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PREFACE

This text is intended as the basis for an intermediate course in mechanics
at the undergraduate level. Such a course, as essential preparation for
advanced work in physics, has several major objectives. It must develop
in the student a thorough understanding of the fundamental principles of
mechanics. It should treat in detail certain specific problems of primary
importance in physics, for example, the harmonic oscillator, and the
motion of a particle under a central force. The problems suggested and
those worked out in the text have been chosen with regard to their in-
terest and importance in physics, as well as to their instructive value.
This book contains sufficient material for a two-semester course, and is
arranged in such a way that, with appropriate omissions, it can be used
for a single three- or four-hour course for one semester. The author has
used the material in the first seven chapters in a three-hour course in
mechanics.

The choice of topics and their treatment throughout the book are in-
tended to emphasize the modern point of view. Applications to atomic
physics are made wherever possible, with an indication as to the extent of
the validity of the results of classical mechanics. The inadequacies in
classical mechanics are carefully pointed out, and the points of departure
for quantum mechanics and for relativistic mechanics are indicated. The
development, except for the last four chapters, proceeds directly from
Newton’s laws of motion, which form a suitable basis from which to attack
most mechanical problems. More advanced methods, using Lagrange’s
equations and tensor algebra, are introduced in the last four chapters.

An important objective of a first course in mechanics is to train the
student to think about physical phenomena in mathematical terms. Most
students have a fairly good intuitive feeling for mechanical phenomena in
a qualitative way. The study of mechanics should aim at developing an
almost equally intuitive feeling for the precise mathematical formulation
of physical problems and for the physical interpretation of the mathe-
matical solutions. The examples treated in the text have been worked
out so as to integrate, as far as possible, the mathematical treatment with
the physical interpretation. After working an assigned problem, the
student should study it until he is sure he understands the physical inter-
pretation of every feature of the mathematical treatment. He should de-
cide whether the result agrees with his physical intuition about the prob-
lem. If not, then either his solution or his intuition should be appropriately
corrected. If the answer is fairly complicated, he should try to see whether
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it can be simplified in certain special or limiting cases. He should try to
formulate and solve similar problems on his own.

Only a knowledge of differential and integral calculus has been presup-
posed. Mathematical concepts beyond those treated in the first year of
calculus are introduced and explained as needed. A previous course in
elementary differential equations or vector analysis may be helpful, but it
is the author’s experience that students with an adequate preparation in
algebra and calculus are able to handle the vector analysis and differential
equations needed for this course with the explanations provided herein.
A physics student is likely to get more out of his advanced courses in
mathematies if he has previously encountered these concepts in physics.

The text has been written so as to afford maximum flexibility in the
selection and arrangement of topics to be covered. With certain obvious
exceptions, many sections or groups of sections can be postponed or
omitted without prejudice to the understanding of the remaining material.
Where particular topics presented earlier are needed in later parts of the
book, references to section and equation numbers make it easy to locate
the earlier material needed.

In the first chapter the basic concepts of mechanics are reviewed, and
the laws of mechanies and of gravitation are formulated and applied to a
few simple examples. The second chapter undertakes a fairly thorough
study of the problem of one-dimensional motion. The chapter concludes
with a study of the harmonic oscillator as probably the most important
example of one-dimensional motion. Use is made of complex numbers to
represent oscillating quantities. The last section, on the principle of super-
position, makes some use of Fourier series, and provides a basis for certain
parts of Chapters 8 and 12. If these chapters are not to be covered, Sec-
tion 2-11 may be omitted or, better, skimmed to get a brief indication of
the significance of the principle of superposition and the way in which
Fourier series are used to treat the problem of an arbitrary applied force
function.

Chapter 3 begins with a development of vector algebra and its use in
describing motions in a plane or in space. Boldface letters are used for
vectors. Section 3—6 is a brief introduction to vector analysis, which is
used very little in this book except in Chapter 8, and it may be omitted
or skimmed if Chapter 8 and a few proofs in some other chapters are
omitted. The author feels there is some advantage in introducing the
student to the concepts and notation of vector analysis at this stage, where
the level of treatment is fairly easy; in later courses where the physical
concepts and mathematical treatment become more difficult, it will be well
if the notations are already familiar. The theorems stating the time rates
of change of momentum, energy, and angular momentum are derived for
a moving particle, and several problems are discussed, of which motion
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under central forces receives major attention. Examples are taken from
astronomical and from atomic problems.

In Chapter 4 the conservation laws of energy, momentum, and angular
momentum are derived, with emphasis on their position as cornerstones of
present-day physics. They are then applied to typical problems, particu-
larly collision problems. The two-body problem is solved, and the motion
of two coupled harmonic oscillators is worked out. The general theory of
coupled oscillations is best treated by means of linear transformations in
vector spaces, as in Chapter 12, but the behavior of coupled oscillating
systems is too important to be omitted altogether from even a one-semester
course. The section on two coupled oscillators can be omitted or postponed
until Chapter 12. The rigid body is discussed in Chapter 5 as a special
kind of system of particles. Only rotation about a fixed axis is treated;
the more general study of the motion of a rigid body is left to a later chap-
ter, where more advanced methods are used. The section on statics treats
the problem of the reduction of a system of forces to an equivalent simpler
system. Elementary treatments of the equilibrium of beams, flexible
strings, and of fluids are given in Sections 5-9, 5-10, and 5-11.

The theory of gravitation is studied in some detail in Chapter 6. The
last section, on the gravitational field equations, may be omitted without
disturbing the continuity: of the remaining material. The laws of motion
in moving coordinate systems are worked out in Chapter 7, and applied
to motion on thé rotating earth and to the motion of a system of charged
particles in a magnetic field. Particular attention is paid to the status
in Newtonian mechanics of the “fictitious forces” which appear when
moving coordinate systems are introduced, and to the role to be played
by such forces in the general theory of relativity.

The last five chapters cover more advanced material and are designed
primarily to be used in the second semester of a two-semester course in

intermediate mechanics. In a shorter course, any or all of the last five

chapters may be omitted without destroying the unity of the course,
although the author has found it possible to utilize parts of Chapter 8 or
9 even in a one-semester course. In Chapter 8 an introductory treatment
of vibrating strings and of the motion of fluids is presented, with emphasis
on the fundamental concepts and mathematical methods used in treating
' the mechanics of continuous media. Chapter 9 on Lagrange’s equations
is intended as an introduction to the methods of advanced dynamics.
Hamilton’s equations and the concept of phase space are presented, since
they are prerequisite to any later course in quantum mechanics or statis-
tical mechanics, but the theory of canonical transformations and the use
of variational principles are beyond the scope of this book. Chapter 10
develops the algebra of tensors, including orthogonal coordinate trans-
formations, which are required in the last two chapters. The inertia tensor
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and the stress tensor are described in some detail as examples. Section
10-6 on the stress tensor will enable the reader to extend the discussion
of ideal fluids in Chapter 8 to a solid or viscous medium. The methods
developed in Chapters 9 and 10 are applied in Chapter 11 to the general
rotation of a rigid body about a point, and in Chapter 12 to the study of
small vibrations of a physical system about a state of equilibrium or of
steady motion.

The problems at the end of each chapter are arranged in the order
in which the material is covered in the chapter, for convenience in as-
signment. An attempt has been made to include a sufficient variety of
problems to guarantee that anyone who can solve them has mastered the
material in the text. The converse is not necessarily true, since most
problems require more or less physical ingenuity in addition to an under-
standing of the text. Many of the problems are fairly easy and should be
tractable for anyone who has understood the material presented. A few
are probably too difficult for most college juniors or seniors to solve with-
out some assistance. Those problems which are particularly difficult or
time-consuming are marked with an asterisk.

The last three chapters and the last three sections of Chapter 9 have
been added to the present edition in order to provide enough material for
a full two-semester course in mechanics. Except for corrections and a
few minor changes and additions, the first eight chapters and the first
eight sections of Chapter 9 remain the same as in the first edition of this
text.

Grateful acknowledgment is made to Professor Francis W. Sears of
Dartmouth College and to Professor George H. Vineyard of Brookhaven
National Laboratory for their many helpful suggestions, and to Mr. Charles
Vittitoe and Mr. Donald Roiseland for a critical reading of the last four
chapters. The author is particularly grateful to the many teachers and
students who have offered corrections and suggestions for improvement
which have been incorporated in this revised edition. While space does not
permit mentioning individuals here, I hope that each may find my thanks
expressed in the changes that have been made in this edition.

January, 1960 K. R. S.
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CHAPTER 1
ELEMENTS OF NEWTONIAN MECHANICS

1-1 Mechanics, an exact science. When we say that physics is an
exact science, we mean that its laws are expressed in the form of mathe-
matical equations which describe and predict the results of precise quanti-
tative measurements. The advantage in a quantitative physical theory is
not alone the practical one that it gives us the power accurately to predict
and to control natural phenomena. By a comparison of the results of
accurate measurements with the numerical predictions of the theory, we
can gain considerable confidence that the theory is correct, and we can
determine in what respects it needs to be modified. It is often possible
to explain a given phenomenon in several rough qualitative ways, and if
we are content with that, it may be impossible to decide which theory is
correct. But if a theory can be given which predicts correctly the results
of measurements to four or five (or even two or three) significant figures,
the theory can hardly be very far wrong. Rough agreement might be a
coincidence, but close agreement is unlikely to be. Furthermore, there
have been many cases in the history of science when small but significant
discrepancies between theory and accurate measurements have led to the
development of new and more far-reaching theories. Such slight discrep-
ancies would not even have been detected if we had been content with a
merely qualitative explanation of the phenomena.

The symbols which are to appear in the equations that express the laws
of a science must represent quantities which can be expressed in numerical
terms. Hence the concepts in terms of which an exact science is to be
developed must be given precise numerical meanings. If a definition of a
quantity (mass, for example) is to be given, the definition must be such
as to specify precisely how the value of the quantity is to be determined
in any given case. A qualitative remark about its meaning may be helpful,
but is not sufficient as a definition. As a matter of fact, it is probably not
possible to give an ideally precise definition of every concept appearing in
a physical theory. Nevertheless, when we write down a mathematical
equation, the presumption is that the symbols appearing in it have precise
meanings, and we should strive to make our ideas as clear and precise as
possible, and to recognize at what points there is a lack of precision or
clarity. Sometimes a new concept can be defined in terms of others whose
meanings are known, in which case there is no problem. For example,

momentum = mass X velocity
1
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gives a perfectly precise definition of “momentum” provided “mass” and
“velocity” are assumed to be precisely defined already. But this kind of
definition will not do for all terms in a theory, since we must start some-
where with a set of basic concepts or “primitive” terms whose meanings
are assumed known. The first concepts to be introduced in a theory can-
not be defined in the above way, since at first we have nothing to put on
the right side of the equation. The meanings of these primitive terms
must be made clear by some means that lies outside of the physical theories
being set up. We might, for example, simply use the terms over and over
until their meanings become clear. This is the way babies learn a language,
and probably, to some extent, freshman physics students learn the same
way. We might define all primitive terms by stating their meaning in
terms of observation and experiment. In particular, nouns designating
measurable quantities, like force, mass, etc., may be defined by specifying
the operational process for measuring them. One school of thought holds
that all physical terms should be defined in this way. Or we might simply
state what the primitive terms are, with a rough indication of their physi-
cal meaning, and then let the meaning be determined more precisely by
the laws and postulates we lay down and the rules that we give for inter-
preting theoretical results in terms of experimental situations. This is the
most convenient and flexible way, and is the way physical theories are
usually set up. It has the disadvantage that we are never sure that our
concepts have been given a precise meaning. It is left to experience to
decide not only whether our laws are correct, but even whether the con-
cepts we use have a precise meaning. The modern theories of relativity
and quanta arise as much from fuzziness in classical concepts as from in-
accuracies in classical laws.

Historically, mechanics was the earliest branch of physics to be developed
as an exact science. The laws of levers and of fluids in static equilibrium
were known to Greek scientists in the third century B.C. The tremendous
development of physics in the last three centuries began with the discovery
of the laws of mechanics by Galileo and Newton. The laws of mechanics
as formulated by Isaac Newton in the middle of the seventeenth century
and the laws of electricity and magnetism as formulated by James Clerk
Maxwell about two hundred years later are the two basic theories of classi-
cal physics. Relativistic physics, which began with the work of Einstein
in 1905, and quantum physics, as based upon the work of Heisenberg
and Schroedinger in 1925-1926, require a modification and reformulation
of mechanics and electrodynamics in terms of new physical concepts.
Nevertheless, modern physics builds on the foundations laid by classical
physics, and a clear understanding of the principles of classical mechanics
and electrodynamics is still essential in the study of relativistic and quan-
tum physics. Furthermore, in the vast majority of practical applications
of mechanics to the various branches of engineering and to astronomy, the

.
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laws of classical mechanics can still be applied. Except when bodies travel
at speeds approaching the speed of light, or when enormous masses or
enormous distances are involved, relativistic mechanics gives the same re-
sults as classical mechanics; indeed, it must, since we know from experi-
ence that classical mechanics gives correct results in ordinary applications.
Similarly, quantum mechanics should and does agree with classical mechan-
ics except when applied to physical systems of molecular size or smaller.
Indeed, one of the chief guiding principles in formulating new physical
theories is the requirement that they must agree with the older theories
when applied to those phenomena where the older theories are known to
be correct.

Mechanics is the study of the motions of material bodies. Mechanics
‘may be divided into three subdisciplines, kinematics, dynamics, and statics.
Kinematics is the study and description of the possible motions of mate-
rial bodies. Dynamics is the study of the laws which determine, among
all possible motions, which motion will actually take place in any given
case. In dynamics we introduce the concept of force. The central prob-
lem of dynamics is to determine for any physical system the motions which
will take place under the action of given forces. Statics is the study of
forces and systems of forces, with particular reference to systems of forces
which act on bodies at rest.

We may also subdivide the study of mechanics according to the kind of
physical system to be studied. This is, in general, the basis for the outline
of the present book. The simplest physical system, and the one we shall
study first, is a single particle. Next we shall study the motion of a sys-
tem of particles. A rigid body may be treated as a special kind of system
of particles. Finally, we shall study the motions of continuous media,
elastic and plastic substances, solids, liquids, and gases.

A great many of the applications of classical mechanics may be based
directly on Newton’s laws of motion. All of the problems studied in this
book, except in Chapters 9-12, are treated in this way. There are, how-
ever, a number of other ways of formulating the principles of classical
mechanics. The equations of Lagrange and of Hamilton are examples.
They are not new physical theories, for they may be derived from Newton’s
laws, but they are different ways of expressing the same physical theory.
They use more advanced mathematical concepts, they are in some respects
more elegant than Newton’s formulation, and they are in some cases more
powerful in that they allow the solutions of some problems whose solution
based directly on Newton’s laws would be very difficult. The more differ-
ent ways we know to formulate a physical theory, the better chance we
have of learning how to modify it to fit new kinds of phenomena as they
are discovered. This is one of the main reasons for the importance of the
more advanced formulations of mechanics. They are a starting point for
the newer theories of relativity and quanta.
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1-2 Kinematics, the description of motion. Mechanics is the science
which studies the motions of physical bodies. We must first describe mo-
tions. Easiest to describe are the motions of a particle, that is, an object
whose size and internal structure are negligible for the problem with which
we are concerned. The earth, for example, could be regarded as a particle
for most problems in planetary motion, but certainly not for terrestrial
problems. We can describe the position of a particle by specifying a point
in space. This may be done by giving three coordinates. Usually, rec-
tangular coordinates are used. For a particle moving along a straight line
(Chapter 2) only one coordinate need be given. To describe the motion
of a particle, we specify the coordinates as functions of time:

one dimension: x(f),
(1-1)
three dimensions: z(f), y(t), z(¢).

The basic problem of classical mechanics is to find ways to determine funec-
tions like these which specify the positions of objects as functions of time,
for any mechanical situation. The physical meaning of the function x(f)
is contained in the rules which tell us how to measure the coordinate x of a
particle at a time {. Assuming we know the meaning of z(f), or at least
that it has a meaning (this assumption, which we make in classical me-
chanics, is not quite correct according to quantum mechanics), we can
define the z-component of velocity v, at time ¢ as*

z-axis P V= & = % ’ (1-2)

!T and, similarly,
1
! d . dz
iz vy=y=E-gt/; vz=z=a-
' .

W 0 vd : y-axis We now define the components of
i

R acceleration a., a,, a, as the deriva-
/‘-A-----/J—— tives of the velocity components
- 4 X with respect to time (we list several

a-axis o equivalent notations which may be
three dimensions
used):
0 P 0 — 7 dv, 3 d%x
x = Uy — — = = —2 ?
' P dt d;
. . . d .

one dimension ay = v, = ;ty =j= dtg, (1-3)

Fig. 1-1. Rectangular coordinates 2
specifying the position of a particle P -5 = dv, d’z
relative to an origin O. ETTE T 4 12

* We shall denote a time derivative either by d/dt or by a dot. Both notations
are given in Eq. (1-2).
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For many purposes some other system of coordinates may be more con-
venient for specifying the position of a particle. When other coordinate
systems are used, appropriate formulas for components of velocity and
acceleration must be worked out. Spherical, cylindrical, and plane polar
coordinates will be discussed in Chapter 3. For problems in two and three
dimensions, the concept of a vector is very useful as a means of represent-
ing positions, velocities, and accelerations. A systematic development of
vector algebra will be given in Section 3-1.

To describe a system of particles, we may specify the coordinates of
each particle in any convenient coordinate system. Or we may introduce
other kinds of coordinates, for example, the coordinates of the center of
mass, or the distance between two particles. If the particles form a Tigid
body, the three coordinates of its center of mass and three angular coordi-
nates specifying its orientation in space are sufficient to specify its position.
To describe the motion of continuous matter, for example a fluid, we would
need to specify the density p(z, y, 2, f) at any point (z, y, 2) in space at each
instant ¢ in time, and the velocity vector v(z, y, 2, {) with which the matter
at the point (z, y, 2) is moving at time ¢. Appropriate devices for describ-
ing the motion of physical systems will be introduced as needed.

1-3 Dynamics. Mass and force. Experience leads us to believe that
the motions of physical bodies are controlled by interactions between them
and their surroundings. Observations of the behavior of projectiles and
of objects sliding across smooth, well-lubricated surfaces suggest, the idea
that changes in the velocity of a body are produced by interaction with its
surroundings. A body isolated from all interactions would have a con-
stant velocity. Hence, in formulating the laws of dynamics, we focus our
attention on accelerations.

Let us imagine two bodies interacting with each other and otherwise
isolated from interaction with their surroundings. As a rough approxima-
tion to this situation, imagine two boys, not necessarily of equal size, en-
gaged in a tug of war over a rigid pole on smooth ice. Although no two
actual bodies can ever be isolated completely from interactions with all
other bodies, this is the simplest kind of situation to think about and one
for which we expect the simplest mathematical laws. Careful experiments
with actual bodies lead us to conclusions as to what we should observe
if we could achieve ideal isolation of two bodies. We should observe that
the two bodies are always accelerated in opposite directions, and that the
ratio of their accelerations is constant for any particular pair of bodies no
matter how strongly they may be pushing or pulling each other. If we
measure the coordinates x; and z5 of the two bodies along the line of their
accelerations, then

£1/85 = —kip, (1-4)



6 ‘ ELEMENTS OF NEWTONIAN MECHANICS [cHAP. 1

where k12 is a positive constant characteristic of the two bodies concerned.
The negative sign expresses the fact that the accelerations are in opposite
directions.

