aggregating)

Original Data 1 2 3 4 5 6 7 8 9 10
Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

§ Bootstrap sampling: sampling with replacement

§ Build classifier on each bootstrap sample.

§ Probability of  a training instance being selected in a bootstrap sample is:
§ 1 – (1 - 1/n)n (n: number of training instances)
§~0.632 when n is large.

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 11
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Bagging Algorithm

❦

❦ ❦

❦

4.10 Ensemble Methods 303

omitted from the training set. On average, a bootstrap sample Di contains
approximately 63% of the original training data because each sample has a
probability 1 − (1 − 1/N)N of being selected in each Di. If N is sufficiently
large, this probability converges to 1 − 1/e ≃ 0.632. The basic procedure for
bagging is summarized in Algorithm 4.5. After training the k classifiers, a test
instance is assigned to the class that receives the highest number of votes.

To illustrate how bagging works, consider the data set shown in Table 4.4.
Let x denote a one-dimensional attribute and y denote the class label. Suppose
we use only one-level binary decision trees, with a test condition x ≤ k, where
k is a split point chosen to minimize the entropy of the leaf nodes. Such a tree
is also known as a decision stump.

Table 4.4. Example of data set used to construct an ensemble of bagging classifiers.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1 1 1 −1 −1 −1 −1 1 1 1

Without bagging, the best decision stump we can produce splits the in-
stances at either x ≤ 0.35 or x ≤ 0.75. Either way, the accuracy of the tree
is at most 70%. Suppose we apply the bagging procedure on the data set
using 10 bootstrap samples. The examples chosen for training in each bagging
round are shown in Figure 4.46. On the right-hand side of each table, we also
describe the decision stump being used in each round.

We classify the entire data set given in Table 4.4 by taking a majority
vote among the predictions made by each base classifier. The results of the
predictions are shown in Figure 4.47. Since the class labels are either −1 or
+1, taking the majority vote is equivalent to summing up the predicted values
of y and examining the sign of the resulting sum (refer to the second to last

Algorithm 4.5 Bagging algorithm.
1: Let k be the number of bootstrap samples.
2: for i = 1 to k do
3: Create a bootstrap sample of size N , Di.
4: Train a base classifier Ci on the bootstrap sample Di.
5: end for
6: C∗(x) = argmax

y

∑
i δ
(
Ci(x) = y

)
.

{δ(·) = 1 if its argument is true and 0 otherwise.}

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 12
Source: Tan et al., 2019



Bagging Example

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

§ Consider 1-dimensional data set:

§ Classifier is a decision stump (decision tree of  size 1)
§ Decision rule: x £ k versus x > k
§ Split point k is chosen based on entropy

x £ k

yleft yright

True False

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 13
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Bagging Example

Bagging Round 1:
x 0.1 0.2 0.2 0.3 0.4 0.4 0.5 0.6 0.9 0.9
y 1 1 1 1 -1 -1 -1 -1 1 1

Bagging Round 2:
x 0.1 0.2 0.3 0.4 0.5 0.5 0.9 1 1 1
y 1 1 1 -1 -1 -1 1 1 1 1

Bagging Round 3:
x 0.1 0.2 0.3 0.4 0.4 0.5 0.7 0.7 0.8 0.9
y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 4:
x 0.1 0.1 0.2 0.4 0.4 0.5 0.5 0.7 0.8 0.9
y 1 1 1 -1 -1 -1 -1 -1 1 1

Bagging Round 5:
x 0.1 0.1 0.2 0.5 0.6 0.6 0.6 1 1 1
y 1 1 1 -1 -1 -1 -1 1 1 1

x <= 0.35 è y = 1
x > 0.35 è y = -1

x <= 0.7 è y = 1
x > 0.7 è y = 1

x <= 0.35 è y = 1
x > 0.35 è y = -1

x <= 0.3 è y = 1
x > 0.3 è y = -1

x <= 0.35 è y = 1
x > 0.35 è y = -1

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 14
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Bagging Example

