- Why is this important?
- OLS can be used for relationships that are not strictly linear in $x$ and $y$ by using nonlinear functions of $x$ and $y-$ will still be linear in the parameters
-Can take the natural $\log$ of $x, y$ or both
-Can use quadratic forms of $x$
- Can use interactions of $x$ variables
- How do you interpret $\beta_{1}$ ?
- $\ln (y)=\beta_{0}+\beta_{1} \ln (x)+u$
- $\ln (y)=\beta_{0}+\beta_{1} x+u$
- $y=\beta_{0}+\beta_{1} \ln (x)+u$
-Why would you use log models?


## Functional forms: Quadratics

- How about when we have a model of the form?:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+u_{i}
$$

- Can we interpret $\beta_{1}$ alone as the change in $y$ with respect to $x$ ? Do we need to take into account $\beta_{2}$ as well?
- Let's see this case:

$$
\text { wage }_{i}=\beta_{0}+\beta_{1} \exp _{i}+u_{i} \quad \text { vs. } \text { wage }_{i}=\beta_{0}+\beta_{1} \exp _{i}+\beta_{2} \exp _{i}^{2}+u_{i}
$$

- Which one is more realistic? Interpretation?


## Functional forms: Adding in qualitative Xs

- How about when we add in dummies/binaries and dichotomous Xs?
- Example: Is there a relationship between wage and race?
$\square$
- Write down the model specification and interpret the following results (next slide)
- Remember that there is a benchmark or baseline group. What does it happen if there is not?


## Interaction terms: Application



## Interaction terms

- Interacting dummy variables is like subdividing the group
- Example: have dummies for gender (female or male), as well as for educational attainment (HS incomplete, HS, and BS)
- How many categories do you have? What's the base group?
- Write the model (at home):
$\square$
- Interactions can also include continuous variables.


## Goodness of fit and selection of regressors

- Remember that $R^{2}$ cannot decrease (usually increase) when you add more Xs to the model
-adj- $\mathrm{R}^{2}$ takes this into account
- Don't think only on the adj-R²; think about the theory you are testing (and also common sense)
- Let's answer the following questions
- What happens if we include variables in our specification that don't belong?
- What if we exclude a variable from our specification that does belong?


## Goodness of fit and selection of regressors: Ex 1

- Restaurant new location for a established restaurant chain based on volume of customers (Y), using competition (N), population (P) and average household income (I) from nearby places (from Stundenmund, 2016)

|  | $\begin{array}{r} \text { est1 } \\ \mathrm{b} / \mathrm{t} \end{array}$ | $\begin{array}{r} \text { est2 } \\ \text { b/t } \end{array}$ |
| :---: | :---: | :---: |
| $N$ | $\begin{gathered} -9074.674^{* * *} \\ (-4.42) \end{gathered}$ | $\begin{array}{r} -1487.344 \\ (-0.84) \end{array}$ |
| P | $\begin{aligned} & 0.355^{* * *} \\ & (4.88) \end{aligned}$ |  |
| I | $\begin{aligned} & 1.288^{*} \\ & (2.37) \end{aligned}$ | $\begin{aligned} & 2.322 * * \\ & (3.50) \end{aligned}$ |
| Constant | $\begin{gathered} 102192.428 * * * \\ (7.98) \end{gathered}$ | $\begin{gathered} 84438.590^{* * *} \\ (5.19) \end{gathered}$ |
| N | 33.000 | 33.000 |
| r2 | 0.618 | 0.305 |
| r2_a | 0.579 | 0.258 |

* $p<0.05$, ** $p<0.01$, *** $p<0.001$
- What did it happen with the Adj-R²?
- What did it change?
- Why?


## Goodness of fit and selection of regressors: Ex 2

- What if we add an irrelevant and uncorrelated variable? (e.g. A: the last 3 digits of the street address)

|  | $\begin{array}{r} \text { est1 } \\ \text { b/t } \end{array}$ | $\begin{array}{r} \text { est2 } \\ \mathrm{b} / \mathrm{t} \end{array}$ | - What did it happen with the $\mathrm{R}^{2}$ |
| :---: | :---: | :---: | :---: |
| N | $\begin{gathered} -9074.674 * * * \\ (-4.42) \end{gathered}$ | $\begin{gathered} -9099.163^{* * *} \\ (-4.46) \end{gathered}$ | and $\operatorname{Adj}-\mathrm{R}^{2}$ ? <br> - What did it change? |
| P | $\begin{aligned} & 0.355^{* * *} \\ & (4.88) \end{aligned}$ | $\begin{aligned} & 0.348^{* * *} \\ & (4.80) \end{aligned}$ | - Why? |
| I | $\begin{aligned} & 1.288 * \\ & (2.37) \end{aligned}$ | $\begin{aligned} & 1.239^{*} \\ & (2.29) \end{aligned}$ |  |
| A |  | $\begin{aligned} & 10.993 \\ & (1.16) \end{aligned}$ |  |
| Constant | $\begin{gathered} 102192.428 * * * \\ (7.98) \end{gathered}$ | $\begin{gathered} 97877.397 * * * \\ (7.39) \end{gathered}$ |  |
| $N$ | 33.000 | 33.000 |  |
| r2 | 0.618 | 0.636 |  |
| r2_a | 0.579 | 0.584 |  |

- Demand for gasoline using petroleum consumption by U.S. State (PCON), using urban highway miles with the state (UHM), gasoline tax rates (TAX) and number of motor vehicles (REG) (from Sundemmun, 2016)
- Write down the model with the expected sign of each coefficient
- Board: estimation with and without UHM
- What did it happen with the Adj-R ${ }^{2}$ ?
- What did it happen with REG?
- Does it help to know that REG and UHM are extremely correlated?
- Non-linear relationships (you can use data transformation - we talked about this)
- Extrapolating beyond the data
- Missing data (common problem beyond LRM)
- Example: We want to predict the effect of voter turnout in the last elections on people's donations. We find a significant positive relationship, but only when political ideology is included. The problem is that this latter variable wasn't answer by $80 \%$ of the people in the dataset.
- Other common solutions
- Outliers and influence point. Example:




## Models with binary dependent variable

- What does it happen when there is a binary/dichotomous/dummy dependent variable regression models?
- This is part of the "qualitative response" regression models involving nominal scale dependent variables that you will see in other courses (e.g. ordinal and multinomial models)
- Examples:
- Effect of when a person started to smoke on whether he/she smokes at the age of 50
- Effect of a marketing technique on whether people buy a product
- What are the problems of the linear probability model (LPM) using OLS?
- You will see logit and probit models in other courses (perhaps in one of our review session)


## Summary of the last two Parts

- Empirical research methods. Why do we care?
- Data collections and type of measures
- Ethics
- Visualization
- Linear regression models (review)
- Interpretation
- Assumptions
- Model specification errors
-Garbage in, garbage out