Furthermore, we find that in general the larger or heavier or more mas-
sive body is accelerated the least. We find, in fact, that. the ratio k is
proportional to the ratio of the weight of body 2 to that of body 1. The
accelerations of two interacting bodies are inversely proportional to their
weights. This suggests the possibility of a dynamical definition of what
we shall call the masses of bodies in terms of their mutual accelerations.
We choose a standard body as a unit mass. The mass of any other body
is defined as the ratio of the acceleration of the unit mass to the accelera-
tion of the other body when the two are in interaction:

m; — kli = ——.’21/131', (1—5)

where m; is the mass of body %, and body 1 is the standard unit mass.

In order that Eq. (1-5) may be a useful definition, the ratio k2 of the
mutual accelerations of two bodies must satisfy certain requirements. If
the mass defined by Eq. (1-5) is to be a measure of what we vaguely call
the amount of matter in a body, then the mass of a body should be the sum
of the masses of its parts, and this turns out to be the case to a very high
degree of precision. It is not essential, in order to be useful in scientific
theories, that physical concepts for which we give precise definitions should
correspond closely to any previously held common-sense ideas. However,
most precise physical concepts have originated from more or less vague
common-sense ideas, and mass is a good example. Later, in the theory
of relativity, the concept of mass is somewhat modified, and it is no longer
exactly true that the mass of a body is the sum of the masses of its parts.

One requirement which is certainly essential is that the concept of mass
be independent of the particular body which happens to be chosen as
having unit mass, in the sense that the ratio of two masses will be the
same no matter what unit of mass may be chosen. This will be true be-
cause of the following relation, which is found experimentally, between
the mutual acceleration ratios defined by Eq. (1-4) of any three bodies:

kygkasks: = 1. (1-6)

Suppose that body 1 is the unit mass. Then if bodies 2 and 3 interact
with each other, we find, using Eqgs. (14), (1-6), and (1-5),
Eo/B3 = —kos
= — 1/(k12k31) 1-7
= —kis/k12
= —mz/ms.
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The final result contains no explicit reference to body 1, which was taken
to be the standard unit mass. Thus the ratio of the masses of any two
bodies is the negative inverse of the ratio of their mutual accelerations, in-
dependently of the unit of mass chosen.

By Eq. (1-7), we have, for two interacting bodies,

'”1/2.'22 = —mlzl"l. : (1"8)

This suggests that the quantity (mass X acceleration) will be important,
and we call this quantity the force acting on a body. The acceleration of
a body in space has three components, and the three components of force
acting on the body are

Fo=m& F,=mj F,=ms (1-9)

The forces which act on a body are of various kinds, electric, magnetic,
gravitational, etc., and depend on the behavior of other bodies. In
general, forces due to several sources may act on a given body, and it is
found that the total force given by Egs. (1-9) is the vector sum of the
forces which would be present if each source were present alone.

The theory of electromagnetism is concerned with the problem of de-
termining the electric and magnetic forces exerted by electrical charges
and currents upon one another. The theory of gravitation is concerned
with the problem of determining the gravitational forces exerted by
masses upon one another. The fundamental problem of mechanics is to
determine the motions of any mechanical system, given the forces acting
on the bodies which make up the system.

1-4 Newton’s laws of motion. Isaac Newton was the first to give a
complete formulation of the laws of mechanics. Newton stated his famous
three laws as follows:*

(1) Every body continues in its state of rest or of uniform motion
in a straight line unless it is compelled to change that state by forces
impressed upon it.

(2) Rate of change of momentum is proportional to the impressed
force, and is in the direction in which the force acts.

(3) To every action there is always opposed an equal reaction.

In the second law, momentum is to be defined as the product of the mass
and the velocity of the particle. Momentum, for which we use the symbol

* Isaac Newton, Mathematical Principles of Natural Philosophy and his System
of the World, tr. by F. Cajori (p. 13). Berkeley: University of California Press,
1934.
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p, has three components, defined along z-, y-, and z-axes by the equations
Py = MUy, Dy = My, P = My, (1-10)

The first two laws, together with the definition of momentum, Eqgs. (1-10),
and the fact that the mass is constant by Eq. (1-4),* are equivalent to
Egs. (1-9), which express them in mathematical form. The third law
states that when two bodies interact, the force exerted on body 1 by body 2
is equal and opposite in direction to that exerted on body 2 by body 1.
This law expresses the experimental fact given by Eq. (1-4), and can
easily be derived from Eq. (1-4) and from Egs. (1-5) and (1-9).

The status of Newton’s first two laws, or of Eqgs. (1-9), is often the sub-
ject of dispute. We may regard Eqgs. (1-9) as defining force in terms of
mass and acceleration. In this case, Newton’s first two laws are not laws
at all but merely definitions of a new concept to be introduced in the theory.
The physical laws are then the laws of gravitation, electromagnetism, etc.,
which tell us what the forces are in any particular situation. Newton’s
discovery was not that force equals mass times acceleration, for this is
merely a definition of “force.” What Newton discovered was that the
laws of physics are most easily expressed in terms of the concept of force
defined in this way. Newton’s third law is still a legitimate physical law
expressing the experimental result given by Eq. (1-4) in terms of the con-
cept of force. This point of view toward Newton’s first two laws is con-
venient for many purposes and is often adopted. Its chief disadvantage is
that Eqgs. (1-9) define only the total force acting on a body, whereas we
often wish to speak of the total force as a (vector) sum of component forces
of various kinds due to various sources. The whole science of statics,
which deals with the forces acting in structures at rest, would be unintelli-
gible if we took Eqgs. (1-9) as our definition of force, for all accelerations are
zero in a structure at rest.

We may also take the laws of electromagnetism, gravitation, etc., to-
gether with the parallelogram law of addition, as defining “force.” Equa-
tions (1-9) then become a law connecting previously defined quantities.
This has the disadvantage that the definition of force changes whenever a
new kind of force (e.g., nuclear force) is discovered, or whenever modifica-
tions are made in electromagnetism or in gravitation. Probably the best
plan, the most flexible at least, is to take force as a primitive concept of

* In the theory of relativity, the mass of a body is not constant, but depends on
its velocity. In this case, law (2) and Eqgs. (1-9) are not equivalent, and it turns
out that law (2) is the correct formulation. Force should then be equated to time
rate of change of momentum. The simple definition (1-5) of mass is not correct
according to the theory of relativity unless the particles being accelerated move
at low velocities.
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our theory, perhaps defined operationally in terms of measurements with
a spring balance. Then Newton’s laws are laws, and so are the laws of
theories of special forces like gravitation and electromagnetism.

Aside from the question of procedure in regard to the definition of force,
there are other difficulties in Newton’s mechanics. The third law is not
always true. It fails to hold for electromagnetic forces, for example, when
the interacting bodies are far apart or rapidly accelerated and, in fact, it

fails for any forces which propagate from one body to another with finite
velocities. Fortunately, most of our development is based on the first
two laws. Whenever the third law is used, its use will be explicitly noted
and the results obtained will be valid only to the extent that the third law
holds.

Another difficulty is that the concepts of Newtonian mechanics are not
perfectly clear and precise, as indeed no concepts can probably ever be for
any theory, although we must develop the theory as if they were. An
outstanding example is the fact that no specification is made of the coordi-
nate system with respect to which the accelerations mentioned in the first
two laws are to be measured. Newton himself recognized this difficulty
but found no very satisfactory way of specifying the correct coordinate
system to use. Perhaps the best way to formulate these laws is to say
that there is a coordinate system with respect to which they hold, leaving
it to experiment to determine the correct coordinate system. It can be
shown that if these laws hold in any coordinate system, they hold also in
any coordinate system moving uniformly with respect to the first. This
is called the principle of Newtonian relativity, and will be proved in
Section 7-1, although the reader should find little difficulty in proving it
for himself. )

Two assumptions which are made throughout classical physics are that
the behavior of measuring instruments is unaffected by their state of
motion so long as they are not rapidly accelerated, and that it is possible,

" in principle at least, to devise instruments to measure any quantity with
as small an error as we please. These two assumptions fail in extreme
cases, the first at very high velocities, the second when very small magni-
tudes are to be measured. The failure of these assumptions forms the
basis of the theory of relativity and the theory of quantum mechanics,
respectively. However, for a very wide range of phenomena, Newton’s
mechanics is correct to a very high degree of accuracy, and forms the
starting point at which the modern theories begin. Not only the laws but
also the concepts of classical physics must be modified according to the
- modern theories. However, an understanding of the concepts of modern
physics is made easier by a clear understanding of the concepts of classical
physics. These difficulties are pointed out here in order that the reader
may be prepared to accept later modifications in the theory. This is not to
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say that Newton himself (or the reader either at this stage) ought to have
worried about these matters before setting up his laws of motion. Had
he done so, he probably never would have developed his theory at all. It
was necessary to make whatever assumptions seemed reasonable in order
to get started. Which assumptions needed to be altered, and when, and
in what way, could only be determined later by the successes and failures
of the theory in predicting experimental results.

1-5 Gravitation. Although there had been previous suggestions that
the motions of the planets and of falling bodies on earth might be due to
a property of physical bodies by which they attract one another, the first
to formulate a matheraatical theory of this phenomenon was Isaac Newton.
Newton showed, by methods to be considered later, that the motions of the
planets could be quantitatively accounted for if he assumed that with
every pair of bodies is associated a force of attraction proportional to their
masses and inversely proportional to the square of the distance between

them. In symbols,
Gmim
F =1 (1-11)
where my, mg are the masses of the attracting bodies, r is the distance be-
tween them, and @ is a universal constant whose value according to ex-

periment is*
= (6.670 == 0.005) X 10~2 em3-sec™%-gm~". (1-12)

For a spherically symmetrical body, we shall show later (Section 6-2) that
the force can be computed as if all the mass were at the center. For a
small body of mass m at the surface of the earth, the force of gravitation

is therefore
F = my, (1-13)

where

g= QR—A—f = 9080.2 cm-sec™, (1-14)
and M is the mass of the earth and R its radius. The quantity g has the
dimensions of an acceleration, and we can readily show by Egs. (1-9) and
(1-13) that any freely falling body at the surface of the earth is accelerated
downward with an acceleration g.

The fact that the gravitational force on a body is proportional to its
mass, rather than to some other constant characterizing the body (e.g.,
its electric charge), is more or less accidental from the point of view of
Newton’s theory. This fact is fundamental in the general theory of rela-

* Smiathsonian Physical Tables, 9th ed., 1954.
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tivity. The proportionality between gravitational force and mass is proba-
bly the reason why the theory of gravitation is ordinarily considered a
branch of mechanics, while theories of other kinds of force are not.

Equation (1-13) gives us a more convenient practical way of measuring
mass than that contemplated in the original definition (1-5). We may
measure a mass by measuring the gravitational force on it, as in a spring
balance, or by comparing the gravitational force on it with that on a stand-
ard mass, as in the beam or platform balance; in other words, by weigh-
ing it.

1-6 Units and dimensions. In setting up a system of units in terms of
which to express physical measurements, we first choose arbitrary standard
units for a certain set of “fundamental ” physical quantities (e.g., mass,
length, and time) and then define further derived units in terms of the
fundamental units (e.g., the unit of velocity is one unit length per unit of
time). It is customary to choose mass, length, and time as the funda-
mental quantities in mechanics, although there is nothing sacred in this
choice. We could equally well choose some other three quantities, or even
more or fewer than three quantities, as fundamental.

There are three systems of units in common use, the centimeter-gram-
second or cgs system, the meter-kilogram-second or mks system, and the
foot-pound-second or English system, the names corresponding to the
names of the three fundamental units in each system.* Units for ether
kinds of physical quantities are obtained from their defining equations by
substituting the units for the fundamental quantities which occur. For
example, velocity, by Eq. (1-2),

Uy = d—.?- ’
T dt
is defined as a distance divided by a time. Hence the units of velocity are
cm/sec, m/sec, and ft/sec in the three above-mentioned systems, respec-
tively.

Similarly, the reader can show that the units of force in the three sys-
tems as given by Eqgs. (1-9) are gm-cm-sec™2, kgm-m-sec ™2, lb-ft-sec—2.
These units happen to have the special names dyne, newton, and poundal,
respectively. Gravitational units of force are sometimes deﬁned by re-
placing Eqgs. (1-9) by the equations

F, = mi/y, Fy = mj/yg, F, = mZ/y, (1-15)

* In the mks system, there is a fourth fundamental unit, the coulomb of electri-
cal charge, which enters into the definitions of electrical units. Electrical units in
the cgs system are all defined in terms of centimeters, grams, and seconds. Elec-
trical units in the English system are practically never used.
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where g = 980.2 cm-sec ™2 = 9.802 m-sec ™2 = 32.16 ft-sec™? is the stand-
ard acceleration of gravity at the earth’s surface. Unit force is then that
force exerted by the standard gravitational field on unit mass. The names
gram-weight, kilogram-weight, pound-weight are given to the gravita-
tional units of force in the three systems. In the present text, we shall
write the fundamental law of mechanics in the form (1-9) rather than
(1-15); hence we shall be using the absolute units for force and not the
gravitational units.

Henceforth the question of units will rarely arise, since nearly all our
examples will be worked out in algebraic form. It is assumed that the
reader is sufficiently familiar with the units of measurement and their
manipulation to be able to work out numerical examples in any system of
units should the need arise.

In any physical equation, the dimensions or units of all additive terms
on both sides of the equation must agree when reduced to fundamental
units. As an example, we may check that the dimensions of the gravita-
tional constant in Eq. (1-11) are correctly given in the value quoted in
Bq. (1-12): '

. Gm1m2 .

F =277 (1-11)

We substitute for each quantity the units in which it is expressed:

_ (em®-sec”*-gm™") (gm)(gm) _
(em2) N

(gm-cm-sec %) (gm-cm-sec™2). (1-16)

The check does not depend on which system of units we use so long as we
use absolute units of force, and we may check dimensions without any
reference to units, using symbols I, m, ¢ for length, mass, time:

(mit=2) = (l3t“2m(—l;;(m)(m) = (mit™). (1-17)

When constant factors like G are introduced, we can, of course, always
make the dimensions agree in any particular equation by choosing appro-
priate dimensions for the constant. If the units in the terms of an equa-
tion do not agree, the equation is certainly wrong. If they do agree, this
does not guarantee that the equation is right. However, a check on dimen-
sions in a result will reveal most of the mistakes that result from algebraic
errors. The reader should form the habit of mentally checking the dimen-
sions of his formulas at every step in a derivation. When constants are
introduced in a problem, their dimensions should be worked out from the
first equation in which they appear, and used in checking subsequent steps.
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1~7 Some elementary problems in mechanics. Before beginning a sys-
tematic development of mechanics based on the laws introduced in this
chapter, we shall review a few problems from elementary mechanics in
order to fix these laws clearly in mind.
One of the simplest mechanical problems is that of finding the motion of
a body moving in a straight line, and acted upon by a constant force. If
the mass of the body is m and the force is F, we have, by Newton’s second
law,
F = ma. (1-18)

" The acceleration is then constant:

(1-19)

]

n
SE
u
i

If we multiply Eq. (1-19) by d¢, we obtain an expression for the change in
velocity dv occurring during the short time di:

F
do = —dt. (1~20)

\

Integrating, we find the total change in velocity during the time ¢:

v ¢
f w=| Ea (1-21)
0 0 m
F
UV — Uy = 1_’”,- [ (1‘22)

where v, is the velocity at ¢ = 0. If z is the distance of the body from a
fixed origin, measured along its line of travel, then

d F
v =E§ = vo+ 1. (1-23)

We again multiply by df and integrate to find z:

2 t
F
/a:o dr = /; (vo + po t) dt, (1-24)

2= 2o+ vl + 3 21 (1-25)

where z, represents the position of the body at ¢ = 0. We now have a
complete description of the motion. We can calculate from Eqs. (1-25)
and (1-22) the velocity of the body at any time ¢, and the distance it has
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traveled. A body falling freely near the surface of the earth is acted upon
by a constant force given by Eq. (1-13), and by no other force if air re-
sistance is negligible. In this case, if z is the height of the body above
some reference point, we have

F = —mg. (1-26)
The negative sign appears because the force is downward and the positive

direction of z is upward. Substituting in Eqgs. (1-19), (1~-22), and (1-25),
we have the familiar equations

a= —g, (1-27)
v = vy — gi, (1-28)
r = Xy + vol — %—gtz. ‘ (1—29)

In applying Newton’s law of motion, Eq. (1-18), it is essential to
decide first to what body the law is to be applied, then to insert the
mass m of that body and the total force F acting on it. Failure to keep
in mind this rather obvious point is the source of many difficulties, one of
which is illustrated by the horse-and-wagon dilemma. A horse pulls upon
a wagon, but according to Newton’s third law the wagon pulls back with
an equal and opposite force upon the horse. How then can either the
wagon or the horse move? The reader who can solve Problem 4 at the
end of this chapter will have no difficulty answering this question.

Consider the motion of the system illustrated in Fig. 1-2. Two masses
m; and ms hang from the ends of a rope over a pulley, and we will suppose
that m, is greater than m;. We take x as the distance from the pulley

|

v mig

[

mg

mag

F1e. 1-2. Atwood’s machine.
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to mg. Since the length of the rope is constant, the coordinate z fixes
the positions of both m; and m,. Both move with the same velocity

dz

=5 (1-30)

the velocity being positive when m, is moving upward and m is moving
downward. If we neglect friction and air resistance, the forces on m,
and m, are

Fi=—myg+r, “(1-31)

Fo = myg — 7, (1-32)

where 7 is the tension in the rope. The forces are taken as positive when
they tend to produce a positive velocity dz/df. Note that the terms involv-
ing 7 in these equations satisfy Newton’s third law. The equations of
motion of the two masses are

—mig + 7 = ma, (1-33)

mog — T = maa, (1-34)

where a is the acceleration dv/dt, and is the same for both masses. By
adding Eqgs. (1-33) and (1-34), we can eliminate 7 and solve for the accel-
eration:

_d% (m2 — my)

C=GE T ) ¥ (1-35)

The acceleration is constant and the velocity » and position z can be
found at any time ¢ as in the preceding example. We can substitute for
a from Eq. (1-35) in either Eq. (1-33) or (1-34) and solve for the tension:

_ 2mmsy _
T = m1—|—ng' (1-36)

As a check, we note that if m; = my, then @ = 0 and
T = Mg = ma, (1-37)

as it should if the masses are in static equilibrium. As a matter of interest,
note that if ms > m4, then
a = g, ( 1—38)
T = 2m,g. (1-39)

The reader should convince himself that these two results are to be ex-
pected in this case.
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mg| g

\

' ! Fie. 1-4. Resolution of forces into
F16. 1-3. Forces acting on a brick components parallel and perpendicular

sliding down an incline. to the incline.