Bagging Round 6:
x 0.2 0.4 0.5 0.6 0.7 0.7 0.7 0.8 0.9 1
y 1 -1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 7:
x 0.1 0.4 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1
y 1 -1 -1 -1 -1 1 1 1 1 1

Bagging Round 8:
x 0.1 0.2 0.5 0.5 0.5 0.7 0.7 0.8 0.9 1
y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 9:
x 0.1 0.3 0.4 0.4 0.6 0.7 0.7 0.8 1 1
y 1 1 -1 -1 -1 -1 -1 1 1 1

Bagging Round 10:
x 0.1 0.1 0.1 0.1 0.3 0.3 0.8 0.8 0.9 0.9
y 1 1 1 1 1 1 1 1 1 1

x <= 0.75 è y = -1
x > 0.75 è y = 1

x <= 0.75 è y = -1
x > 0.75 è y = 1

x <= 0.75 è y = -1
x > 0.75 è y = 1

x <= 0.75 è y = -1
x > 0.75 è y = 1

x <= 0.05 è y = 1
x > 0.05 è y = 1

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 15
Source: Tan et al., 2019



Bagging Example

Round Split Point Left Class Right Class
1 0.35 1 -1
2 0.7 1 1
3 0.35 1 -1
4 0.3 1 -1
5 0.35 1 -1
6 0.75 -1 1
7 0.75 -1 1
8 0.75 -1 1
9 0.75 -1 1
10 0.05 1 1

§ Summary of  Trained Decision Stumps:

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 16
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Bagging Example

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0
1 1 1 1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1
4 1 1 1 -1 -1 -1 -1 -1 -1 -1
5 1 1 1 -1 -1 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 -1 -1 -1 1 1 1
7 -1 -1 -1 -1 -1 -1 -1 1 1 1
8 -1 -1 -1 -1 -1 -1 -1 1 1 1
9 -1 -1 -1 -1 -1 -1 -1 1 1 1
10 1 1 1 1 1 1 1 1 1 1

Sum 2 2 2 -6 -6 -6 -6 2 2 2
Sign 1 1 1 -1 -1 -1 -1 1 1 1

§Use majority vote (sign of  sum of  predictions) to determine class of  ensemble classifier:

§ Bagging can also increase the complexity (representation capacity) of  simple classifiers 
such as decision stumps.

Predicted 
Class
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Boosting

§An iterative procedure to adaptively change distribution of  training data by focusing 
more on previously misclassified records.
§ Initially, all N records are assigned equal weights (for being selected for training)
§ Unlike bagging, weights may change at the end of each boosting round

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 18
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Boosting

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2
Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

§Records that are wrongly classified will have their weights increased in the next round

§Records that are classified correctly will have their weights decreased in the next round

• Example 4 is hard to classify.

• Its weight is increased, therefore it is more 
likely to be chosen again in subsequent rounds.
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AdaBoost

§ Base classifiers: C1, C2, …, CT

§Error rate of  a base classifier:

§ Importance of  a classifier: 

÷÷
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1
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AdaBoost Algorithm

§Weight update:

§ If  any intermediate rounds produce error rate higher than 50%, the weights are reverted 
back to 1/n and the resampling procedure is repeated

§ Classification:
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AdaBoost Algorithm

❦

❦ ❦

❦
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of incorrectly classified examples and decreases the weights of those classified
correctly.

Instead of using a majority voting scheme, the prediction made by each
classifier Cj is weighted according to αj . This approach allows AdaBoost to
penalize models that have poor accuracy, e.g., those generated at the earlier
boosting rounds. In addition, if any intermediate rounds produce an error
rate higher than 50%, the weights are reverted back to their original uniform
values, wi = 1/N , and the resampling procedure is repeated. The AdaBoost
algorithm is summarized in Algorithm 4.6.