When several forces act on a body, its acceleration is determined by the
vector sum of the forces which act. Conversely, any force can be resolved
in any convenient manner into vector components whose vector sum is the
given force, and these components can be treated as separate forces acting
on the body.* As an example, we consider a brick of mass m sliding down
an incline, as shown in Fig. 1-3. The two forces which act on the brick are
the weight mg and the force F with which the plane acts on the brick.
These two:forces are added according to the parallelogram law to give a
resultant R which acts on the brick:

R = ma. (1-40)

Since the brick is accelerated in the direction of the resultant force, it is
evident that if the brick slides down the incline without jumping off or
penetrating into the inclined plane, the resultant force B must be directed
along the incline. In order to find R, we resolve each force into com-
ponents parallel and perpendicular to the incline, as in Fig. 1-4. The
force F' exerted on the brick by the plane is resolved in Fig. 14 into two
components, a force N normal to the plane preventing the brick from
penetrating the plane, and a force f parallel to the plane, and opposed to

* A systematic development of vector algebra will be given in Chapter 3. Only
an understanding of the parallelogram law for vector addition is needed for the
present discussion.
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the motion of the brick, arising from the friction between the brick and the

plane. Adding parallel components, we obtain

R = mgsin 8 — f, (1-41)
and
0= N — mgcosé. (1-42)

If the frictional force f is proportional to the normal force N, as is often
approximately true for dry sliding surfaces, then

f=uN = umgcos 8, (1-43)

where u is the coefficient of friction. Using Eqgs. (1-43), (1-41), and (140),
we can calculate the acceleration:

a = g(sin @ — ucosh). (1-44)

The velocity and position can now be found as functions of the time A
as in the first example. Equation (1-44) holds only when the brick is
sliding down the incline. If it is sliding up the incline, the force f will
oppose the motion, and the second term in Eq. (144) will be positive.
This could only happen if the brick were given an initial velocity up the
incline. If the brick is at rest, the frictional force f may have any value

up to a maximum u,N: ,
J < weN, (1-45)

where u,, the coefficient of static friction, is usually greater than 4. In
this case B'is zero, and

J = mgsin o S Jsmg cos 0. (1-46)

According to Eq. (1-46), the angle 6 of the incline must not be greater than
a limiting value 6,, the angle of repose:

tan ¢ < tan 6, = u;. (147

If ¢ is greater than 8,, the brick cannot remain at rest.

If a body moves with constant speed » around a circle of radius r, its
acceleration is toward the center of the circle, as we shall prove in Chapter
3, and is of magnitude

02
o= (1-48)

Such a body must be acted on by a constant force toward the center.

This centripetal force is given by

2
v

F = ma=""- (1-49)
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. Note that mv?/r is not a “centrifugal force” directed away from the center,
but is mass times acceleration and is directed toward the center, as is the
centripetal force F. As an example, the moon’s orbit around the earth is
nearly circular, and if we assume that the earth is at rest at the center, then,
by Eq. (1-11), the force on the moon is

_ GMm

F=23

) (1-50)

where M is the mass of the earth and m that of the moon. We can ex-
press this force in terms of the radius R of the earth and the acceleration
g of gravity at the earth’s surface by substituting for GM from Eq. (1-14):

_ mgR?
F==5" (1-51)
The speed v of the moon is
‘ v = g%rz , (1-52)

where T is the period of revolution. Substituting Egs. (1-51) and (1-52)
in Eq. (1-49), we can find r:
r3 _ g R2T2 .
472

(1-53)

This equation was first worked out by Isaac Newton in order to check his
inverse square law of gravitation.* It will not be quite accurate because
the moon’s orbit is not quite circular, and also because the earth does not
remain at rest at the center of the moon’s orbit, but instead wobbles
slightly due to the attraction of the moon. By Newton’s third law, this
attractive force is also given by Eq. (1-51). Since the earth is much
heavier than the moon, its acceleration is much smaller, and Eq. (1-53)
will not be far wrong. The exact treatment of this problem is given in
Section 4-7. Another small error is introduced by the fact that g, as de-
termined experimentally, includes a small effect due to the earth’s rota-
tion. (See Section 7-3.) If we insert the measured values,

g = 980.2 cm-sec ™2,

R = 6,368 kilometers,
T = 274 days,

we obtain, from Eq. (1-53),
r = 383,000 kilometers.

* Isaac Newton, op. cit., p. 407.
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The mean distance to the moon according to modern measurements is
r= 385,000 kilometers.

The values of r and R available to Newton would not have given such close
agreement.

ProBLEMS

1. Compute the gravitational force of attraction between an electron and a
proton at a separation of 0.5 A (1 A = 10~8 em). Compare with the electrostatic
force of attraction at the same distance.

2. The coefficient of viscosity 7 is defined by the equation

F_ d
A4 - "’

where F is the frictional force acting across an area A in a moving fluid, and dv is
the difference in velocity parallel to A between two layers of fluid a distance ds
apart, ds being measured perpendicular to 4. Find the units in which the vis-
cosity # would be expressed in the foot~pound-second, cgs, and mks systems. Find
the three conversion factors for converting coefficients of viscosity from one of
these systems to another.

3. A motorist is approaching a green traffic light with speed »o, when the
light turns to amber. (a) If his reaction time is 7, during which he makes his
decision to stop and applies his foot to the brake, and if his maximum braking
deceleration is a, what is the minimum distance smi, from the intersection at the
moment the light turns to amber in which he can bring his car to a stop? (b) If
the amber light remains on for a time ¢ before turning red, what is the maximum
distance symax from the intersection at the moment the light turns to amber such
that he can continue into the intersection at speed vp without running the red
light? (¢) Show that if his initial speed vo is greater than

Vo max = 2a(f — 7),

there will be a range of distances from the intersection such that he can neither
stop in time nor continue through without running the red light. (d) Make some
reasonable estimates of 7, ¢, and a, and calculate vo max in miles per hour. If vg =
%90 max, calculate spin and Smax.

4. A boy of mass m pulls (horizontally) a sled of mass M. The coefficient of
friction between sled and snow is p. (a) Draw a diagram showing all forces acting
on the boy and on the sled. (b) Find the horizontal and vertical components of..
each force at a moment when boy and sled each have an acceleration a. (c) If
the coeflicient of static friction between the boy’s feet and the ground is ,, what
is the maximum acceleration he can give to himself and the sled, assuming trac-
tion to be the limiting factor?
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5. A floor mop of mass m is pushed with a force F directed along the handle,
which makes an angle § with the vertical. The coefficient of friction with the floor
is u. (a) Draw a diagram showing all forces acting on the mop. (b) For given
0, u, find the force F required to slide the mop with uniform velocity across the
floor. (c) Show that if 6isless than the angle of repose, the mop cannot be started
across the floor by pushing along the handle. Neglect the mass of the mop handle.

6. A box of mass m slides across a horizontal table with coefficient of friction
#. The box is connected by a rope which passes over a pulley to a body of mass M
hanging alongside the table. Find the acceleration of the system and the tension
in the rope.

7. The brick shown in Figs. 1-3 and 1-4 is given an initial velocity vo up the
incline. The angle 8 is greater than the angle of repose. Find the distance the
brick moves up the incline, and the time required for it to slide up and back to its
original position.

8. A curve in a highway of radius of curvature r is banked at an angle # with
the horizontal. If the coefficient of friction is u,, what is the maximum speed with
which a ecar can round the curve without skidding?

9. Assuming the earth moves in a cirele of radius 93,000,000 miles, with a
period of revolution of one year, find the mass of the sun in tons.

10. (a) Compute the mass of the earth from its radius and the values of g
and G. (b) Look up the masses and distances of the sun and moon and compute
the force of attraction between earth and sun and between earth and moon.
Check your results by making a rough estimate of the ratio of these two forces
from a consideration of the fact that the former causes the earth to revolve about
the sun once a year, whereas the latter causes the earth to wobble in a small
circle, approximately once a month, about the common center of gravity of the
earth-moon system.

11. The sun is about 25,000 light years from the center of the galaxy, and
travels approximately in a circle at a speed of 175 mi/sec. Find the approximate
mass of the galaxy by assuming that the gravitational force on the sun can be
calculated as if all the mass of the galaxy were at its center. Express the result as
a ratio of the galactic mass to the sun’s mass. (You do not need to look up either
G or the sun’s mass to do this problem if you compare the revolution of the sun
around the galactic center with the revolution of the earth about “!(;‘he sun.)




CHAPTER 2
MOTION OF A PARTICLE IN ONE DIMENSION

2-1 Momentum and energy theorems. In this chapter, we study the
motion of a particle of mass m along a straight line, which we will take to
be the z-axis, under the action of a force F directed along the z-axis. The
discussion will be applicable, as we shall see, to other cases where the
motion of a mechanical system depends on only one coordinate, or where
all but one coordinate can be eliminated from the problem.

The motion of the particle is governed, according to Eqgs. (1-9), by the
equation

d’z

m gz = F. (2-1)

Before considering the solution of Eq. (2-1), we shall define some concepts

which are useful in discussing mechanical problems and prove some

simple general theorems about one-dimensional motion. The linear mo-
mentum p, according to Eq. (1-10), is defined as

dz
P=my=m_- (2-2)
From Eq. (2-1), using Eq. (2-2) and the fact that m is constant, we obtain

dp
- = F (2-3)

This equation states that the time rate of change of momentum is equal
‘to the applied force, and is, of course, just Newton’s second law. We may
call it the (differential) momentum theorem. If we multiply Eq. (2-3)
by dt and integrate from #; to {3, we obtain an integrated form of the
‘momentum theorem:
t
p:—pi= [ Fdu (2-4)

131

Equation (2-4) gives the change in momentum due to the action of the
force F' between the times ¢{; and £,. The integral on the right is called
the ¢mpulse delivered by the force F during this time; F must be known
as a function of ¢ alone in order to evaluate the integral. If F is given
as F(z, v, t), then the impulse can be computed for any partlcular given
motion x(t), v(®).

21
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A quantity which will turn out to be of considerable importance is the
Kinetic energy, defined (in classical mechanics) by the equation

T = 3m?. (2-5)

If we multiply Eq. (2-1) by v, we obtain

dv
m = Fv,
or '
d N
i (Fmw*) = = Fo. (2-6)

Equation (2-6) gives the rate of change of kinetic energy, and may be
called the (differential) energy theorem. If we multiply by d¢ and inte-
grate from i; to £, we obtain the integrated form of the energy theorem:

Ty — Ty = t’Z Fo d. (2-7)
1

Equation (2-7) gives the change in energy due to the action of the force F
between the times ¢, and #;. The integral on the right is called the work
done by the force during this time. The integrand Fv on the right is the
time rate of doing work, and is called the power supplied by the force F.
In general, when F is given as F(z, v, t), the work can only be computed
for a particular specified motion z(¢), v(t). Since v = dx/df, we can re-
write the work integral in a form which is convenient when F is known
as a function of x:

Ty — T, = [~ Fda. (2-8)
£2%

2-2 Discussion of the general problem of one-dimensional motion. If
the force F is known, the equation of motion (2-1) becomes a second-order
ordinary differential equation for the unknown function z(¢). The force F
may be known as a funetion of any or all of the variables ¢, z, and v. For
any given motion of a dynamical system, all dynamical variables (z, v, F,
p, T, etec.) associated with the system are, of course, functions of the .
time ¢, that is, each has a definite value at any particular time {. However,
in many cases a dynamical variable such as the force may be known to
bear a certain functional relationship to z, or to », or to any combination
of z, v, and t. As an example, the gravitational force acting on a body
falling from a great height above the earth is known as a function of the
height above the earth. The frictional drag on such a body would depend
on its speed and on the density of the air and hence on the height above
the earth; if atmospheric conditions are changing, it would also depend
on . If Fis given as F(z, v, t), then when z(f) and v(t) are known, these
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functions can be substituted to give F as a function of the time ¢ alone;
however, in general, this cannot be done until after Eq. (2-1) has been
solved, and even then the function F(f) may be different for different
possible motions of the particle. In any case, if F is given as F(z, v, f)
(where F may depend on any or all of these variables), then Eq. (2-1)
becomes a definite differential equation to be solved:

d%x

1 oo
-d—t2‘ = ‘77,/ F(x, z, t). (2—9)

This is the most general type of second-order ordinary differential equa-
tion, and we shall be concerned in this chapter with studying its solutions
and their applications to mechanical problems.

Equation (2-9) applies to all possible motions of the particle under the
action of the specified force. In general, there will be many such motions,
for Eq. (2-9) prescribes only the acceleration of the particle at every in-
stant in terms of its position and velocity at that instant. If we know
the position and velocity of a particle at a certain time, we can determine
its position a short time later (or earlier). Knowing also its acceleratlon,
we can find its velocity a short time later. Equation (2-9) then gives the
acceleration a short time later. In this manner, we can trace out the past
or subsequent positions and velocities of a particle if its position o and
velocity vy are known at any one time ¢y. Any pair of values of z, and Yo
will lead to a possible motion of the particle. We call ¢y the initial instant,
although it may be any moment in the history of the particle, and the
values of 24 and vq at £, we call the initial conditions. Instead of specifying
initial values for z and v, we could specify initial values of any two quan-
tities from which z and » can be determined; for example, we may specify
o and the initial momentum po = mv,. These initial conditions, together
with Eq. (2-9), then represent a perfectly definite problem whose solu-
tion should be a unique function x(f) representing the motion of the
particle under the specified conditions.

The mathematical theory of second-order ordinary differential equa-
tions leads to results in agreement with what we expect from the nature
of the physical problem in which the equation arises. The theory asserts
that, ordinarily, an equation of the form (2-9) has a unique continuous
solution x(¢) which takes on given values zy and v, of x and & at any chosen
initial value #o of £. “Ordinarily” here means, as far as the beginning
mechanics student is concerned, “in all cases of physical interest.”* The
properties of differential equations like Eq. (2-9) are derived in most

* For a rigorous mathematical statement of the conditions for the existence of
a solution of Eq. (2-9), see W. Leighton, An Introduction to the Theory of Differen-
tial Equations. New York: McGraw-Hill, 1952. (Appendix 1.)
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treatises on differential equations. We know that any physical problem
must always have a unique solution, and therefore any force function
F(z, , t) which can occur in a physical problem will necessarily satisfy the
required conditions for those values of z, &, ¢ of physical interest. Thus
ordinarily we do not need to worry about whether a solution exists. How-
ever, most mechanical problems involve some simplification of the actual
physical situation, and it is possible to oversimplify or otherwise distort
a physical problem in such a way that the resulting mathematical problem
no longer possesses a unique solution. The general practice of physicists
in mechanics and elsewhere is to proceed, ignoring questions of mathe-
matical rigor. On those fortunately rare occasions when we run into diffi-
culty, we then consult our physical intuition, or check our lapses of rigor,
until the source of the difficulty is discovered. Such a procedure may
bring shudders to the mathematician, but it is the most convenient and
rapid way to apply mathematics to the solution of physical problems.
The physicist, while he may proceed in a nonrigorous fashion, should never-
theless be acquainted with the rigorous treatment of the mathematical
methods which he uses. i

The existence theorem for Eq. (2-9) guarantees that there is a unique
mathematical solution to this equation for all cases which will arise in
practice. In some cases the exact solution can be found by elementary
methods. Most of the problems considered in this text will be of this
nature. Fortunately, many of the most important mechanical problems
in physics can be solved without too much difficulty. In fact, one of the
reasons why certain problems are considered important is that they can
be easily solved. The physicist is concerned with discovering and verify-
ing the laws of physics. In checking these laws experimentally, he is free,
to a large extent, to choose those cases where the mathematical analysis
is not too difficult to carry out. The engineer is not so fortunate, since
his problems are selected not because they are easy to solve, but because
they are of practical importance. In engineering, and often also in physics,
many cases arise where the exact solution of Eq. (2-9) is difficult or im-
possible to obtain. In such cases various methods are available for obtain-
ing at least approximate answers. The reader is referred to courses and
texts on differential equations for a discussion of such methods.* From
the point of view of theoretical mechanics, the important point is that
a solution always does exist and can be found, as accurately as desired.
We shall restrict our attention to examples which can be treated by
simple methods.

*W. E. Milne, Numerical Calculus. Princeton: Princeton University Press,
1949. (Chapter 5.)

H. Levy and E. A. Baggott, Numerical Solutions of Differential Equations.
New York: Dover Publications, 1950.
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2-3 Applied force depending on the time. If the force F is given as a
function of the time, then the equation of motion (2-9) can be solved in
the following manner. Multiplying Eq. (2-9) by df and integrating from
an initial instant ¢ to any later (or earlier) instant ¢, we obtain Eq. (24),
which in this case we write in the form

my — mug = ft " @) de. (2-10)
0

Since F(t) is a known function of ¢, the integral on the right can, at least
in principle, be evaluated and the right member is then a function of ¢
(and £y). We solve for v:

dx 1 [t
b=yt 5/,0 F() dt. (2-11)

Now multiply by dt and integrate again from ¢, to ¢:
1 (51 .
T — Zo = volt — to) + — / [ / F(¢) dt] dt. (2-12)
to to

To avoid confusion, we may rewrite the variable of integration as ¢ in
the first integral and ¢’ in the second:

t 34
z = 20 + vo(t — to) + % / av / F() dr. (2-13)
to to

This gives the required solution z(f) in terms of two integrals which can
be evaluated when F(f) is given. A definite integral can always be evalu-
ated. If an explicit formula for the integral cannot be found, then at
least it can always be computed as accurately as we please by numerical
methods. For this reason, in the discussion of a general type of problem
such as the one above, we ordinarily consider the problem solved when
the solution has been expressed in terms of one or more definite integrals.
In a practical problem, the integrals would have to be evaluated to obtain
the final solution in usable form.*

* The reader who has studied differential equations may be disturbed by the
appearance of three constants, £, vo, and zo, in the solution (2-13), whereas the
general solution of a second-order differential equation should contain only two
arbitrary constants. Mathematically, there are only two independent constants
in Eq. (2-13), an additive constant containing the terms 1o — votp plus a term
from the lower limit of the last integral, and a constant multiplying ¢ containing
the term vo plus a term from the lower limit of the first integral. Physically, we
can take any initial instant fo, and then just two parameters z¢ and o are re-
quired to specify one out of all possible motions subject to the given force.
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Problems in which F is given as a function of ¢ usually arise when we
seek to find the behavior of a mechanical system under the action of some
external influence. As an example, we consider the motion of a free elec-
tron of charge —e when subject to an oscillating electric field along the
z-axis:

K, = Eqycos (wt + 6). (2-14)

The force on the electron is
= —¢E, = —eEcos (wt + 6). (2-15)

The equation of motion is

m %2 = —eE, cos (wt + 6). (2-16)

We multiply by dt and integrate, taking {; = O:

_dzx _ eBosind  eEy . .
b= "7 =" 4+ o ot (wt -+ 6). (2-17)
Integrating again, we obtain

eEo
mw?

eE, cos 6
M2

¢+

el sin 6
r = X9 —

+ (vo + cos (wt + 6). (2-18)

If the electron is initially at rest at xo = 0, this becomes

5= — eEocos0+eE0sin0

mw?2 mew

t 4+ :i,oz cos {wt 1 6). (2-19)

It is left to the reader to explain physically the origin of the constant term
and the term linear in ¢ in Eq. (2-19) in terms of the phase of the electric
field at the initial instant. How do the terms in Eq. (2-19) depend on
e, m, Eo, and w? Explain physically. Why does the oscillatory term turn
out to be out of phase with the applied force?

The problem considered here is of interest in connection with the propa-
gation of radio waves through the ionosphere, which contains a high density
of free electrons. Associated with a radio wave of angular frequency w is
an electric field which may be given by Eq. (2-14). The oscillating term in
Eq. (2-18) has the same frequency w and is independent of the initial
conditions. This coherent oscillation of the free electrons modifies the
propagation of the wave. The nonoscillating terms in Eq. (2-18) depend
on the initial conditions, and hence on the detailed motion of each electron
as the wave arrives. These terms cannot contribute to the propagation
characteristics of the wave, since they do not oscillate with the frequency
of the wave, although they may affect the leading edge of the wave which
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arrives first. We see that the oscillatory part of the displacement x is 180°
out of phase with the applied force due to the electric field. Since the elec-
tron has a negative charge, the resulting electric polarization is 180° out
of phase with the electric field. The result is that the dielectric constant
of the ionosphere is less than one. (In an ordinary dielectric at low fre-
quencies, the charges are displaced in the direction of the electric force
on them, and the dielectric constant is greater than one.) Since the veloc-
ity of light is

v = c(ue)~"'?, (2-20)

where ¢ = 3 X 10!° em/sec and € and u are the dielectric constant and
magnetic permeability respectively, and since u = 1 here, the (phase)
velocity v of radio waves in the ionosphere is greater than the velocity ¢
of electromagnetic waves in empty space. Thus waves entering the
ionosphere at an angle are bent back toward the earth. The effect is seen
to be inversely proportional to w? so that for high enough frequencies,
the waves do not return to the earth but pass out through the ionosphere.