Algorithm 4.6 AdaBoost algorithm.
1: w = {wj = 1/N | j = 1, 2, . . . , N}. {Initialize the weights for all N examples.}
2: Let k be the number of boosting rounds.
3: for i = 1 to k do
4: Create training set Di by sampling (with replacement) from D according to w.
5: Train a base classifier Ci on Di.
6: Apply Ci to all examples in the original training set, D.
7: ϵi =

1
N

[∑
j wj δ

(
Ci(xj) ̸= yj

)]
{Calculate the weighted error.}

8: if ϵi > 0.5 then
9: w = {wj = 1/N | j = 1, 2, . . . , N}. {Reset the weights for all N examples.}

10: Go back to Step 4.
11: end if
12: αi =

1
2 ln

1−ϵi
ϵi

.
13: Update the weight of each example according to Equation 4.103.
14: end for
15: C∗(x) = argmax

y

∑T
j=1 αjδ(Cj(x) = y)

)
.

Let us examine how the boosting approach works on the data set shown
in Table 4.4. Initially, all the examples have identical weights. After three
boosting rounds, the examples chosen for training are shown in Figure 4.49(a).
The weights for each example are updated at the end of each boosting round
using Equation 4.103, as shown in Figure 4.50(b).

Without boosting, the accuracy of the decision stump is, at best, 70%.
With AdaBoost, the results of the predictions are given in Figure 4.50(b).
The final prediction of the ensemble classifier is obtained by taking a weighted
average of the predictions made by each base classifier, which is shown in the
last row of Figure 4.50(b). Notice that AdaBoost perfectly classifies all the
examples in the training data.
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AdaBoost Example

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y 1 1 1 -1 -1 -1 -1 1 1 1

Original Data:

§ Consider 1-dimensional data set:

§ Classifier is a decision stump
§Decision rule: x £ k versus x > k
§ Split point k is chosen based on entropy

x £ k

yleft yright

True False
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AdaBoost Example

Boosting Round 1:
x 0.1 0.4 0.5 0.6 0.6 0.7 0.7 0.7 0.8 1
y 1 -1 -1 -1 -1 -1 -1 -1 1 1

Boosting Round 2:
x 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3
y 1 1 1 1 1 1 1 1 1 1

Boosting Round 3:
x 0.2 0.2 0.4 0.4 0.4 0.4 0.5 0.6 0.6 0.7
y 1 1 -1 -1 -1 -1 -1 -1 -1 -1

§Training sets for the first 3 boosting rounds:

§ Summary:

Round Split Point Left Class Right Class alpha
1 0.75 -1 1 1.738
2 0.05 1 1 2.7784
3 0.3 1 -1 4.1195
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AdaBoost Example

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0
1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.311 0.311 0.311 0.01 0.01 0.01 0.01 0.01 0.01 0.01
3 0.029 0.029 0.029 0.228 0.228 0.228 0.228 0.009 0.009 0.009

§Weights

§ Classification

Round x=0.1 x=0.2 x=0.3 x=0.4 x=0.5 x=0.6 x=0.7 x=0.8 x=0.9 x=1.0
1 -1 -1 -1 -1 -1 -1 -1 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 1 1 -1 -1 -1 -1 -1 -1 -1

Sum 5.16 5.16 5.16 -3.08 -3.08 -3.08 -3.08 0.397 0.397 0.397
Sign 1 1 1 -1 -1 -1 -1 1 1 1Predicted 

Class
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Random Forest Algorithm

§ Construct an ensemble of  decision trees by manipulating training set as well as features.

§Use bootstrap sample to train every decision tree (similar to Bagging)
§Use the following tree induction algorithm:

§ At every internal node of  decision tree, randomly sample p attributes for selecting split criterion
§ Repeat this procedure until all leaves are pure (unpruned tree)
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Characteristics of  Random Forest
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Gradient Boosting

§ Constructs a series of  models 
§Models can be any predictive model that has a differentiable loss function
§ Commonly, trees are the chosen model

§ XGboost (extreme gradient boosting) is a popular package because of  its impressive performance

§ Boosting can be viewed as optimizing the loss function by iterative functional gradient 
descent.