Only a slight knowledge of electromagnetic theory is required to carry this dis-
cussion through mathematically.* The dipole moment of the electron displaced
from its equilibrium position is

2
2 €

[
—er = — -”-"—M-—z Eo cos (wt + 0) = — m Ez (2_21)

if we consider only the oscillating term. If there are N electrons per cm3, the
total dipole moment per unit volume is

P, = — —ﬁ-‘i—z E.. (2-22)
The electric displacement is
D, = B, 4xP, = (1 — 4:522) E.. (2-23)
Since the dielectric constant is defined by
D, = ¢E,, (2-24)
we conclude that
e=1— 4’25 (2-25)
and since u = 1,
v = c(l — §2>_“2- (2-26)

* See, e.g., G. P. Harnwell, Principles of Electricity and Electromagnetism, 2nd
ed. New York: McGraw-Hill, 1949. (Section 2.4.)



28 MOTION OF A PARTICLE IN ONE DIMENSION [cHAP. 2

2-4 Damping force depending on the velocity. Another type of force
which allows an easy solution of Eq. (2-9) is the case when F is a function
of v alone:

dv

%= Fo). (2-27)

™4

To solve, we multiply by [mF(v)]™! dt and integrate from ¢, to ¢:

vdﬂ_t—to. .
AF@“ﬁT (2-28)

The integral on the left can be evaluated, in principle at least, when F(v)
is given, and an equation containing the unknown » results. If this equa-
tion is solved for v (we assume in general discussions that this can always
be done), we will have an equation of the form

_dz _ t~to). g
v = N = (P<UO; m (2 29)

The solution for z is then

t
=%+/¢@f—ﬂa C (2-30)
to m

In the case of one-dimensional motion, the only important kinds of forces
which depend on the velocity are frictional forces. The force of sliding or
rolling friction between dry solid surfaces is nearly constant for a given
pair of surfaces with a given normal force between them, and depends on
the velocity only in that its direction is always opposed to the velocity.
The force of friction between lubricated surfaces or between a solid body
and a liquid or gaseous medium depends on the velocity in a complicated
way, and the function F(r) can usually be given only in the form of a
tabulated summary of experimental data. In certain cases and over
certain ranges of velocity, the frictional force is proportional to some fixed
power of the velocity:

F = (F)b". (2-31)

If n is an odd integer, the negative sign should be chosen in the above
equation. Otherwise the sign must be chosen so that the force has the
opposite sign to the velocity v. The frictional force is always opposed to
the velocity, and therefore does negative work, i.e., absorbs energy from
the moving body. A velocity-dependent force in the same direction as
the velocity would represent a source of energy; such cases do not often
oceur.
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As an example, we consider the problem of a boat traveling with initial
velocity v, which shuts off its engines at £y = 0 when it is at the position
zo = 0. We assume the force of friction given by Eq. (2-31) withn = 1:

dv
m o = —bo. (2-32)

We solve Eq. (2-32), following the steps outlined above [Egs. (2-27)
through (2-30)]:

v
/ dv b
= — =,
v U m
nZ = — b A
Vo m
v = poe0tm, (2-33)

We see that as t — o0, v — 0, as it should, but that the boat never comes
completely to rest in any finite time. The solution for z is

t
a:=/ voe 2™ dt
0

=%1’—° (1 — e~bmy, (2-34)

As t — oo, z approaches the limiting value

7, = T2 (2-35)
Thus we can specify a definite distance that the boat travels in stopping.
Although according to the above result, Eq. (2-33), the velocity never
becomes exactly zero, when ¢ is sufficiently large the velocity becomes so
small that the boat is practically stopped. Let us choose some small
velocity v, such that when v < v, we are willing to regard the boat as
stopped (say, for example, the average random speed given to an anchored
boat by the waves passing by it). Then we can define the time ¢, required
for the boat to stop by

vy = voe 04", 1, =D Ye. (2-36)

Since the logarithm is a slowly changing function, the stopping time ¢, will
not depend to any great extent on precisely what value of v, we choose so
long as it is much smaller than v,. It is often instructive to expand solu-
tions in a Taylor series'in ¢{. If we expand the right side of Eqgs. (2-33)



30 MOTION OF A PARTICLE IN ONE DIMENSION [cHAP. 2

and (2-34) in power series in ¢, we obtain*

v=vo—%t+ (2-37)
x=vot—%9”—°t Ll 2-38)

Note that the first two terms in the series for v and z are just the formulas
for a particle acted on by a constant force —bvy, which is the initial value
of the frictional force in Eq. (2-32). This is to be expected, and affords a
fairly good check on the algebra which led to the solution (2-34). Series
expansions are a very useful means of obtaining simple approximate for-
mulas valid for a short range of time.

The characteristics of the motion of a body under the action of a fric-
tional force as given by Eq. (2-31) depend on the exponent n. In general,
a large exponent n will result in rapid initial slowing but slow final stopping,
and vice versa, as one can see by sketching graphs of F vs. v for various
values of n. For small enough values of n, the velocity comes to zero in
a finite time. For large values of n, the body not only requires an infinite
time, but travels an infinite distance before stopping. This disagrees
with ordinary experience, an indication that while the exponent n may be
large at high velocities, it must become smaller at low velocities. The
exponent n = 1 is often assumed in problems involving friction, particu-
larly when friction is only a small effect to be taken into acecount approxi-
mately. The reason for taking n = 1 is that this gives easy equations
to solve, and is often a fairly good approximation when the frictional
force is small, provided b is properly chosen. -

2-5 Conservative force depending on position. Potential energy. One
of the most important types of motion ocecurs when the force ¥ is a func-

* The reader who has not already done so should memorize the Taylor series
for a few simple functions like

3 4

2
z x X x
¢=ltetgtegtasat
x2 273 x4
1n(1+x)=x_3+§_z_|_...’
1)2 nln — (n — 2) 3

A+2)" = 14 s+ 20 + P

2-3

These three series are extremely useful in obtaining approximations to compli-
cated formulas, valid when z is small.
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tion of the coordinate x alone:

dv

m = F@). (2-39)

We have then, by the energy theorem (2-8),

3mp? — vk = / * F(z) da. (2-40)

Zo

The integral on the right is the work done by the force when the particle
goes from x4 to 2. We now define the potential energy V(x) as the work
done by the force when the particle goes from  to some chosen standard
point z,:

Viz) = / F@)dz = — [ F(z) da. (2-41)

Tg

The reason for calling this quantity potential energy will appear shortly.
In terms of V(x), we can write the integral in Eq. (2-40) as follows:

[ " F@de = —V(@) + V(zo). (2-42)

o
With the help of Eq. (2-42), Eq. (2-40) can be written
Imo® + V(e) = dmd + V(xo). (243)

The quantity on the right depends only on the initial conditions and is
therefore constant during the motion. It is called the total energy E, and
we have the law of conservation of kinetic plus potential energy, which
holds, as we can see, only when the force is a function of position alone:

im?® + V(@) =T+ V = E. (2-44)
Solving for », we obtain

» = %’z‘ — \/—%[E — V@Pe. (2-45)

The function x(t) is to be found by solving for x the equation

' \/%/ B — V(x)]—1/2 dr = t — . (2-46)

In this case, the initial conditions are expressed in terms of the constants
E and z.

In applying Eq. (2-46), and in taking the indicated square root in the
integrand, care must be taken to use the proper sign, depending on whether
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the velocity v given by Eq. (2-45) is positive or negative. In cases where
v is positive during some parts of the motion and negative during other
parts, it may be necessary to carry out the integration in Eq. (2-46)
separately for each part of the motion.

From the definition (2-41) we can express the force in terms of the
potential energy:

F = — T (247)

This equation can be taken as expressing the physical meaning of the po-
tential energy. The potential energy is a function whose negative
derivative gives the force. The effect of changing the coordinate of the
standard point z, is to add a constant to V(). Since it is the derivative
of V which enters into the dynamical equations as the force, the choice
of standard point z, is immaterial. A constant can always be added to
the potential V(x) without affecting the physical results. (The same
constant must, of course, be added to E.)

As an example, we consider the problem of a particle subject to a
linear restoring force, for example, a mass fastened to a spring:

F = —ka (2-48)
The potential energy, if we take z, = 0, is
V@) = — [ —ked
(z) /;) x dx
= 3kz?. (2-49)

Equation (2-46) becomes, for this case, with {; = 0,

\/% / (B — %ka>) Y2 dz = . (2-50)

Now make the substitutions
8in 6 = x 4 ’%: (2-51)

W= 4]—> (2-52)
so that

z [/}
[m _ ety _1f _ 1,
5 /zo (B — %kzx") dx—w " d0—w(0 0o),

and, by Eq. (2-50),
0 = wt + 00.
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We can now solve for z in Eq. (2-51):

T = 4 [%’ sin § = A sin (wt + 8y), (2-53)
where
2E
A= Ak (2-54)

Thus the coordinate z oscillates harmonically in time, with amplitude A
and frequency w/2w. The initial conditions are here determined by the
constants A and 6y, which are related to E and z¢ by

E = 1kA? (2-55)
Ty = A sin 00. (2—56)

Notice that in this example we meet the sign difficulty in taking the
square root in Eq. (2-50) by replacing (1 — sin? 8)7!/2 by (cos 6)7%, a
quantity which can be made either positive or negative as required by
choosing 8 in the proper quadrant.

A function of the dependent variable and its first derivative which
is constant for all solutions of a second-order differential equation, is called
a first integral of the equation. The function mi? + V(z) is called the
energy integral of Eq. (2-39). An integral of the equations of motion of
a mechanical system is also called a constant of the motion. In general,
any mechanical problem can be solved if we can find enough first inte-
grals, or constants of the motion. ,

Even in cases where the integral in Eq. (2-46) cannot easily be evalu-
ated or the resulting equation solved to give an explicit solution for z(f),
the energy integral, Eq. (2-44), gives us useful information about the
solution. For a given energy E, we see from Eq. (2-45) that the particle
is confined to those regions on the z-axis where V(z) < E. Furthermore,
the velocity is proportional to the square root of the difference between
E and V(z). Hence, if we plot V(z) versus z, we can give a good qualita-
tive description of the kinds of motion that are possible. For the potential-
energy function shown in Fig. 2-1 we note that the least energy possible
is Eo. At this energy, the particle can only be at rest at z,. With a
slightly higher energy E,, the particle can move between z; and z,; its
velocity decreases as it approaches z; or x5, and it stops and reverses its
direction when it reaches either x, or x5, which are called turning poinis
of the motion. With energy K, the particle may oscillate between turn-
ing points x3 and x4, or remain at rest at x5. With energy Ej, there are
- four turning points and the particle may oscillate in either of the two
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V{x)
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F1g. 2-1. A potential-energy function for one-dimensional motion.

potential valleys. With energy E,, there is only one turning point; if
the particle is initially traveling to the left, it will turn at z¢ and return
to the right, speeding up over the valleys at z¢ and x5, and slowing down
over the hill between. At energies above Ej, there are no turning points
and the particle will move in one direction only, varying its speed accord-
ing to the depth of the potential at each point.

A point where V(z) has a minimum is called a point of siable equilibrium.
A particle at rest at such a point will remain at rest. If displaced a slight
distance, it will experience a restoring force tending to return it, and it
will oscillate about the equilibrium point. A point where V(x) has a maxi-
mum is called a point of unstable equilibrium. In theory, a particle at
rest there can remain at rest, since the force is zero, but if it is displaced
the slightest distance, the force acting on it will push it farther away from
the unstable equilibrium position. A region where V(x) is constant is
called a region of neutral equilibrium, since a particle can be displaced
slightly without suffering either a restoring or a repelling force.

This kind of qualitative discussion, based on the energy integral, is
simple and very useful. Study this example until you understand it well
enough to be able to see at a glance, for any potential energy curve, the
types of motion that are possible.

It may be that only part of the force on a particle is derivable from a
potential function V(z). Let F’ be the remainder of the force:

- 9 _
F=—"+F. (2-57)

In this case the energy (T -+ V) is no longer constant. If we substitute ¥
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from Eq. (2-57) in Eq. (2-1), and multiply by dx/dt, we have, after
rearranging terms,

%(T + V) = Fh. (2-58)

The time rate of change of kinetic plus potential energy is equal to the
power delivered by the additional force F’.

2-6 Falling bodies. One of the simplest and most commonly occurring
types of one-dimensional motion is that of falling bodies. We take up
this type of motion here as an illustration of the principles discussed in
the preceding sections.

A body falling near the surface of the earth, if we neglect air resistance,
is subject to a constant force

F = —my, ‘ (2-59)

where we have taken the positive direction as upward. The equation of

motion is

| e (2-60)
az = T ™M

The solution may be obtained by any of the three methods discussed
in Sections 2-3, 2-4, and 2-5, since a constant force may be considered
as a function of either ¢, v, or . The reader will find it instructive to
solve the problem by all three methods. We have already obtained the
result in Chapter 1 [Eqgs. (1-28) and (1-29)].

In order to include the effect of air resistance, we may assume a fric-
tional force proportional to v, so that the total force is

F=—mg — . (2-61)

The constant b will depend on the size and shape of the falling body,
as well as on the viscosity of the air. The problem must now be treated
as a case of F(v):

dv

mog = —mg — bv. (2-62)

Taking vo = 0 at ¢ = 0, we proceed as in Section 2-4 [Eq. (2-28)]:
W bt
- 2. 2
fo v mgh)  m (2-63)
We integrate and solve for v:

p = — % (1 — e~bmy, (2-64)
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We may obtain a formula useful for short times of fall by expanding the
exponential function in a power series:

v= —g 3L (2-65)

Thus for a short time (¢t << m/b), v = —gt, approximately, and the effect
of air resistance can be neglected. After a long time, we see from Eq. (2-64)
that
v =2, i xR

The velocity mg/b is called the terminal velocity of the falling body in ques-
tion. The body reaches within 1/e of its terminal velocity in a time
t = m/b. We could use the experimentally determined terminal velocity
to find the constant b. We now integrate Eq. (2-64), taking zo = O:

m3g bt —bt/m
x=—32— 1—;”—6 ¢ . (2—66)

By expanding the exponential function in a power series, we obtain
b
z=—dgf + 32O (2-67)
If t K m/b, x = —1gt?, as in Eq. (1-29). When ¢ > m/b,
2
= (79 _ ™ ,),
x‘(W bO

This result is easily interpreted in terms of terminal velocity. Why is
the positive constant present?

For small heavy bodies with large terminal veloeities, a better approxi-

mation may be
F = b’ (2-68)

The reader should be able to show that with the frictional force given by
Eq. (2-68), the result (taking xo = vo = 0 at {; = 0} is

v = — A% tanh (1 /%g t) (2-69)
—gt, i 1<K 4 /z@'
- ’ﬂ , : ,ﬂ ,
b if t> b9
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__m @) .
= b In cosh( s ¢ (2-70)
1,42 ; m.
3, i 1<K, /bg
m — /ﬂ ; m,
5 In2 b L if t> o9

Again there is a terminal velocity, given this time by (mg/b)1/2. The ter-
minal velocity can always be found as the velocity at which the frictional
force equals the gravitational force, and will exist whenever the frictional
force becomes sufficiently large at high velocities.

In the case of bodies falling from a great height, the variation of the
gravitational force with height should be taken into account. In this case,
we neglect air resistance, and measure x from the center of the earth.
Then if M is the mass of the earth and m the mass of the falling body,

F=— mng, (2-71)
and
V@=—/F@=—%¥, (2-72)

where we have taken 2, = oo in order to avoid a constant term in V(x).
Equation (2-45) becomes

1/2

The plus sign refers to ascending motion, the minus sign to descending
motion.

The function V(z) is plotted in
Fig. 2-2. We see that there are two z
types of motion, depending on
whether E is positive or negative.
When E is positive, there is no turn-
ing point, and if the body is initially
moving upward, it will continue to
move upward forever, with decreas-
ing velocity, approaching the limit-
ing velocity

V(x)

,2E’
b= g (2-74) Fie. 2-2. Plot of V(z) = —(mMG/z).
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When E is negative, there is a turning point at a height

ap = m—_J”EG - (2-75)

If the body is initially moving upward, it will come to a stop at z7, and
fall back to the earth. The dividing case between these two types of
motion occurs when the initial position and velocity are such that £ = 0.
The turning point is then at infinity, and the body moves upward forever,
approaching the limiting velocity »; = 0. If E = 0, then at any height z,
the velocity will be

2MG

x

(2-76)

Ve =

This is.called the escape velocity for a body at distance x from the center
of the earth, because a body moving upward at height = with velocity v,
will just have sufficient energy to travel upward indefinitely (if there is
no air resistance).

To find z(¢), we must evaluate the integral

: dx 2
/ < mMG>1/ 2 \/% b @)
£ =+

B+ 222

where z is the height at ¢ = 0. To solve for the case when E is negative,
we substitute
—Lz

cos § = G (2-78)
Equation (2-77) then becomes
0
_mMG _ 246 — \/Z g
—E) Jg, 2 cos” 0do = " L. (2-79)

{(We choose a positive sign for the integrand so that 6 will increase when ¢
increases.) We can, without loss of generality, take z¢ to be at the turning
point zr, since the body will at some time in its past or future career pass
through z7 if no force except gravity acts upon it, provided E < 0. Then

00 = 0, and
mMG . [2
('———E’WE (0+Sln000S 0) = ;ﬁt’

2M G

z3

or

f -+ 3sin26 = A (2-80)
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and x = zp cos? 0. (2-81)
This pair of equations cannot be solved explicitly for z(¢). A numerical
solution can be obtained by choosing a sequence of values of 8 and finding
the corresponding values of 2 and ¢ from Egs. (2-80) and (2-81). That
part of the motion for which x is less than the radius of the earth will, of
course, not be correctly given, since Eq. (2-71) assumes all the mass of the
earth concentrated at x = 0 (not to mention the fact that we have omitted
from our equation of motion the forces which would act on the body when
it collides with the earth).

The solytion can be obtained in a similar way for the cases when E is
positive or zero.

2-7 The simple harmonic oscillator. The most important problem in
one-dimensional motion, and fortunately one of the easiest to solve, is the.
harmonic or linear oscillator. The simplest example is that of a mass m
fastened to a spring whose constant is k. If we measure 2 from the re-
laxed position of the spring, then the spring exerts a restoring force

F = —Fkx. (2-82)

The potential energy associated
with this force is

V(z) = $ka? (2-83)

The equation of motion, if we |2z
assume no other force acts, is

. Fia. 2-3. Model of a simple har-
d°z (2-84) monic oscillator.