§ Implementations of  various boosted algorithms are available in Python, R, Matlab, and 
more.
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3.6 Unsupervised Modeling
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What is Cluster Analysis?

§Given a set of  objects, place them in groups such that the objects in a group are similar 
(or related) to one another and different from (or unrelated to) the objects in other groups

Inter-cluster 
distances are 
maximized

Intra-cluster 
distances are 

minimized
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Applications of  Cluster Analysis

 Discovered Clusters Industry Group 

1 Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN, 
Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN, 

DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN, 
Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down, 

Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN, 
Sun-DOWN 

 
 

Technology1-DOWN 

2 Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN, 
ADV-Micro-Device-DOWN,Andrew-Corp-DOWN, 

Computer-Assoc-DOWN,Circuit-City-DOWN, 
Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN, 

Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN 

 
 

Technology2-DOWN 

3 Fannie-Mae-DOWN,Fed-Home-Loan-DOWN, 
MBNA-Corp-DOWN,Morgan-Stanley-DOWN 

 
Financial-DOWN 

4 Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP, 
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP, 

Schlumberger-UP 

 
Oil-UP 

 

 

§Understanding
§ Group related documents for browsing,

group genes and proteins that have similar
functionality, or group stocks with similar
price fluctuations

§ Summarization
§ Reduce the size of large data sets

Clustering precipitation 
in Australia
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Notion of  a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters
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Types of  Clusterings

§ A clustering is a set of  clusters

§ Important distinction between hierarchical and partitional sets of  clusters 

§ Partitional Clustering
§ A division of  data objects into non-overlapping subsets (clusters)

§Hierarchical clustering
§ A set of  nested clusters organized as a hierarchical tree 
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering

p4
p1

p3

p2

 

p4 
p1 

p3 

p2 
p4p1 p2 p3

p4p1 p2 p3

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering Non-traditional Dendrogram

Traditional Dendrogram
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Other Distinctions Between Sets of  Clusters

§ Exclusive versus non-exclusive
§ In non-exclusive clusterings, points may belong to multiple clusters.
§ Can belong to multiple classes or could be ‘border’ points

§ Fuzzy clustering  (one type of  non-exclusive) 
§ In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
§ Weights must sum to 1
§ Probabilistic clustering has similar characteristics

§ Partial versus complete
§ In some cases, we only want to cluster some of  the data
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Types of  Clusters

§ Well-separated clusters

§ Prototype-based clusters

§ Contiguity-based clusters

§ Density-based clusters

§Described by an Objective Function
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Types of  Clusters: Well-Separated

§ Well-Separated Clusters: 
§ A cluster is a set of points such that any point in a cluster is closer (or more similar)

to every other point in the cluster than to any point not in the cluster.

3 well-separated clusters
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Types of  Clusters: Prototype-Based

§ Prototype-based
§ A cluster is a set of objects such that an object in a cluster is closer (more similar) to

the prototype or “center” of a cluster, than to the center of any other cluster
§ The center of a cluster is often a centroid, the average of all the points in the cluster,

or a medoid, the most “representative” point of a cluster

4 center-based clusters
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Types of  Clusters: Contiguity-Based

§ Contiguous Cluster (Nearest neighbor or Transitive)
§ A cluster is a set of points such that a point in a cluster is closer (or more similar) to

one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters
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Types of  Clusters: Density-Based

§ Density-based
§ A cluster is a dense region of points, which is separated by low-density regions, from

other regions of high density.
§ Used when the clusters are irregular or intertwined, and when noise and outliers are

present.

6 density-based clusters
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Types of  Clusters: Objective Function

§ Clusters Defined by an Objective Function
§ Finds clusters that minimize or maximize an objective function. 
§Enumerate all possible ways of  dividing the points into clusters and evaluate the 

“goodness” of  each potential set of  clusters by using the given objective function.  
(NP Hard)

§ Can have global or local objectives.
§ Hierarchical clustering algorithms typically have local objectives
§ Partitional algorithms typically have global objectives

§A variation of  the global objective function approach is to fit the data to a 
parameterized model. 
§ Parameters for the model are determined from the data. 
§ Mixture models assume that the data is a ‘mixture' of  a number of  statistical distributions.  
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Characteristics of  the Input Data Are Important

§ Type of  proximity or density measure
§ Central to clustering
§ Depends on data and application

§ Data characteristics that affect proximity and/or density are
§ Dimensionality

§ Sparseness
§ Attribute type
§ Special relationships in the data

§ For example, autocorrelation
§ Distribution of the data

§ Noise and Outliers
§ Often interfere with the operation of the clustering algorithm

§ Clusters of  differing sizes, densities, and shapes
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Clustering Algorithms

§K-means and its variants

§Hierarchical clustering

§Density-based clustering
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K-means Clustering

§ Partitional clustering approach 
§ Number of  clusters, K, must be specified
§ Each cluster is associated with a centroid (center point) 
§ Each point is assigned to the cluster with the closest centroid
§ The basic algorithm is very simple
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Example of  K-means Clustering
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Example of  K-means Clustering
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K-means Clustering – Details

§ Simple iterative algorithm.
§ Choose initial centroids
§ Repeat {assign each point to a nearest centroid; re-compute cluster centroids} 
§ Until centroids stop changing.

§ Initial centroids are often chosen randomly.
§ Clusters produced can vary from one run to another

§ The centroid is (typically) the mean of  the points in the cluster, but other definitions 
are possible (see Table 7.2).

§ K-means will converge for common proximity measures  with appropriately defined 
centroid (see Table 7.2)

§ Most of  the convergence happens in the first few iterations.
§ Often the stopping condition is changed to ‘Until relatively few points change clusters’

§ Complexity is O( n * K * I * d )
§ n = number of  points, K = number of  clusters, 

I = number of  iterations, d = number of  attributes

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 48
Source: Tan et al., 2019



K-means Objective Function
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§A common objective function (used with Euclidean distance measure) is Sum of  
Squared Error (SSE)
§ For each point, the error is the distance to the nearest cluster center
§To get SSE, we square these errors and sum them.

§ x is a data point in cluster Ci and mi is the centroid (mean) for cluster Ci

§ SSE improves in each iteration of K-means until it reaches a local or global
minima.
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Two different K-means Clusterings
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Importance of  Choosing Initial Centroids …
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Importance of  Choosing Initial Centroids …
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Importance of  Choosing Intial Centroids

§Depending on the choice 
of  initial centroids, B and 
C may get merged or 
remain separate.
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Problems with Selecting Initial Points

§ If  there are K ‘real’ clusters then the chance of  selecting one centroid from each 
cluster is small. 
§ Chance is relatively small when K is large
§ If  clusters are the same size, n, then

§ For example, if  K = 10, then probability = 10!/1010 = 0.00036
§ Sometimes the initial centroids will readjust themselves in ‘right’ way, and 

sometimes they don’t
§ Consider an example of  five pairs of  clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other 
have only one.
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10 Clusters Example

Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

§Multiple runs
§Helps, but probability is not on your side

§Use some strategy to select the k initial centroids and then select among these initial 
centroids
§ Select most widely separated

§ K-means++ is a robust way of  doing this selection

§Use hierarchical clustering to determine initial centroids

§ Bisecting K-means
§Not as susceptible to initialization issues
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K-means++

§ This approach can be slower than random initialization, but very consistently produces 
better results in terms of  SSE
§ The k-means++ algorithm guarantees an approximation ratio 