Equation (2-84) describes the free harmonic oscillator. Its solution was
obtained in Section 2-5. The motion is a simple sinusoidal oscillation
about the point of equilibrium. In all physical cases there will be some
frictional force acting, though it may often be very small. As a good
approximation in most cases, particularly when the friction is small, we
can assume that the frictional force is proportional to the velocity. Since
this is the only kind of frictional force for which the problem can easily
be solved, we shall restrict our attention to this case. If we use Eq. (2-31)
for the frictional force with n = 1, the equation of motion then becomes

d’x | , dz

This equation describes the damped harmonic oscillator. Its motion, at
least for small damping, consists of a sinusoidal oscillation of gradually
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decreasing amplitude, as we shall show later. If the oscillator is subject
to an additional impressed force F(), its motion will be given by

d’z dx

If F() is a sinusoidally varying force, Eq. (2-86) leads to the phenomenon
of resonance, where the amplitude of oscillation becomes very large when
the frequency of the impressed force equals the natural frequency of the
free oscillator.

The importance of the harmonic oscillator problem lies in the fact that
equations of the same form as Egs. (2-84)-(2-86) turn up in a wide variety
of physical problems. In almost every case of one-dimensional motion
where the potential energy function V(z) has one or more minima, the
motion of the particle for small oscillations about the minimum point-fol-
lows Eq. (2-84). To show this, let V(z) have a minimum at z = z,, and
expand the function V(z) in a Taylor series about this point:

V@ = Vo) + (%) (¢ —a0) + 4 (%2’) (@ — 20)*
N

The constant V(zg) can be dropped without affecting the physical results.
Since x4 is a minimum point,

avy _ sz)
(_Jx— M 0, ( @2 )., > 0. (2-88)
Making the abbreviations
k= (@f}_’) ) (2-89)
dz2 /,
=z — xo, (2-90)

we can write the potential function in the form
V') = 3z’ 4+ ---. (2-91)

For sufficiently small values of «/, provided k ¢ 0, we can neglect the terms
represented by dots, and Eq. (2-91) becomes identical with Eq. (2-83).
Hence, for small oscillations about any potential minimum, except in the
exceptional case k = 0, the motion is that of a harmonic oscillator.
When a solid is deformed, it resists the deformation with a force propor-
tional to the amount of deformation, provided the deformation is not too
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great. This statement is called Hooke’s law. It follows from the fact that
the undeformed solid is at a potential-energy minimum and that the
potential energy may be expanded in a Taylor series in the coordinate
describing the deformation. If a solid is deformed beyond a certain point,
called its elastic limit, it will remain permanently deformed; that is, its
structure is altered so that its undeformed shape for minimum potential
energy is changed. It turns out in most cases that the higher-order terms
in the series (2-91) are negligible almost up to the elastic limit, so that
Hooke’s law holds almost up to the elastic limit. When the elastic Limit
is exceeded and plastic flow takes place, the forces depend in a complicated
way not only on the shape of the material, but also on the velocity of de-
formation and even on its previous history, so that the forces can no
longer be specified in terms of a potential-energy function.

Thus practically any problem involving mechanical vibrations reduces
to that of the harmonic oscillator at small amplitudes of vibration, that is,
s0 long as the elastic limits of the materials involved are not exceeded.
The motions of stretched strings and membranes, and of sound vibrations
in an enclosed gas or in a solid, result in a number of so-called normal
modes of vibration, each mode behaving in many ways like an independent
harmonic oscillator. An electric circuit containing inductance L, resist-
ance R, and capacitance C' in series, and subject to an applied electro-
motive force E(f), satisfies the equation

d? d
L Eg + R d—f +g, = E(), (2-92)

where ¢ is the charge on the condenser and dg/dt is the current. This
equation is identical in form with Eq. (2-86). Early work on electrical
circuits was often carried out by analogy with the corresponding mechani-
cal problem. Today the situation is often reversed, and the mechanical
and acoustical engineers are able to make use of the simple and effective
methods developed by electrical engineers for handling vibration prob-
lems. The theory of electrical oscillations in a transmission line or in a
cavity is similar mathematically to the problem of the vibrating string or
resonating air cavity. The quantum-mechanical theory of an atom can
be put in a form which is identical mathematically with the theory of a
system of harmonic oscillators.

2-8 Linear differential equations with constant coefficients. Equa-
tions (2-84)—(2-86) are examples of second-order linear differential equa-
tions. The order of a differential equation is the order of the highest
derivative that occurs in it. Most equations of mechanics are of second
order. (Why?) A linear differential equation is one in which there are
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no terms of higher than first degree in the dependent variable (in this
case z) and its derivatives. Thus the most general type of linear differ-
ential equation of order n would be

m m—1
an®) GE + ana® Tt 00 Bt gz = b, (@2-99)

If b(t) = 0, the equation is said to be homogeneous; otherwise it is inhomo-
geneous. Linear equations are important because there are simple general
methods for solving them, particularly when the coefficients ag, a1, . . ., a,
are constants, as in Eqs. (2-84)—-(2-86). In the present section, we shall
solve the problem of the free harmonic oscillator [Eq. (2-84)], and at the
same time develop a general method of solving any linear homogeneous
differential equation with constant coefficients. This method is applied
in Section 2-9 to the damped harmonic oscillator equation (2-85). In
Section 2-10 we shall study the behavior of a harmonic oscillator under a
sinusoidally oscillating impressed force. In Section 2-11 a theorem is
developed which forms the basis for attacking Eq. (2-86) with any im-
pressed foree F(f), and the methods of attack are discussed briefly.

The solution of Eq. (2-84), which we obtained in Section 2-5, we now
write in the form

x = A sin (wet + 9), wo = Vk/m. (2-94)

This solution depends on two “arbitrary” constants A and 6. They are
called arbitrary because no matter what values are given to them, the
solution (2-94) will satisfy Eq. (2-84). They are not arbitrary in a phys-
ical problem, but depend on the initial conditions. It can be shown that
the general solution of any second-order differential equation depends on
two arbitrary constants. By this we mean that we can write the solution
in the form

z = z(t; C1, Ca), (2-95)

such that for every value of C'; and Cy, or every value within a certain
range, z(¢; C1, Cy) satisfies the equation and, furthermore, practically
every solution of the equation is included in the function z(¢; Cy, Cs) for
some value of C; and Cs.* If we can find a solution containing two arbi-
trary constants which satisfies a second-order differential equation, then
we can be sure that practically every solution will be included in it. The
methods of solution of the differential equations studied in previous sec-
tions have all been such as to lead directly to a solution corresponding to

* The only exceptions are certain “singular” solutions which may occur in
regions where the mathematical conditions for a unique solution (Section 2-2)
are not satisfied.
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the initial conditions of the physical problem. In the present and subse-
quent sections of this chapter, we shall consider methods which lead to
- a general solution containing two arbitrary constants. These constants
must then be given the proper values to fit the initial conditions of the
physical problem; the fact that a solution with two arbitrary constants
is the general solution guarantees that we can always satisfy the initial
conditions by proper choice of the constants.
We now state two theorems regarding linear homogeneous differential
equations:

TaEOREM I. If 2 = z,(t) is any solution of a linear homogeneous differ-
ential equation, and C is any constant, then * = Cx,(f) is also a solution.

TueoreM II. If x = ,(¢) and z = x2(t) are solutions of a linear homo-
geneous differential equation, then x = x(({) + z5(t) <s also a solution.

We prove these theorems only for the case of a second-order equation,
since mechanical equations are generally of this type:

2
a20) 22+ 010 Bt a9z = 0. (2-06)

Assume that = z,(f) satisfies Eq. (2-96). Then

.
as® T2 1 0y 2CE0 4 o)) =

2
C[az(t) dd—;l + ai(f) % -+ ao(t)ih] = 0.

Hence z = C,(t) also satisfies Eq. (2-96). If z,(¢) and z2(t) both satisfy
Eq. (2-96), then

2
ax(t) W + a1 (f) i’l_(ﬂl__%“ﬂ + ao(®)(z1 + z2)

2
— [axt0 21 + a0 %1 o1 |

2
+ [az(t) T2 oy %2y ao(tm] = 0.

Hence z = #;(t) -+ x2(t) also satisfies Eq. (2-96). The problem of finding
the general solution of Eq. (2-96) thus reduces to that of finding any
two independent, “particular” solutions x; (£) and x5 (), for then Theorems I
and II guarantee that

= C1z1(t) + Cor2(d) (2-97)
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is also a solution. Since this solution contains two arbitrary constants,
it must be the general solution. The requirement that z,(¢) and (%)
be independent means in this case that one is not a multiple of the other.
If z,(f) were a constant multiple of z5(¢), then Eq. (2-97) would really
contain only one arbitrary constant. The right member of Eq. (2-97)
is called a linear combination of x; and zs.

In the case of equations like (2-84) and (2-85), where the coefficients
are constant, a solution of the form z = ¢?* always exists. To show this,
assume that ag, @1, and as are all constant in Eq. (2-96) and substitute

2
r = e, % = pe®’, %t_;c = pZe®’. (2-98)
We then have
(a2p® + a1p + ag)e”’ = 0. (2-99)

Canceling out e?, we have an algebraic equation of second degree in p.
Such an equation has, in general, two roots. If they are different, this
gives two independent functions e’ satisfying Eq. (2-96) and our prob-
lem is solved. If the two roots for p should be equal, we have found only
one solution, but then, as we shall show in the next section, the function

z = te'! (2-100)

also satisfies the differential equation. The linear homogeneous equation
of nth order with constant coefficients can also be solved by this method.
Let us apply the method to Eq. (2-84). Making the substitution (2-98),
we have
mp? + k=0, (2-101)
whose solution is

p = =% ."—‘ % == :|:’in, Wy =— ,\/% (2—102)

This gives, as the general solution,

z = Cqe'wot 4 (ge™twot, (2-103)

In order to interpret this result, we remember that

e® = cos 9 + ¢sin 6. (2-104)

If we allow complex numbers x as solutions of the differential equation,
then the arbitrary constants C'; and s must also be complex in order for
Eq. (2-103) to be the general solution. The solution of the physical
problem must be real, hence we must choose Cy and C, so that x turns out
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to be real. The sum of two complex numbers is real if one is the complex
conjugate of the other. If

C=ua-+ b, (2-105)

and
C*¥ = qa — b, (2-106)

then
C 4+ C* = 2q, C — C* = 2. (2-107)

Now e#ot is the complex conjugate of et so that if we set ¢, = C,
Cy = C*, then z will be real:
| & = Ceiwot 4 C*giwat, (2-108)

We could evaluate z by using Eqé. (2-104), (2-105), and (2-106), but
the algebra is simpler if we make use of the polar representation of a
complex number:

C = a + b = re®, (2-109)
C*=a — ib = re”®, (2-110)
where
r= (a4 b33 tan 6 = %, (2-111)
a = rcos 6, b = rsin 8. (2-112)

The reader should verify that these equations follow algebraically from
Eq. (2-104). If we represent C as a point in the complex plane, then a
and b are its rectangular coordinates, and r and 9 are its polar coordinates.
Using the polar representation of C, Eq. (2-108) becomes (we set r — 32A)

T = %Aei(wot+0) _I_ %Ae—i(wot+0)
= A cos (wot } 6). (2-113)
This is the general real solution of Eq. (2-84). It differs from the solu-
tion (2-94) only by a shift of /2 in the phase constant 6.
Setting By = A cos 6, B = — A sin §, we can write our solution in

another form:
x = Bj coswot + By sin wyl. (2-114)

The constants A, 8, or By, Bs, are to be obtained in terms of the initial
values zg, vo at ¢ = 0 by setting

Zg = Acos§ = By, (2-115)
Vo = —woA sin @ = woBz. ' (2—116)
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The solutions are easily obtained:

2 03 12
A=(a3+2) (2-117)
wo
tan§ = — 20, (2-118)
oo
or
By = =, (2-119)
— Yo _
By = (2-120)

Another way of handling Eq. (2-103) would be to notice that, since
Eq. (2-84) contains only real coefficients, a complex function can satisfy
it only if both real and imaginary parts satisfy it separately. (The proof
of this statement is a matter of substituting x = u + w and carrying
out a little algebra.) Hence if a solution is (we set r = A)

z = Ce™0t = Ae@oith

= A cos (wol + 8) + 24 sin (w;t + 0, (2-121)

then both the real and imaginary parts of this solution must separately be
solutions, and we have either solution (2-113) or (2-94). We can carry
through the solutions of linear equations like this, and perform any alge-
braic operations we please on them in their complex form (so long as we
do not multiply two complex numbers together), with the understanding
that at each step what we are really concerned with is only the real part
or only the imaginary part. This procedure is often useful in the treat-
ment of problems involving harmonic oscillations, and we shall use it in
Section 2-10.

It is often very convenient to represent a sinusoidal function as a com-
plex exponential : .

ew _l_ e—iB

cos 6 = real part of e¥ = —— (2-122)

eza _ e—w

% (2-123)

sin § = imaginary part of e” =

Exponential functions are easier to handle algebraically than sines and
cosines. The reader will find the relations (2-122), (2-123), and (2-104)
useful in deriving trigonometric formulas. The power series for the sine
and cosine functions are readily obtained by expanding ¢¥ in a power series
and separating the real and imaginary parts. The trigonometric rule for
sin (A + B) and cos (A + B) can be easily obtained from the algebraic
rule for adding exponents. Many other examples could be cited.
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2-9 The damped harmonic oscillator. The equation of motion for a
particle subject to a linear restoring force and a frictional force proportional

to its velocity is [Eq. (2-85)]
mi + bi + kx = 0, (2-124)

where the dots stand for time derivatives. Applying the method of Sec-
tion 2-8, we make the substitution (2-98) and obtain

mp? +bp+k=0.  (2-125)

b b\ kR
P=—gg* [(%) - m] ‘ (2-126)

We distinguish three cases: (a) k/m > (b/2m)2, (b) k/m < (b/2m)?, and
(e) k/m = (b/2m)2.
In case (a), we make the substitutions

The solution is

wo = 7’2 (2-127)
b
w; = (w5 — YH?, (2-129)

where 7 is called the damping coefficient and (wo/27) is the natural fre-
quency of the undamped oscillator. There are now two solutions for p:

P = —7 &£ iw,. (2-130)

The general solution of the differential equation is therefore

x = Cpe "t 4 o pviiont ‘ (2-131)

Setting
Ci1 = 34e”, C; = 34e7, (2-132)

we have
z = Ae™"" cos (wit + 6). : (2-133)

This corresponds to an oscillation of frequency (w;/27) with an amplitude
Ae—"" which decreases exponentially with time (Fig. 2-4). The constants
4 and 6 depend upon the initial conditions. The frequency of oscillation
is less than without damping. The solution (2-133) can also be written

r = ¢ "(B; cos wit + By sin w;t). (2-134)
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&

—A

Fic. 2-4. Motion of damped harmonic oscillator. Heavy curve: xz =
Ae " coswt, ¥ = w/8. Light curve:z = L Ade ™.

In terms of the constants wg and v, Eq. (2-124) can be written
&+ 27 + wiz = 0. (2-135)

This form of the equation is often used in discussing mechanical oscilla-
tions.
The total energy of the oscillator is

E = 1mi? + $ka?. (2-136)

In the important case of small damping, ¥ << wp, we can set w; = wo and
neglect ¥ compared with wg, and we have for the energy corresponding to
the solution (2-133), approximately,

E = 3kA% 2" = Eope™2"". (2-137)

Thus the energy falls off exponentially at twice the rate at which the ampli-
tude decays. The fractional rate of decline or logarithmic derivative of E is

1dE _dlnE

A T —27. (2-138)
We now consider case (b), (wg < 7). In this case, the two solutions

for p are
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p=—T=—v— (¥ —ud)?
(2-139)
p=—"=—7+ (¥ — )2
The general solution is
z = Cre~ "  Cre™ 2, (2-140)

These two terms both decline exponentially with time, one at a faster rate
than the other. The constants C; and C; may be chosen to fit the initial
conditions. The reader should determine them for two important cases:
Zo # 0,99 = 0 and 25 = 0, v¢ = 0, and draw curves z(f) for the two
cases.

In case (c), (wp = 7), we have only one solution for p:

D= —7. (2-141)
The corresponding solution for z is
r= ¢ (2-142)

We now show that, in this case, another solution is

=t (2-143)
To prove this, we compute
=" — v,
(2-144)
= —2v¢7"" 4+ v,

The left side of Eq. (2-135) is, for this z,
&4+ 27i 4 wiz = (wd — )t (2-145)
This is zero if wy = 7. Hence the general solution in case wy = 7 is
z = (Cy + Cat)e™™. (2-146)

This function declines exponentially with time at a rate intermediate be-
tween that of the two exponential terms in Eq. (2-140):

Y>> Y (2-147)

Hence the solution (2-146) falls to zero faster after a sufficiently long time
than the solution (2-140), except in the case C; = 0in Eq. (2-140). Cases
(a), (b), and (c) are important in problems involving mechanisms which
approach an equilibrium position under the action of a frictional damping
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(b)

(e)
(2)

A |

Fra. 2-5. Return of harmonic oscillator to equilibrium. (a) Underdamped.
(b) Overdamped. (c) Critically damped.

force, e.g., pointer reading meters, hydraulic and pneumatic spring returns
for doors, etc. In most cases, it is desired that the mechanism move
quickly and smoothly to its equilibrium position. For a given damping
coefficient v, or for a given wq, this is accomplished in- the shortest time
without overshoot if wg = 7 [ease (¢)]. This case is called critical damping.
If wg < 7, the system is said to be overdamped; it behaves sluggishly and
does not return as quickly to £ = 0 as for critical damping. If wg > 7,
the system is said to be underdamped; the coordinate x then overshoots the
value z = 0 and oscillates. Note that at critical damping, w; = 0, so
that the period of oscillation becomes infinite. The behavior is shown in
Fig. 2-5 for the case of a system displaced from equilibrium and released
(zo #= 0,v9 = 0). The reader should draw similar curves for the case
“where the system is given a sharp blow at t = 0 (i.e., 2o = 0, vg = 0).

2-10 The forced harmonic oscillator. The harmonic oscillator subject
to an external applied force is governed by Eq. (2-86). In order to sim- -
plify the problem of solving this equation, we state the following theorem:

TaeoreM II1. If z;(t) is a solution of an inhomogeneous linear equation
[e.g., Eq. (2-86)], and xx(f) is a solution of the corresponding homogeneous
equation [e.g., Eq. (2-85)], then x(t) = zi(f) + xn(t) is also a solution of
the inhomogeneous equation.

This theorem applies whether the coefficients in the equation are constants
or functions of £. The proof is a matter of straightforward substitution,
and is left to the reader. In consequence of Theorem III, if we know the
general solution x of the homogeneous equation (2-85) (we found this in
Section 2-9), then we need find only one particular solution z; of the in-
homogeneous equation (2-86). For we can add z; to z; and obtain a solu-
tion of Eq. (2-86) which contains two arbitrary constants and is therefore
the general solution.
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The most important case is that of a sinusoidally oscillating applied
force. If the applied force oscillates with angular frequency w and ampli-
tude Fy, the equation of motion is

‘fitf + 5% 1 ke = Fo cos (at + 60), (2-148)

where 6 is a constant specifying the phase of the applied force. There are,
of course, many solutions of Eq. (2-148), of which we need find only one.
From physical considerations, we expect that one solution will be a steady
oscillation of the coordinate x at the same frequency as the applied force:

x = A, cos (wf + 6,). (2-149)

The amplitude A, and phase 6, of the oscillations in z will have to be de-
termined by substituting Eq. (2-149) in Eq. (2-148). This procedure is
straightforward and leads to the correct answer. The algebra is simpler,
however, if we write the force as the real part of a complex function:*

F(t) = Re(Fge™?), (2-150)
Fo = Foe™. (2-151)
Thus if we can find a solution x(¢) of
d2
m = + b + kx = Foe™ (2-152)

then, by splitting the equation into real and imaginary parts, we can show

that the real part of x(¢) will satisfy Eq. (2-148). We assume a solution of
the form
X = Xg eiwt,
so that
X = fwxee™’, ¥ = —w’xee™. (2-153)

Substituting in Eq. (2-152), we solve for xq:

Xo = — F°2/ m___. (2-154)
wy — 0 + 297w

The solution of Eq. (2-152) is therefore

3 iwt
X = xoelwt — 5 (FO/:n)e - . (2_155)
wy — w4+ 20w

* Note the use of roman type (F, x) to distinguish complex quantities from
the corresponding real quantities (7, x).
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We are often more interested in the velocity

. ot
m wy — w + 27w

The simplest way to write Eq. (2-156) is to express all complex factors in
polar form [Eq. (2-109)]:

i = "2 (2-157)
0§ — @ + 270 = [(w§ — &®)® + 47%°]"? exp (¢ tan™" ————227“’ s )
Wy — W
(2-158)
If we use these expressions, Eq. (2-156) becomes :
s wFy i(wt+00+8)
= ml(ws — w?)? + 47%%)"2 € A (2-159)
where
2 2
8="1— tan! e tan—1 20—, (2-160)
2 wg — w? 27w
2 2
. _ wWop — W . -
snf = [(w§ — w?)? + 47%%Y2 ’ (2-161)
27w
eosf = [(w§ — w®)? + 472w2]1/2. (2-162)
By Eq. (2-159),
& = Re(x)
_F w

= [oh —ah?  arigryirr S @ ot ), (2-168)

and
z = Re(x) = Re (x/iw)
Fq 1

= m (@ — o 4 o @ e B (216D

This is a particular solution of Eq. (2-148) containing no arbitrary con-
stants. By Theorem III and Eq. (2-133), the general solution (for the
underdamped oscillator) is

F o / m
[(wp — w*)® + 477"

x = Ae " cos (wit + 6) + sin (wt + 6o + B).

(2-165)
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This solution contains two arbitrary constants A, 6, whose values are de-
termined by the initial values zg, vg at ¢ = 0. The first term dies out ex-
ponentially in time and is called the transient. The second term is called
the steady state, and oscillates with constant amplitude. The transient de-
pends on the initial conditions. The steady state which remains after the
transient dies away is independent of the initial conditions.

In the steady state, the rate at which work is done on the oscillator by
the applied force is

F?, w
tF(f) = — t + 8g) cos (wt 1+ 6y + B)
240 m (@ — wd)? + 47% 2]1,203(40 o) ( 0
_ f’j w cos B cos? (wt + ;) _ _F_(z) w sin B sin 2(wt + 6;) .
m [(® — wd)? + 472212 2m [(® — wo)? + 47202
(2-166)

The last term on the right is zero on the average, while the average value
of cos? (wt + 6,) over a complete cycle is %. Hence the average power de-
livered by the applied force is

P,y = <¢F(t) >av == Fo cos ?

om [(&)2 _ w(2))2 + 472‘02]1/2

(2-167)

or
P, = 3F i, cos B, (2-168)

where #,, is the maximum value of #. A similar relation holds for power
delivered to an electrical circuit. The factor cos 8 is called the power
Jactor. In the electrical case, 8 is the phase angle between the current and
the applied emf. Using formula (2-162) for cos 8, we can rewrite Eq.
(2-167):

F 0 7(02

Pa - - 2_169
Y om (w? — wd)? + 4727 ( )

It is easy to show that in the steady state power is supplied to the oscillator
at the same average rate that power is being dissipated by friction, as of
course it must be. The power P,, has a maximum for w = wg. In Fig.
2-6, the power P,, (in arbitrary units) and the phase of 8 of steady-state
forced oscillations are plotted against w for two values of ¥. The heavy
curves are for small damping; the light curves are for greater damping.
Formula (2-169) can be simplified somewhat in case ¥ << wq. In this case,
P,y is large only near the resonant frequency wo, and we sha,ll deduce a
formula valid near w = wy. Defining ,

Aw = 0 — wy, (2-170)
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Pu, (v = w0)

/2

Plv,('y =w0)

wo

—7/2

Fig. 2-6. Power and phase of forced harmonic oscillations.

and assuming Aw << wg, we have

(w? — wd) = (w4 wo) Aw = 2w Aw, (2-171)
w® = wf. (2-172)
Hence
2
p,, = Fo Y (2-173)

= Im Aw)? F 2’

This simple formula gives a good approximation to P,, near resonance.
The corresponding formula for 8 is

Y . —Aw

e (o e e EA A (v S e
When w < wg, 8 = 7/2, and Eq. (2-164) becomes
z = —F;—O cos (wt + 6g) = —F% . (2-175)

wom

This result is easily interpreted physically; when the force varies slowly,
the particle moves in such a way that the applied force is just balanced by
the restoring force. When w > wy, 8 = —7/2, and Eq. (2—-164) becomes

_F@

. Fq
r= — 20'2—"—1003 (wt+ 00) = >m

(2-176)
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The motion now depends only on the mass of the particle and on the fre~
quency of the applied force, and is independent of the friction and the
restoring force. This result is, in fact, identical with that obtained in Sec-
tion 2-3 [see Egs. (2-15) and (2-19)] for a free particle subject to an
oscillating force.

We can apply the result (2-165) to the case of an electron bound to an
equilibrium position £ = 0 by an elastic restoring force, and subject to an
oscillating electric field:

E, = Egcos wt, (2-177)
F = —eFE cos wi. (2-178)

The motion will be given by
— E sin (wt + B)
x=Ae"tcoswt—|—0—-§—°
O @ = o+ v

(2-179)

The term of interest here is the second one, which is independent of the
initial conditions and oscillates with the frequency of the electric field.
Expanding the second term, we get

z = __eEy sin 8 cos wt __ el cosﬁsinwt_
m (@ — 6]+ 47% N m (@ — o))+ ar%
__ —elg coswit w% — w?
‘ m [(@® — w3)? + 47%7
__eEgsinwt 27w

m @ — wd)? + 4% (2-180)

The first term represents an oscillation of x in phase with the applied force
at low frequencies, 180° out of phase at high frequencies. The second term
represents an oscillation of x that is 90° out of phase with the applied force,
the velocity & for this term being in phase with the applied force. Hence
the second term corresponds to an absorption of energy from the applied
force. The second term contains a factor ¥ and is therefore small, if
7 K wg, except near resonance. If we imagine a dielectric medium con-
sisting of electrons bound by elastic forces to positions of equilibrium, then
the first term in Eq. (2-180) will represent an electric polarization propor-
tional to the applied oscillating electric field, while the second term will
represent an absorption of energy from the electric field. Near the resonant
frequency, the dielectric medium will absorb energy, and will be opaque
to electromagnetic radiation. Above the resonant frequency, the dis-
placement of the electrons is out of phase with the applied force, and the
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resulting electric polarization will be out of phase with the applied electric
field. The dielectric constant and index of refraction will be less than
one. For very high frequencies, the first term of Eq. (2-180) approaches
the last term of Eq. (2-18), and the electrons behave as if they were free.
Below the resonant frequency, the electric polarization will be in phase
with the applied electric field, and the dielectric constant and index of re-
fraction will be greater than one.

Computing the dielectric constant from the first term in Eq. (2-180), in the
same manner as for a free electron [see Eqs. (2-20)-(2-26)], we find, for N elec-
trons per unit volume:

2 2 2
e—14¥Ne @ (2-181)
m (wo — )+ 47w
The index of refraction for electromagnetic waves (u = 1) is
n = 5 = (uel'? = /2, (2-182)
For very high or very low frequencies, Eq. (2-181) becomes
4rNe’
e=1-+ 5 @ <K wo, (2-183)
nwo
4rNeé®
e=1— 51 w3 we. (2-184)
e

The mean rate of energy absorption per unit volume is given by Eq. (2-169):

2

dE _ Né°Ej Yo

: (2-185)
dt m (0 — wh)? + 47%°

The resulting dielectric constant and energy absorption versus frequency
are plotted in Fig. 2-7. Thus the dielectric constant is constant and
greater than one at low frequencies, increases as we approach the resonant
frequency, falls to less than one in the region of “anomalous dispersion”
where there is strong absorption of electromagnetic radiation, and then
rises, approaching one at high frequencies. The index of refraction will
follow a similar curve. This is precisely the sort of behavior which is
exhibited by matter in all forms. Glass, for example, has a constant dielec-
tric constant at low frequencies; in the region of visible light its index of
refraction increases with frequency; and it becomes opaque in a certain
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-

|
wo

F1a. 2-7. Dielectric constant and energy absorption for medium containing
harmonic oscillators.

band in the ultraviolet. X-rays are transmitted with an index of refrac-
tion very slightly less than one. A more realistic model of a transmitting
medium would result from assuming several different resonant frequencies
. ecorresponding to electrons bound with various values of the spring con-
stant k. This picture is then capable of explaining most of the features in
the experimental curves for € or n vs. frequency. Not only is there qualita-
tive agreement, but the formulas (2-181)-(2-185) agree quantitatively
with experimental results, provided the constants N, wg, and ¥ are properly
chosen for each material. The success of this theory was one of the reasons
for the adoption, until the year 1913, of the “jelly model” of the atom, in
which electrons were imagined embedded in a positively charged jelly in
which they oscillated as harmonic oscillators. The experiments of Ruther-
ford in 1913 forced physicists to adopt the “planetary” model of the atom,
but this model was unable to explain even qualitatively the optical and
electromagnetic properties of matter until the advent of quantum mechan-
ics. The result of the quantum-mechanical treatment is that, for the inter-
action of matter and radiation, the simple oscillator picture gives essentially
correct results when the constants are properly chosen.*

We now consider an applied force F() which is large only during a
short time interval ¢ and is zero or negligible at all other times. Such a
force is called an impulse, and corresponds to a sudden blow. We assume
the oscillator initially at rest at x = 0, and we assume the time 8¢ so short
that the mass moves only a negligibly small distance while the force is
acting. According to Eq. (2-4), the momentum just after the force is
applied will equal the impulse delivered by the force:

mpe = po = [ F d, (2-186)

where v, is the velocity just after the impulse, and the integral is taken
over the time interval 8¢ during which the force acts. After the impulse,

*8ee John C. Slater, Quantum Theory of Matter. New York: McGraw-Hill
Book Co., 1951. (Pdge 378.) '
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the applied force is zero, and the oscillator must move according to Eq.
(2-133) if the damping is less than critical. We are assuming 8 so small
that the oscillator does not move appreciably during this time, hence we
choose § = —(7/2) — wyly, in order that ¢ = 0 at ¢t = {3, where ¢, is
the instant at which the impulse occurs:

z = Ade " sin [wy(t — £0)]. (2-187)
The velocity at t = ¢, is
Vo — wlAe"”°. (2-188)
Thus
A =20 o (2-189)
w1

The solution when an impulse po is delivered at ¢ = ¢, to an oscillator at
rest is therefore

0: 4 S tO}

r = Po =1(t—t0) _ (2—190)
v e sin (¢ — )], t > ty.

Here we have neglected the short time 8¢ during which the force acts.

We see that the result of an impulse-type force depends only on the total
impulse p delivered, and is independent of the particular form of the func-
tion F(t), provided only that F(¢f) is negligible except during a very short
time interval 6. Several possible forms of F(¢) which have this property
are listed below:

0, t < to,
F(t) = {po/dt, to <t -t+ &, (2-191)
0, t > to + o,
__ Do ot 1 _ . 1G
F(ty = T G2 F (o2 w <t < o, (2-192)
S TR R i
F(t) = at\/;rexr)[ Ok w <t< o (2 ;93)

The reader may verify that each of these functions is negligible except
within an interval of the order of 6t around ¢y, and that the total impulse
delivered by each is po. The exact solution of Eq. (2-86) with F(¢) given
by any of the above expressions must reduce to Eq. (2-190) when 8 — 0
(see Problem 23).
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2-11 The principle of superposition. Harmonic oscillator with arbi-
trary applied force. An important property of the harmonic oscillator is
that its motion z(f), when subject to an applied force F(f) which can be
regarded as the sum of two or more other forces Fi(®), Fa@), ..., is the
sum of the motions «;(t), z(f), . .., which it would have if each of the
forces F,,(f) were acting separately. This principle applies to small mechan-
ical vibrations, electrical vibrations, sound waves, electromagnetic waves,
and all physical phenomena governed by linear differential equations. The
principle is expressed in the following theorem:

THEOREM IV. Let the (finite or infinite*) set of functions x,(t), n = 1,23,
..., be solutions of the equations

mE, + bk, + kx, = F,(@), (2-194)
and let
F() = D Fat). (2-195)
Then the function
z(t) = D za(t) (2-196)
satisfies the equation
mi + bt + kz = F(i). (2-197)

To prove this theorem, we substitute Eq. (2-196) in the left side of Eq.
(2-197):

mE+ bk ke =mY & +bY i+ kD
= D (méy + bin + k)

= Z Fﬂ(t)

= F(t).

This theorem enables us to find a solution of Eq. (2-197) whenever the
force F(t) can be expressed as a sum of forces F,(t) for which the solutions
of the corresponding equations (2-194) can be found. In particular,
whenever F(f) can be written as a sum of sinusoidally oscillating terms:

F() = ) Cycos (wat + 6n), (2-198)

* When the set of functions is infinite, there are certain mathematical restric-
tions which need not concern us here.
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a particular solution of Eq. (2-197) will be, by Theorem IV and Eq. (2-164),

C 1 .
x = == sin (Wt + 0, + Bn), (2-199)
; m (@i — WD+ %2 T
2 2
. —1Wo — Wn
B, = tan ——27%
The general solution is then

% sin (wat + O + Br)

m [(0f — of)® + 47%wn]V/?

z = Ae " cos (wit + 6) —|— Z (2-200)

where A and ¢ are, as usual, to be chosen to make the solution (2-200) fit

the initial conditions.
We can write Egs. (2-198) and (2-199) in a different form by setting

A, = Cy,cos by, B, = —C,sin 6,. (2-201)
Then
F@) = Z (A, cos wpt + By, sin wyt), (2-202)

and

A, sin (wnt 4+ B8a) — By cos (wnt + Bn)
= . 2-203
P T — (2209

An important case of this kind is that of a periodic force F(z), that is, a

force such that
Fit+ T) = F(), (2-204)

where T is the period of the force. For any continuous function F(f) satis-
fying Eq. (2-204) (and, in fact, even for only piecewise continuous func-
tions), it can be shown that F(f) can always be written as a sum of sinus-
oidal functions:

F@) = 34, + Z <An cos g?_nt + By sin 2—1;11’:) , (2-205)
n=1

where

T \
An=%/o F(t)coszz,ntdt, n=2012 ...,

T (2-206)
B, — %/0 F(o) sin2—7;—,’1fdt, n=1,23....

This result enables us, at least in principle, to solve the problem of the
forced oscillator for any periodically varying force. The sum in Eq. (2-205)
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is called a Fourier series.* The actual computation of the solution by this
method is in most cases rather laborious, particularly the fitting of the
constants 4, 8 in Eq. (2-200) to the initial conditions. However, the knowl-
edge that such a solution exists is often useful in itself. If any of the fre-
quencies 27rn/T coincides with the natural frequency wq of the oscillator,
then the corresponding terms in the series in Eqs. (2-199) or (2-203) will
be relatively much larger than the rest. Thus a force which oscillates
nonsinusoidally at half the frequency wo may cause the oscillator to per-
form a nearly sinusoidal oscillation at its natural frequency wy.

A generalization of the Fourier series theorem [Eqs. (2-205) and (2-206)]
applicable to nonperiodic forces is the Fourier integral theorem, which
allows us to represent any continuous (or piecewise continuous) function
F(t), subject to certain limitations, as a superposition of harmonieally
oscillating forces. By means of Fourier series and integrals, we may solve
Eq. (2-197) for almost any physically reasonable force F(t). We shall not
pursue the subject further here. Suffice it to say that while the methods
of Fourier series and Fourier integrals are of considerable practical value
in solving vibration problems, their greatest importance in physics probably
lies in the fact that in principle such a solution exists. Many important
results can be deduced without ever actually evaluating the series or
integrals at all.

A method of solution known as Green’s method is based on the solution
(2-190) for an impulse-type force. We can think of any force F(¢) as the
sum of a series of impulses, each acting during a short time ¢ and deliver-
ing an impulse F(t) :

F@®) = > Fa(), (2-207)
N==—u
0, if t<t, where ¢, = n 8,
Fu(t) = F(tn), if 5, <t< tn--}-ly (2-208)
0, if > tags.

As 8t — 0, the sum of all the impulse forces F,.(t) will approach F(). (See
Fig. 2-8.) According to Theorem IV and Eq. (2-190), a solution of
Eq. (2-197) for a force given by Eq. (2-207) is

2@ = 3% PO mimwgin o, — 1)), @-209)

* For a proof of the above statements and a more complete discussion of
Fourier series, see Dunham Jackson, Fourier Series and Orthogonal Polynomials.
Menasha, Wisconsin: George Banta Pub. Co., 1941. (Chapter 1.)
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F(

t

F1g. 2-8. Representation of a force as a sum of impulses. Heavy curve:
F(t). Light curve: > ,F.(1).

where &,, < t < fyg+1. If we let 8¢ — 0 and write 4, = ¢, Eq. (2-209)
becomes
[2
F{tY ey . '
z(t) = /_w nfw_z e ") gin [w(t — l’)] dr'. (2-210)
The function
0, if ¢ >4

Gty ') = Yg—r—t) (2-211)
———sinfw ¢ — )], if ¥ <L,

is called the Green’s function for Eq. (2-197). In terms of Green’s fuimtion,

o) = /:, GG, )F() dt. (2-212)

If the force F(t) is zero for t < t,, then the solution (2-210) will give
z({t) = 0 for t < t,. This solution is therefore already adjusted to fit the
initial condition that the oscillator be at rest before the application of the
force. For any other initial condition, a transient given by Eq. (2-133),
with appropriate values of 4 and 6, will have to be added. The solution
(2-210) is useful in studying the transient behavior of a mechanical sys-
tem or electrical circuit when subject to forces of various kinds.

PrOBLEMS

1. A tug of war is held between two teams of five men each. Each man weighs
160 1b and can initially pull on the rope with a force of 200 Ib-wt. At first the
teams are evenly matched, but as the men tire, the force with which each man
pulls decreases according to the formula

F = (200 1b-wt) 7,

where the mean tiring time 7 is 10 sec for one team and 20 sec for the other.
Find the motion. (g = 32 ft-sec—2) What is the final velocity of the two
teams? Which of our assumptions is responsible for this unreasonable result?
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2. A high-speed proton of electric charge ¢ moves with constant speed vo
in a straight line past an electron of mass m, charge —e, initially at rest. The
electron is at a distance a from the path of the proton. (a) Assume that the
proton passes so quickly that the electron does not have time to move appre-
ciably from its initial position until the proton is far away. Show that the
component of force in a direction perpendicular to the line along which the

proton moves is 9

F = —263—23,2 » (electrostatic or gaussian units)
(a” + vot”)
where a is the distance of the electron from the path of the proton and £ = 0
when the proton passes closest to the electron. (b) Assume that the electron
moves only along a line perpendicular to the path of the proton. Find the final
kinetic energy of the electron. (¢) Write the component of the force in a direc-
tion parallel to the proton velocity, and calculate the net impulse in that direc-
tion delivered to the electron. Does this justify the assumption in part (b)?