O(log k) in expectation, where k is the number of  centers

§ To select a set of  initial centroids, C, perform the following:

1. Select an initial point at random to be the first centroid
2. For k – 1 steps
3. For each of the N points, xi, 1 ≤ i ≤ N, find the minimum squared

distance to the currently selected centroids, C1, …, Cj, 1 ≤ j < k,
i.e.,min$ d2( Cj, xi )

4. Randomly select a new centroid by choosing a point with probability

proportional to 
%&'( d2( Cj, xi )
∑* %&'( d2( Cj, xi ) is 

5. End For
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Bisecting K-means

§ Bisecting K-means algorithm
§ Variant of K-means that can produce a partitional or a hierarchical clustering

CLUTO:  http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview
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Bisecting K-means Example
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Limitations of  K-means

§K-means has problems when clusters are of  differing 
§ Sizes
§Densities
§Non-globular shapes

§K-means has problems when the data contains outliers.
§One possible solution is to remove outliers before clustering
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Limitations of  K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Limitations of  K-means: Differing Density

Original Points K-means (3 Clusters)
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Limitations of  K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to find a large number of  clusters such that each of  
them represents a part of  a natural cluster. But these small clusters 
need to be put together in a post-processing step.
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Overcoming K-means Limitations

Original Points K-means Clusters

One solution is to find a large number of  clusters such that 
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Hierarchical Clustering 

§ Produces a set of  nested clusters organized as a hierarchical tree

§ Can be visualized as a dendrogram
§A tree like diagram that records the sequences of merges or splits
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Strengths of  Hierarchical Clustering

§Do not have to assume any particular number of  clusters
§Any desired number of clusters can be obtained by ‘cutting’ the dendrogram at the

proper level

§They may correspond to meaningful taxonomies
§Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, …)
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Hierarchical Clustering

§Two main types of  hierarchical clustering
§Agglomerative:

§ Start with the points as individual clusters
§ At each step, merge the closest pair of  clusters until only one cluster (or k 

clusters) left

§Divisive:
§ Start with one, all-inclusive cluster 
§ At each step, split a cluster until each cluster contains an individual point (or there 

are k clusters)

§Traditional hierarchical algorithms use a similarity or distance matrix
§Merge or split one cluster at a time
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Agglomerative Clustering Algorithm

§ Key Idea: Successively merge closest clusters

§ Basic algorithm
1.Compute the proximity matrix
2.Let each data point be a cluster
3.Repeat
4. Merge the two closest clusters
5. Update the proximity matrix
6.Until only a single cluster remains

§ Key operation is the computation of  the proximity of  two clusters
§ Different approaches to defining the distance between clusters distinguish the

different algorithms

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 73
Source: Tan et al., 2019



Steps 1 and 2 

...
p1 p2 p3 p4 p9 p10 p11 p12

§ Start with clusters of  individual points and a proximity matrix

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix
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Intermediate Situation

...
p1 p2 p3 p4 p9 p10 p11 p12

§ After some merging steps, we have some clusters 

C1

C4

C2 C5

C3

C2C1

C1

C3
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C4

C2

C3 C4 C5

Proximity Matrix
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Step 4

...
p1 p2 p3 p4 p9 p10 p11 p12

§ We want to merge the two closest clusters (C2 and C5)  and update the proximity matrix. 

C1

C4

C2 C5

C3

C2C1

C1

C3

C5

C4

C2

C3 C4 C5

Proximity Matrix
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Step 5

...
p1 p2 p3 p4 p9 p10 p11 p12

§ The question is “How do we update the proximity matrix?” 

C1

C4

C2 U C5

C3 ?        ?        ?        ?    

?

?

?

C2 
U 
C5C1

C1

C3

C4

C2 U C5

C3 C4

Proximity Matrix
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How to Define Inter-Cluster Distance

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

.

Similarity?