3. A particle which had originally a velocity vp is subject to a force given
by Eq. (2-192). (a) Find »(¢) and z(f). (b) Show that as 6t — 0, the motion
approaches motion at constant velocity with an abrupt change in velocity at
t = tp of amount po/m.

4. A particle initially at rest is subject, beginning at ¢ = 0, to a force

F = Foe " cos (wt + 6).

(a) Find its motion. (b) How does the final velocity depend on 8, and on w?
[Hint: The algebra is simplified by writing cos (wt- 6) in terms of complex expo-
nential functions.]

5. A boat with initial velocity vo is slowed by a frictional force

F = —pe™,

(a) Find its motion. (b) Find the time and the distance required to stop.

6. A jet engine which develops a constant maximum thrust Fg is used to power
a plane with a frictional drag proportional to the square of the velocity. If the
plane starts at ¢ = 0 with a negligible velocity and accelerates with maximum
thrust, find its velocity v(¢). ‘

7. Find v() and z(¢) for a particle of mass m which starts at zo = 0 with
velocity vo, subject to a force given by Eq. (2-31) with n £ 1. Find the time
“to stop, and the distance required to stop, and verify the remarks in the last
paragraph of Section 2—4.

8. (a) A body of mass m slides on a rough horizontal surface. The coefficient
of static friction is u,, and the coefficient of sliding friction is u. Devise an
analytic function F(v) to represent the frictional force which has the proper
constant value at appreciable velocities and reduces to the static value at very
low velocities. (b) Find the motion under the force you have devised if the
body starts with an initial velocity vo.

9. A particle of mass m is repelled from the origin by a force inversely pro-
portional to the cube of its distance from the origin. Set up and solve the equa-~
tion of motion if the particle is initially at rest at a distance 2o from the origin.
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10. (a) A mass m is connected to the origin with a spring of constant %,
whose length when relaxed is I. The restoring force is very nearly proportional
to the amount the spring has been stretched or compressed so long as it is not
stretched or compressed very far. However, when the spring is compressed too
far, the force increases very rapidly, so that it is impossible to compress the
spring to less than half its relaxed length. When the spring is stretched more
than about twice its relaxed length, it begins to weaken, and the restoring
force becomes zero when it is stretched to very great lengths., (a) Devise a force
function F(z) which represents this behavior. (Of course a real spring is de-
formed if stretched too far, so that F becomes a function of its previous history,
but you are to assume here that F depends only on z.) (b) Find V(z) and
describe the types of motion which may occur.

11. A particle is subject to a force

a

(a) Find the potential V(z), describe the nature of the solutions, and find the
solution z(f). (b) Can you give a simple interpretation of the motion when
E? > ka?

V()

- 1
—VU

Ficure 2-9

12. An alpha particle in a nucleus is held by a potential having the shape
shown in Fig. 2-9. (a) Describe the kinds of motion that are possible. (b) De-
vise a function V(z) having this general form and having the values —Vy
and V; at £ = 0 and z = =z, and find the corresponding force.

13. Derive the solutions (2-69) and (2-70) for a falling body subject to a
frictional force proportional to the square of the velocity.

14. A body of mass m falls from rest through a medium which exerts a fric-
tional drag be=!*!. (a) Find its velocity v(f). (b) What is the terminal velocity?
(c) Expand your solution in a power series in ¢, keeping terms up to ¢2. (d) Why
does the solution fail to agree with Eq. (1-28) even for short times £?

15. A projectile is fired vertically upward with an initial velocity vo. Find its
motion, assuming a frictional drag proportional to the square of the velocity.
(Constant g.)

16. Derive equations analogous to Egs. (2-80) and (2-81) for the mo-
tion of a body whose velocity is greater than the escape velocity. [Hint: Set
sinh 8 = (Ex/mM@G)1/2]

17. Find the motion of a body projected upward from the earth with a velocity
equal to the escape velocity. Neglect air resistance.
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18. Find the general solution for the motion of a body subject to a linear re-
pelling force F = kz. Show that this is the type of motion to be expected in
the neighborhood of a point of unstable equilibrium.

19. The potential energy for the force between two atoms in a diatomie mole-
cule has the approximate form:

a b
V(Z) = —E-{“m:

where z is the distance between the atoms and a, b are positive constants. (a)
Find the force. (b) Assuming one of the atoms is very heavy and remains at
rest while the other moves along a straight line, describe the possible motions.
(¢) Find the equilibrium distance and the period of small oscillations about the
equilibrium position if the mass of the lighter atom is m.

20. A particle of mass m is subject to a force given by

2 5 8
a 28a 27a
F =8B (x_2 — 5 + x_s) .

(a) Find and sketch the potential energy. (B and a are positive.) (b) Describe
the types of motion which may occur. Locate all equilibrium points and de-
termine the frequency of small oscillations about any which are stable. (c) A
particle starts at = = 3a/2 with a velocity ¥ = —uvo, where v is positive. What is
the smallest value of vo for which the particle may eventually escape to a very
large distance? Describe the motion in that case. What is the maximum velocity
the particle will have? What velocity will it have when it is very far from its
starting point?
21. A particle of mass m moves in a potential well given by

—Voa2(a,2 + xz) )
8at | z4

(a) Sketch V(z) and F(z). (b) Discuss the motions which may oceur. Locate
all equilibrium points and determine the frequency of small oscillations about
any that are stable. (c) A particle starts at a great distance from the potential
well with velocity vo toward the well. As it passes the point z = g, it suffers a
collision with another particle, during which it loses a fraction a of its kinetic
energy. How large must a be in order that the particle thereafter remain trapped
in the well? How large must « be in order that the particle be trapped in one
side of the well? Find the turning points of the new motion if @ = 1.

22, Starting with €21 = (¢i)2, obtain formulas for sin 26, cos 20 in terms of
sin 6, cos 6.

23. Find the general solutions of the equations:

(a) m& -+ bt — kx = 0,
(b) mE — bk + kx = 0.

Discuss the physical interpretation of these equations and their solutions, assum-
ing that they are the equations of motion of a particle.

Viz) =
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24. Show that when wg — 72 is very small, the underdamped solution (2-133)
is approximately equal to the critically damped solution (2-146), for a short
time interval. What is the relation between the constants C1, C2 and A4, 6? This
result suggests how one might discover the additional solution (2-143) in the
critical case.

25. A mass m subject to a linear restoring force —kz and damping —bi is dis-
placed a distance zo from equilibrium and released with zero initial velocity.
Find the motion in the underdamped, critically damped, and overdamped cases.

26. Solve Problem 25 for the case when the mass starts from its equilibrium
position with an initial velocity vo. Sketch the motion for the three cases.

27. A mass of 1000 kgm drops from a height of 10 m on a platform of negligible
mass. It is desired to design a spring and dashpot on which to mount the plat-
form so that the platform will settle to a new equilibrium position 0.2 m below
its original position as quickly as possible after the impact without overshooting.
(a) Find the spring constant ¥ and the damping constant b of the dashpot.
Why does the result seem to contradict the remarks at the end of Section 2-9?
(b) Find, to two significant figures, the time required for the platform to settle
within 1 mm of its final position.

28. A forece Fp(1 — e~*!) acts on a harmonic oscillator which is at rest at

= 0. The mass is m, the spring constant ¥ = 4ma?, and b = ma. Find the
motion. Sketch z(t).

*99. Solve Problem 28 for the case k = ma?, b = 2ma.

30. A force Fg cos (wt + 6¢) acts on a damped harmonic oscillator beginning
at{ = 0. (a) What must be the initial values of z and v in order that there be
no transient? (b) If zo = vo = 0, find the amplitude A and phase 8§ of the
transient in terms of Fo, 0o.

31. An undamped harmonic oscillator of mass m, natural frequency wo, is
initially at rest and is subject at ¢ = 0 to a blow so that it starts from zo = 0
with initial velocity vo and oscillates freely until £ = 3w/2wo. From this time
on, a force F = B cos (wt -+ 6) is applied. Find the motion.

32. An underdamped harmonie oscillator is subject to an applied force

F = Foe™* cos (wi + 6).

Find a particular solution by expressing F as the real part of a complex exponen-
tial function and looking for & solution for # having the same exponential time
dependence.

33. (a) Find the motion of a damped harmonic oscillator subject to a constant
applied force Fo, by guessing a “steady-state” solution of the inhomogeneous
equation (2-86) and adding a solution of the homogeneous equation. ' (b) Solve
the same problem by making the substitution 2 = x — a, and choosing the
constant a so as to reduce the equation in z’ to the homogeneous equation (2-85).
Hence show that the effect of the application of a constant force is merely to shift
the equilibrium position without affecting the nature of the oscillations.

* An asterisk is used, as explained in the Preface, to indicate problems whlch
may be particularly dlﬁicult
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34. Find the motion of a mass m subject to a restoring force —kz, and to a
damping force (< )umg due to dry sliding friction. Show that the oscillations are
isochronous (period independent of amplitude) with the amplitude of oscillation
decreasing by 2ug/w? during each half-cycle until the mass comes to a stop.
[Hint: Use the result of Problem 33. When the force has a different algebraic
form at different times during the motion, as here, where the sign of the damping
force must be chosen so that the force is always opposed to the velocity, it is
necessary to solve the equation of motion separately for each interval of time
during which a particular expression for the force is to be used, and to choose
as initial conditions for each time interval the final position and velocity of the
preceding time interval.]

35. An undamped harmonic oscillator (Y = 0), initially at rest, is subject to
a force given by Eq. (2-191). (a) Find z(). (b) For a fixed po, for what value
of 3t is the final amplitude of oscillation greatest? (c¢) Show that as 6 — 0, your
solution approaches that given by Eq. (2-190).

36. Find the solution analogous to Eq. (2-190) for a critically damped har-
monic oscillator subject to an impulse pg delivered at ¢ = #o.

37. (a) Find, using the principle of superposition, the motion of an under-
damped oscillator [Y = (1/3)wg] initially at rest and subject, after ¢ = 0,
to a force

F = A sinwet + B sin 3wot,

where wo is the natural frequency of the oscillator. (b) What ratio of B to A is
required in order for the forced oscillation at frequency 3wo to have the same
amplitude as that at frequency wo? :

38. Find, by the Fourier-series method, the steady-state solution for the
damped harmonic oscillator subject to a force

0, it 2T <t< (n+ PT,

Fo = [Fo, if (nd PT <t < (n+ DT,

where n is any integer, and T = 6x/wo, where wg is the resonance frequency of the
oscillator. Show that if ¥ << wo, the motion is nearly sinusoidal with period 7/3.
39. An underdamped oscillator initially at rest is acted upon, beginning at
t = 0, by a force
F=F oe_”.
Find its motion by using Green’s solution (2-210).

40. Using the result of Problem 36, find by Green’s method the motion of a
critically damped oscillator initially at rest and subject to a force F(¢).



CHAPTER 3
MOTION OF A PARTICLE IN TWO OR THREE DIMENSIONS

3-1 Vector algebra. The discussion of motion in two or three dimensions
is vastly simplified by the introduction of the concept of a vector. A
vector is defined geometrically as a physical quantity characterized by a
magnitude and a direction in space. Examples are velocity, force, and
position with respect to a fixed origin. Schematically, we represent a
vector by an arrow whose length and direction represent the magnitude
and direction of the vector. We shall represent a vector by a letter in bold-
face type. The same letter in ordinary- italics will represent the magnitude
of the vector. (See Fig. 3-1.) The magnitude of a vector may also be
represented by vertical bars enclosing the vector symbol:

A = |A]. (3-1)

Two vectors are equal if they have the same magnitude and direction;
the concept of vector itself makes no reference to any particular location.*

\

=

Fie. 3-1. A vector A and its magnitude A. (¢ > 0)

/\

e —

Fic. 3-2. Definition of multiplication of a vector by a scalar. (¢ > 0)

* A distinction is sometimes made between “free” vectors, which have no par-
ticular location in space; “sliding” vectors, which may be located anywhere along
a line; and “fixed” vectors, which must be located at a definite point in space. We
prefer here to regard the vector as distinguished by its magnitude and direction
alone, so that two vectors may be regarded as equal if they have the same magni-
tudes and directions, regardless of their positions in space.

68
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A quantity represented by an ordinary (positive or negative) number is
often called a scalar, to distinguish it from a vector. We define a product
of a vector A and a positive scalar ¢ as a vector cA in the same direction as
A of magnitude ¢A. If ¢ is negative, we define cA as having the magnitude
le]4 and a direction opposite to A. (See Fig. 3-2.) It follows from this

definition that
|cA| = || JA]. (3-2)

It is also readily shown, on the basis of this definition, that multiplication
by a scalar is associative in the following sense: -

(cd)A = c(dA). (3-3)

It is sometimes convenient to be able to write the scalar to the right of the
vector, and we define Ac as meaning the same vector as cA:

Ac = cA. (34)

" We define the sum (A + B) of two vectors A and B as the vector which
extends from the tail of A to the tip of B when A is drawn with its tip
at the tail of B, as in Fig. 3-3. This definition is equivalent to the usual
parallelogram rule and is more convenient to use. It is readily extended
to the sum of any number of vectors, as in Fig. 3—4.

On the basis of the definition given in Fig. 3-3, we can readily prove
that vector addition is commutative and associative:

A-+B=B-1+A, (3-5)
(A+B)+C=A+ (B+C). (3-6)

According to Eq. (3-6), we may omit parentheses in writing é, vector sum,
since the order of adding does not matter. From the definitions given by
Figs. 3-2 and 3-3, we can also prove the following distributive laws:

¢(A +B) = cA + ¢B, 3-7)
(¢ + d)A = cA + dA. (3-8)

These statements can be proved by drawing diagrams representing the

_h o

A+B+C+D

F1a. 3-3. Definition of addition of Fi1c. 3-4. Addition of several vec-
two vectors. tors.
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B

(A +B)

(A+B)+CorA+ (B+C)

F1g. 3-5. Proof of Eq. (3-6).

right and left members of each equation according to the definitions given.
For example, the diagram in Fig. 3-5 makes it evident that the result of
adding C to (A + B) is the same as the result of adding (B + C) to A.

According to Eqgs. (3-3) through (3-8), the sum and product we have
defined have most of the algebraic properties of sums and products of
ordinary numbers. This is the justification for calling them sums and
products. Thus it is unnecessary to commit these results to memory.
We need only remember that we can manipulate these sums and products
just as we manipulate numbers in ordinary algebra with the one exception
that the product defined by Fig. 3-2 can be formed only between a scalar
and a vector, and the result is a vector.

A vector may be represented algebraically in terms of its components or
projections along a set of coordinate axes. Drop perpendiculars from the
tail and tip of the vector onto the coordinate axes as in Fig. 3-6. Then
the component of the vector along any axis is defined as the length of the
segment cut off on the axis by these perpendiculars. The component is
taken as positive or negative according to whether the projection of the
tip of the vector lies in the positive or negative direction along the axis

(2) )

Fie. 3-6. (a) Components of a vector in a plane. (b) Components of a vector
in space.
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Ay 'A?/j

- z

Fie. 8-7. Diagrammatic proof of the formula A = A,i Aj.

from the projection of the tail. The components of a vector A along z-, y-,
and z-axes will be written A, 4,, and 4,. The notation 4, 4,, A,) will
sometimes be used to represent the vector A:

A = (4, 4, 4,). (3-9)

If we define vectorsi, j, k of unit length along the z-, y-, z-axes respectively,
then we can write any vector as a sum of products of its components
with i, j, k:

A= A,i+ A,j+ Ak (3-10)

The correctness of this formula can be made evident by drawing a dia-
gram in which the three vectors on the right, which are parallel to the
three axes, are added to give A. Figure 3-7 shows this construction for
the two-dimensional case. ;

We now have two equivalent ways of defining a vector: geometrically
as quantity with a magnitude and direction in space, or algebraically as a
set of three numbers (4., A,, 4,), which we call its components.* The
operations of addition and multiplication by a scalar, which are defined
geometrically in Figs. 3-2 and 3-3 in terms of the lengths and directions of
the vectors involved, can also be defined algebraically as operations on the
components of the vectors. Thus cA is the vector whose components are
the components of A, each multiplied by ¢:

cA = (cA,, cAy cd,), (3-11)

* These two ways of defining a vector are not quite equivalent as given here,
for the algebraic definition requires that a coordinate system be set up, whereas
the geometric definition does not refer to any particular set of axes. This flaw
can be remedied by making the algebraic definition also independent of any
particular set of axes. This is done by studying how the components change
when the axes are changed, and defining a vector algebraically as a set of three
quantities which transform in a certain way when the axes are changed. This
refinement will not concern us in this chapter.
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Y

A+ B
bl
Aa+B)y,| B
Y =
A_c Bz-’
x
| (A + B)e—]

Fia. 3-8. Proof of equivalence of algebraic and geometric definitions of
vector addition.

and A -+ B is the vector whose components are obtained by adding the
components of A and B:

A + B = (Az + B:c; Ay + Bw Az + Bz)- (3'12)

The equivalence of the definitions (3-11) and (3-12) to the corresponding
geometrical definitions can be demonstrated by drawing suitable diagrams.
Figure 3-8 constitutes a proof of Eq. (3-12) for the two-dimensional case.
All vectors are drawn in Fig. 3-8 so that their components are positive;
for a complete proof, similar diagrams should be drawn for the cases where
one or both components of either vector are negative.- The length of
a vector can be defined algebraically as follows:

A = (42 + A2+ ADHV2 (3-13)

where the positive square root is to be taken.

We can now give algebraic proofs of Eqgs. (3-2), (3-3), (3-5), (3-6),
(3-7), and (3-8), based on the definitions (3-11), (3-12), and (3-13).
For example, to prove Eq. (3-7), we show that each component of the left
side agrees with each component on the right. For the z-component, the
proof runs:

[c(A + B)l. = c¢(A + B), [by Eq. (3-11)]
= ¢(4; + B.) [by Eq. (3-12)]
= cA, + ¢B;
= (cA); + (cB): [by Eq. (3-11)]

= (cA + ¢B).. [by Eq. (3-12)]
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F1a. 3-9. Two methods of subtraction of vectors.

Since all components are treated alike in the definitions (3~1 1), (3-12),
(3-13), the same proof holds for the y- and z-components, and hence the
vectors on the left and right sides of Eq. (3-7) are equal.

In view of the equivalence of the geometrical and algebraic definitions
of the vector operations, it is unnecessary, for geometrical applications, to
give both an algebraic and a geometric proof of each formula of vector
algebra. Either a geometric or an algebraic proof, whichever is easiest,
will suffice. However, there are important cases in physics where we have
to consider sets of quantities which behave algebraically like the com-
ponents of vectors although they cannot be interpreted geometrically as
quantities with a magnitude and direction in ordinary space. In order
that we may apply the rules of vector algebra in such applications, it is
important to know that all of these rules can be proved purely algebraically
from the algebraic definitions of the vector operations. The geometric
approach has the advantage of enabling us to visualize the meanings of
the various vector notations and formulas. The algebraic approach sim-
plifies certain proofs, and has the further advantage that it makes possible
wide applications of the mathematical concept of vector, including many
cases where the ordinary geometric meaning is no longer retained.

We may define subtraction of vectors in terms of addition and multi-
plication by —1:

A—B=A+(~B)= (4, — B, A, — B,, A, — B,). (3-14)

The difference A — B may be found geometrically according to either of
the two schemes shown in Fig. 3-9. Subtraction of vectors may be shown
to have all the algebraic properties to be expected by analogy with sub-
traction of numbers.