§ MIN

§ MAX

§ Group Average

§ Distance Between Centroids

§ Other methods driven by an objective 
function.

§ Ward’s Method uses squared error

Proximity Matrix
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 80
Source: Tan et al., 2019

§ MIN

§ MAX
§ Group Average

§ Distance Between Centroids

§ Other methods driven by an objective 
function.

§ Ward’s Method uses squared error



How to Define Inter-Cluster Similarity
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How to Define Inter-Cluster Similarity

p1

p3

p5

p4

p2

p1 p2 p3 p4 p5 . . .

.

.

. Proximity Matrix

´ ´
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MIN or Single Link 

§ Proximity of  two clusters is based on the two closest points in the different clusters
§Determined by one pair of points, i.e., by one link in the proximity graph

§Example:

Distance Matrix:
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Hierarchical Clustering: MIN

Nested Clusters Dendrogram
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Strength of  MIN

Original Points Six Clusters

• Can handle non-elliptical shapes
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Limitations of  MIN

Original Points

Two Clusters

• Sensitive to noise Three Clusters
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MAX or Complete Linkage

§ Proximity of  two clusters is based on the two most distant points in the different clusters
§Determined by all pairs of points in the two clusters

Distance Matrix:
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Hierarchical Clustering: MAX

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5

6
1

2 5

3

4

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 88
Source: Tan et al., 2019



Strength of  MAX

Original Points Two Clusters

• Less susceptible to noise
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Limitations of  MAX

Original Points
Two Clusters

• Tends to break large clusters
• Biased towards globular clusters

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 90
Source: Tan et al., 2019



Group Average

§ Proximity of  two clusters is the average of  pairwise proximity between points in the two 
clusters.

||Cluster||Cluster
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)Cluster,Clusterproximity(
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Clusterp
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Distance Matrix:
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Hierarchical Clustering: Group Average

Nested Clusters Dendrogram
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Hierarchical Clustering: Group Average

§ Compromise between Single and Complete Link

§ Strengths
§ Less susceptible to noise

§ Limitations
§ Biased towards globular clusters
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Cluster Similarity: Ward’s Method

§ Similarity of  two clusters is based on the increase in squared error when two clusters are 
merged
§ Similar to group average if distance between points is distance squared

§ Less susceptible to noise

§ Biased towards globular clusters

§Hierarchical analogue of  K-means
§ Can be used to initialize K-means
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Hierarchical Clustering: Comparison

Group Average

Ward’s Method
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Hierarchical Clustering:  Time and Space requirements

§O(N2) space since it uses the proximity matrix.  
§N is the number of points.

§O(N3) time in many cases
§There are N steps and at each step the size, N2, proximity matrix must be updated and

searched
§ Complexity can be reduced to O(N2 log(N) ) time with some cleverness
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Hierarchical Clustering:  Problems and Limitations

§Once a decision is made to combine two clusters, it cannot be undone

§No global objective function is directly minimized

§Different schemes have problems with one or more of  the following:
§ Sensitivity to noise
§Difficulty handling clusters of different sizes and non-globular shapes
§ Breaking large clusters
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Density Based Clustering

§ Clusters are regions of  high density that are separated from one another by regions on 
low density.
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Cluster Validity 

§ For supervised classification we have a variety of  measures to evaluate how good our 
model is
§Accuracy, precision, recall

§ For cluster analysis, the analogous question is how to evaluate the “goodness” of  the 
resulting clusters?

§ But “clusters are in the eye of  the beholder”! 
§ In practice the clusters we find are defined by the clustering algorithm

§Then why do we want to evaluate them?
§To avoid finding patterns in noise
§To compare clustering algorithms
§To compare two sets of clusters
§To compare two clusters
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Clusters found in Random Data
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Measures of  Cluster Validity

§ Numerical measures that are applied to judge various aspects of  cluster validity, are 
classified into the following two types.
§ Supervised: Used to measure the extent to which cluster labels match externally

supplied class labels.
§Entropy 
§Often called external indices because they use information external to the data

§ Unsupervised: Used to measure the goodness of a clustering structure without
respect to external information.
§ Sum of  Squared Error (SSE)
§Often called internal indices because they only use information in the data

§ You can use supervised or unsupervised measures to compare clusters or clusterings
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Unsupervised Measures: Cohesion and Separation
§ Cluster Cohesion: Measures how closely related are objects in a cluster

§ Example: SSE

§ Cluster Separation: Measure how distinct or well-separated a cluster is from other clusters
§ Example: Squared Error

§ Cohesion is measured by the within cluster sum of squares (SSE):

§ Separation is measured by the between cluster sum of squares:

Where !" is the size of cluster i
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Unsupervised Measures: Cohesion and Separation

§Example: SSE
§ SSB + SSE = constant

1 2 3 4 5
´ ´´
m1 m2

m

K=2 clusters:

K=1 cluster: !!" = 1 − 3 ' + 2 − 3 ' + 4 − 3 ' + 5 − 3 ' = 10
!!- = 4× 3 − 3 ' = 0
/0123 = 10 + 0 = 10
!!" = 1 − 1.5 ' + 2 − 1.5 ' + 4 − 4.5 ' + 5 − 4.5 ' = 1
!!- = 2 × 3 − 1.5 ' + 2× 4.5 − 3 ' = 9
/0123 = 1 + 9 = 10

Ángel Jiménez M.    - DII (Department of Industrial Engineering)     - University of Chile 103
Source: Tan et al., 2019



Unsupervised Measures: Cohesion and Separation

§ A proximity graph-based approach can also be used for cohesion and separation.
§ Cluster cohesion is the sum of the weight of all links within a cluster.
§ Cluster separation is the sum of the weights between nodes in the cluster and nodes

outside the cluster.

cohesion separation
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Unsupervised Measures: Silhouette Coefficient

§ Silhouette coefficient combines ideas of  both cohesion and separation, but for individual 
points, as well as clusters and clusterings

§ For an individual point, i
§ Calculate a = average distance of  i to the points in its cluster
§ Calculate b = min (average distance of  i to points in another cluster)
§ The silhouette coefficient for a point is then given by 

s = (b – a) / max(a,b)   

§ Value can vary between -1 and 1
§ Typically ranges between 0 and 1. 
§ The closer to 1 the better.

§ Can calculate the average silhouette coefficient for a cluster or a clustering

Distances used 
to calculate a

i
Distances used 
to calculate b
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Measuring Cluster Validity Via Correlation

§ Two matrices 
§ Proximity Matrix
§ Ideal Similarity Matrix

§ One row and one column for each data point
§ An entry is 1 if  the associated pair of  points belong to the same cluster
§ An entry is 0 if  the associated pair of  points belongs to different clusters

§ Compute the correlation between the two matrices
§ Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

§ High magnitude of  correlation indicates that points that belong to the same cluster are 
close to each other. 
§ Correlation may be positive or negative depending on whether the similarity 

matrix is a similarity or dissimilarity matrix

§ Not a good measure for some density or contiguity based clusters.
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Measuring Cluster Validity Via Correlation

§ Correlation of  ideal similarity and proximity matrices for the K-means clusterings of  the 
following well-clustered data set. 
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Measuring Cluster Validity Via Correlation

§ Correlation of  ideal similarity and proximity matrices for the K-means clusterings of  the 
following random data set. 
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Judging a Clustering Visually by its Similarity Matrix

§ Order the similarity matrix with respect to cluster labels and inspect visually. 
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Determining the Correct Number of  Clusters

§ SSE is good for comparing two clusterings or two clusters

§ SSE can also be used to estimate the number of  clusters
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Determining the Correct Number of  Clusters

§ SSE curve for a more complicated data set
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SSE of clusters found using K-means
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