It is useful to define a scalar product (A-B) of two vectors A and B as
the product of their magnitudes times the cosine of the angle between them
(Fig. 3-10): .
A‘B = ABcos 8. (3-15)

The scalar product is a scalar or number. It is also called the dot product
or inner product, and can also be defined as the product of the magnitude of
either vector times the projection of the other along it. An example of
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its use is the expression for the work done when a force F acts through a
distance s not necessarily parallel to it:

W = Fscos 8 = F-s.

We are entitled to call A-B a product because it has the following alge-
braic properties which are easily proved from the geometrical definition
(3-15):

(cA)*B = A-(cB) = ¢(A-B), (3-16) / :
A-(B+ C) = A-B + A-C, (3-17) 4 -

A

A-B = B-A, (3-18)
Fig. 3-10. Angle between
A-A=A? (3-19) two vectors.

These equations mean that we can treat the dot product algebraically like
a product in the algebra of ordinary numbers, provided we keep in mind
that the two factors must be vectors and the resulting product is a scalar.
The following statements are also consequences of the definition (3-15),
where i, j, and k are the unit vectors along the three coordinate axes:

ii=jj=kk=1,

(3-20)

i'j=jk=ki=0
A.-B = AB, when A is parallel to B, (3-21)
A:-B = 0, when A is perpendicular to B. (3-22)

Notice that, according to Eq. (3-22), the dot product of two vectors is
zero if they are perpendicular, even though neither vector is of zero length.
The dot product can also be defined algebraically in terms of components:

A-B = A,B, + A,B, + A,B.. (3-23)

To prove that Eq. (3-23) is equivalent to the geometric definition (3-15),
we write A and B in the form given by Eq. (3-10), and make use of Eqs.
(3-16), (3-17), (3-18), and (3-20), which follow from Eq. (3-15):

A-B = (id, + jA, + kA,)-(B, + jB, + kB,)

— (i+i)A4,B, + (i-))4.B, + (-K)A,B. + (G-)A,B. + j-id,By
+ j-kd,B, + k-id,B, + k-j4,B, + k-kA.B,

— A,B, + A,B, + A,B,.

This proves Eq. (3-23). The properties (3-16) to (3-20) can all be proved
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AxB

shaded area = |A x B|

Fie. 3-11. Definition of vector product.

readily from the algebraic definition (3-23) as well as from the geometric
definition (3-15). We can regard Eqs. (3-21) and (3-22) as algebraic
definitions of parallel and perpendicular.

Another product convenient to define is the vector product, also called
the cross product or outer product. The cross product (A X B) of two
vectors A and B is defined as a vector perpendicular to the plane of A and
B whose magnitude is the area of the parallelogram having A and B as
sides. The sense or direction of (A X B) is defined as the direction of
advance of a right-hand screw rotated from A toward B. (See Fig. 3-11.)
The length of (A X B), in terms of the angle 6 between the two vectors,

is given by )
JA x Bl = ABsin 8. (3-24)

Note that the scalar product of two vectors is a scalar or number, while
the vector product is a new vector. The vector product has the following
algebraic properties which can be proved from the definition given in
Fig. 3-11:*

AxB=—BXxA, (3-25)

(cA) x B= A x (cB) = c(A x B), (3-26)
Ax(B-+C)=(AxB)+ (A xC), (3-27)
AxA=0, (3-28)

A x B =0, when A is parallel to B, (3-29)

|A x B|] = AB, when A is perpendicular to B, (3-30)
ixi=jxj=kxk=0,
ixj=k ix k=i, kxi=]j. (3-31)

* Here 0 stands for the vector of zero length, sometimes called the null vector.
It has no particular direction in space. It has the properties:

A+0=A A0=0, AX0=0, A—A =0, 0= (0,0,0).
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Hence the cross product can be treated algebraically like an ordinary
product with the exception that the order of multiplication must not be
changed, and provided we keep in mind that the two factors must be vectors
and the result is a vector. Switching the order of factors in a cross product
changes the sign. This is the first unexpected deviation of the rules of
vector algebra from those of ordinary algebra. The reader should there-
fore memorize Eq. (3-25). Equations (3-29) and (3-30), as well as the
analogous Egs. (3—21) and (3-22), are also worth remembering. (It goes
without saying that all geometrical and algebraic definitions should be
memorized.) In a repeated vector product like (A X B) X (C x D), the
parentheses cannot be omitted or rearranged, for the result of carrying out
the multiplications in a different order is not, in general, the same. [See,
for example, Eqs. (3—35) and (3-36).] Notice that according to Eq. (3-29)
the cross product of two vectors may be null without either vector being
the null vector.

From Egs. (3-25) to (3-31), using Eq. (3-10) to represent A and B, we
can prove that the geometric definition (Fig. 3~11) is equivalent to the
following algebraic definition of the cross product:

AxB=(4,B, — A,B, A.B, — A.B.,, A,B, — A,B;). (3-32)

We can also write A X B as a determinant:

i j k
AxB=4, 4, A.|. ‘ (3-33)
B, B, B,

Expansion of the right side of Eq. (3-33) according to the ordinary rules
for determinants yields Eq. (3-32). Again the properties (3—25) to (3-31)
follow also from the algebraic definition (3—-32).

The following useful identities can be proved:

A-(B x C) = (A x B)-C, (3-34)
A x (B x C) = B(A-C) — C(A-B), (3-35)
(A x B) x C = B(A-C) — A(B-C), (3-36)

i-G x k) = 1. (3-37)

The first three of these should be committed to memory. Equation (3—-34)
allows us to interchange dot and cross in the scalar triple product. The
quantity A-(B x C) can be shown to be the volume of the parallelepiped
whose edges are A, B, C, with positive or negative sign depending on
whether A, B, C are in the same relative orientation as i, j, k, that is,
depending on whether a right-hand screw:rotated from A toward B would
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advance along C in the positive or negative direction. The triple vector
product formulas (3-35) and (3-36) are easy to remember if we note that
the positive term on the right in each case is the middle vector (B) times
the scalar product (A-C) of the other two, while the negative term is the
other vector within the parentheses times the scalar product of the other
two.

As an example of the use of the vector product, the rule for the force
exerted by a magnetic field of induction B on a moving electric charge ¢
(esu) can be expressed as

F=gva,
c

where ¢ is the speed of light and v is the velocity of the charge. This
equation gives correctly both the magnitude and direction of the force.
The reader will remember that the subject of electricity and magnetism is
full of right- and left-hand rules. Vector quantities whose directions are
determined by right- or left-hand rules generally turn out to be expressible
as cross products.

3-2 Applications to a set of forces acting on a particle. According to the
principles set down in Section 1-3, if a set of forces F;, F,,...,F,actona
particle, the total force F, which determines its acceleration, is to be ob-
tained by taking the vector sum of the forces Fy, Fy, ..., F,:

F=F +F+---+F, (3-38)

The forces Fy, Fy, . . . , F, are often referred to as component forces, and F
is called their resultant. The term component is here used in a more gen-
eral sense than in the preceding section, where the components of a vector
were defined as the projections of the vector on a set of coordinate axes.
When component is meant in this sense as one of a set of vectors whose sum
is F, we shall use the term (vector) component. In general, unless other-
wise indicated, the term component of a vector F in a certain direction will
mean the perpendicular projection of the vector F on a line in that direc-
tion. In symbols, the component of F in the direction of the unit vector n

is
F, = n-F. (3-39)

In this sense, the component of F is not a vector, but a number. The com-
ponents of F along the z-, y-, and z-axes are the components in the sense of
Eq. (3-39) in the directions i, j, and k.

If the forces F,, Fy, ..., F, are given, the sum may be determined
graphically by drawing a careful scale diagram according to the definition
of Fig. 3-3 or 34. The sum may also be determined analytically by
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Fic. 3-12. Sum of two forces.

drawing a rough sketch of the sum diagram and using trigonometry to
calculate the magnitude and direction of the vector F. If, for example,
two vectors are to be added, the sum can be found by using the cosine and
sine laws. In Fig. 3-12, F;, F,, and @ are given, and the magnitude and
direction of the sum F are calculated from

2= F}+ F} — 2F,F;cos ¥, (3-40)

F, Fy F

sin 6

sinf _ sina (3-41)

Note that the first of these equations can be obtained by squaring, in the
sense of the dot product, the equation

F = F, + F,. (342)

Taking the dot product of each member of this equation with itself, we
obtain
F-F = F?> = F,-F, + 2F,-F; + F,-F,

= F? 4 F%Z — 2F,F5cos 9.

(Note that 0 in Fig. 3-12 is the supplement of the angle between F; and F,
as defined by Fig. 3-10.) This technique can be applied to obtain directly
the magnitude of the sum of any number of vectors in terms of their
lengths and the angles between them. Simply square Eq. (3-38), and
split up the right side according to the laws of vector algebra into a sum of
squares and dot products of the component forces. The angle between F
and any of the component forces can be found by crossing or dotting the
component vector into Eq. (3-38). For example, in the case of a sum of
two forces, we cross F; into Eq. (3—42):

FIXF=F1XF1+F1XF2.
We take the magnitude of each side, using Eqs. (3-28) and (3-24):

. . F Fq
FIFSIHCZ—FleSlIlo, or m—m
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When a sum of more than two vectors is involved, it is usually simpler to
take the dot product of the component vector with each side of Eq. (3-38).
The vector sum in Eq. (3-38) can also be obtained by adding separately

the components of Fy, . .., F, along any convenient set of axes:
Fx=Flz+F2:c+"'+Fn:n
Fy=Fyy+ Foy+ -+ + Fyy, (343)

Fz=F12+F2z+"'+Fnz-

When a sum of a large number of vectors is to be found, this is likely to be
the quickest method. The reader should use his ingenuity in combining
and modifying these methods to suit the problem at hand. Obviously, if
a set of vectors is to be added which contains a group of parallel vectors,
it will be simpler to add these parallel vectors first before trying to apply
the methods of the preceding paragraph.

0
F1a. 3-13. Force F acting at point P.

Just as the various forces acting on a particle are to be added vectorially
to give the total force, so, conversely, the total force, or any individual
force, acting on a particle may be resolved in any convenient manner into
a sum of (vector) component forces which may be considered as acting
individually on the particle. Thus in the problem discussed in Section 1-7
(Fig. 1-4), the reaction force F exerted by the plane on the brick is resolved
into a normal component N and a frictional component f. The effect of
the force F on the motion of the brick is the same as that of the forces N
and f acting together. If it is desired to resolve a force F into a sum of
(vector) component forces in two or three perpendicular directions, this
can be done by taking the perpendicular projections of F in these directions,
as in Fig. 3-6. The magnitudes of the vector components of F, along a set
of perpendicular directions, are just the ordinary components of F in these
directions in the sense of Eq. (3-39).

If a force F in the zy-plane acts on a particle at the point P, we define
the torque, or moment of the force F about the origin O (Fig. 3-13) as the
product of the distance OP and the component of F perpendicular to r:

No = rF sin a. . (3-44)
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The moment N of the force F about the point O is defined as positive when
F acts in a counterclockwise direction about O as in Fig. 3-13, and nega-
tive when F acts in a clockwise direction. We can define in a similar way
the moment about O of any vector quantity located at the point P. The
concept of moment will be found useful in our study of the mechanics of
particles and rigid bodies. The geometrical and algebraic properties of
torques will be studied in detail in Chapter 5. Notice that torque can be
defined in terms of the vector product:

No = +|r x F|, (3-45)

where the + or — sign is used according to whether the vector r X F points
in the positive or negative direction along the z-axis.

d

A

B

Fig. 3-14. Moment of a force about an axis in space.

We can generalize the above definition of torque to the three-dimensional
case by defining the torque or moment of a force F, acting at a point P,
about an axis AB (Fig. 3-14). Let n be a unit vector in the direction of
AB, and let F be resolved into vector components parallel and perpendicu-
lar to AB:

F=F, +Fy (3-46)
where
F) = n(n-F),
(347)
Fi.=F—F .

We now define the moment of F about the axis AB as the moment, defined
by Eq. (3—44) or (3—45), of the force F 1, in a plane through the point P
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perpendicular to AB, about the point O at which the axis AB passes through
this plane:
Nap = xrFisina = x[r x Fyj, (3—48)

where the 4 or — sign is used, depending on whether r X F is in the same
or opposite direction to n. According to this definition, a force like Fy
parallel to AB has no torque or moment about AB. Since r X F is per-
pendicular to n,

n-(r X F) = n:[r x (F +Fy)] .
=n-(r X Fi) +n+(r X F.)
=n-(r x F))
= =+r x Fi.

Hence we can define N 4p in a neater way as follows:
Nyp=n(r x F). (3—49)

This definition automatically includes the proper sign, and does not require
a resolution of F into Fj and F,. Furthermore, r can now be drawn to P
from any point on the axis AB, since a component of r parallel to AB, like
a component of F parallel to AB, gives a component in the cross product
perpendicular to n which disappears from the dot product.

Equation (3—49) suggests the definition of a vector forque or vector moment,
about a point O, of a force F acting at a point P, as follows:

No =1 % F, (3-50)

where r is the vector from O to P. The vector torque No has, according
to Eq. (3-49), the property that its component in any direction is the
torque, in the previous sense, of the force F about an axis through O in that
direction. Hereafter the term torque will usually mean the vector torque
defined by Eq. (3-50). Torque about an axis AB in the previous sense
will be called the component of torque along AB. We can define the
vector moment of any vector located at a point P, about a point O, by an
equation analogous to Eq. (3-50).

3-3 Differentiation and integration of vectors. A vector A may be a
function of a scalar quantity, say ¢, in the sense that with each value of ¢ a
certain vector A(t) is associated, or algebraically in the sense that its com-
ponents may be functions of £

A = A() = [4.(D), 4,(0), 4.()]. (3-51)
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The most common example is that of a vector function of the time; for
example, the velocity of a moving particle is a function of the time: v(¢).
Other cases also occur, however; for example, in Eq. (3-76), the vector n
is a function of the angle 8. We may define the derivative of the vector A
with respect to ¢ in analogy with the usual definition of the derivative of
a scalar function (see Fig. 3-15):

dA _ .. A(+ A — AQY) .

dt AltITO At

(3-52)

(Division by At here means multiplication by 1/At.) We may also define
the vector derivative algebraically in terms of its components:

dA (dA d4, dA) s

dt — \dt " Tdt ' di (8-53)
As an example, if v(¢) is the vector velocity of a particle, its vector accelera-
tion a is

a = dv/dl.

Examples of the calculation of vector derivatives based on either definition
(3-52) or (3-53) will be given in Sections 3—4 and 3-5.

The following properties of vector differentiation can be proved by
straightforward calculation from the algebraic definition (3-53), or they
may be proved from the definition (3-52) in the same way the analogous
properties are proved for differentiation of a scalar function:

dA dB

fll—t(A +B) =2+ 2 (3-54)
Lny =Unyr2, (3-55)
%(A-B) ‘fi? B+ A= dB (3-56)
4axB) = ‘g;xBJrAx‘jl?- (3-57)

These results imply that differentiation of vector sums and produects obeys
the same algebraic rules as differentiation of sums and products in ordinary
calculus, except, however, that the order of factors in the cross product
must not be changed [Eq. (3-57)]. To prove Eq. (3-55), for example,
from the definition (3-53), we simply show by direct calculation that the
corresponding components on both sides of the equation are equal, making
use of the definitions and properties of the vector operations introduced
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in the preceding section. For the z-component, the proof runs:

12w = L om, [by Eq. (3-53)]
= dit(fA,) by Eq. (3-11)]

df [standard rule of ordi-

4=+ f dt nary calculus]

=T 4+ f( ) by Eq. (3-53)]

<g{ A) + (f dj%)z [by Eq. (3-11)]

( Ta+71 ) : by Eq. (3-12)]

As another example, to prove Eq. (3-56) from the definition (3-52), we
proceed as in the proof of the corresponding theorem for products of ordi-
nary scalar functions. We shall use the symbol A to stand for the increment
in the values of any function between ¢ and ¢ + At; the increment AA of a
vector A is defined in Fig. 3-15. Using this definition of A, and the rules
of vector algebra given in the preceding section, we have

A(A-B) (A + AA)-(B+ AB) — A-B
At At
_ (aA)-B + A-(AB) + (AA)-(AB)
At
(AA) ‘B A-(AB) . (AA)-(AB)
At + At + At

=2 all (GA-CB),

(3-58)

When At — 0, the left side of Eq: (3-58) approaches the left side of Eq.
(3-56), and the first two terms on the right side of Eq. (3~58) approach the

At + At) AA

A(t)

Fia. 3-15. Vector incremeptAA = A(t -+ At) — A(D).
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z

/ y

£

Fia. 3-16. The position vector r of the point (z, y, 2).

two terms on the right of Eq. (3-56), while the last term on the right of
Eq. (3-58) vanishes. The rigorous justification of this limit process is
exactly similar to the justification required for the corresponding process
in ordinary calculus.

In treating motions in three-dimensional space, we often meet scalar
and vector quantities which have a definite value at every point in space.
Such quantities are functions of the space coordinates, commonly =z, y,
and z. They may also be thought of as functions of the position vector r
from the origin to the point z, y, z (Fig. 3-16). We thus distinguish scalar
point, functions

u(r) = ulz, y, 2),

and vector point functions
A(I‘) = A(.’L‘, Y, z) = [Ax(x; Y, Z), Ay(xy Y, z): Az(x: Y, z)]

An example of a scalar point function is the potential energy V(z, y, 2) of a
particle moving in three dimensions. An example of a vector point func-
tion is the electric field intensity E(z, y, z). Scalar and vector point func-
tions are often functions of the time ¢ as well as of the point z, y, z in space.
If we are given a curve C in space, and a vector function A defined at
points along this curve, we may consider the line integral of A along C:

/C A.dr.

To define the line integral, imagine the curve C divided into small seg-
ments, and let any segment be represented by a vector dr in the direction
of the segment and of length equal to the length of the segment. Then
the curve consists of the successive vectors dr laid end to end. Now for
each segment, form the product A-dr, where A is the value of the vector
function at the position of that segment. The line integral above is defined
as the limit of the sums of the products A-dr as the number of segments




3-3] DIFFERENTIATION AND INTEGRATION OF VECTORS 85

increases without limit, while the length |dr| of every segment approaches
zero. As an example, the work done by a force F, which may vary from
point to point, on a particle which moves along a curve C is

W=me

which is a generalization, to the case of a varying force and an arbitrary
curve C, of the formula
W = F-s,

for a constant force acting on a body moving along a straight line seg-
ment s. The reason for using the symbol dr to represent a segment of the
curve is that if r is the position vector from the origin to a point on the
curve, then dr is the increment in r (see Fig. 3-15) from one end to the
other of the corresponding segment. If we write r in the form

r = ir + jy + kg, (3-59)
then
dr =idx + jdy + kdz, (3-60)

where dz, dy, dz are the differences in the coordinates of the two ends of the
segment. If s is the distance measured along the curve from some fixed
point, we may express the line integral as an ordinary integral over the
coordinate s:

/;V A.dr = fA cos 9 ds, (3-61)

where 0 is the angle between A and the tangent to the curve at each point.
(See Fig. 3-17.) This formula may be used to evaluate the integral if
we know A and cos 6 as functions of s. We may also write the integral,

Fia. 3-17. Elements involved in the line integral.
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using Eq. (3-60), as
/CA-dr = /C (A dz + Ay dy + A, d2). (3-62)

One of the most convenient ways to represent a curve in space is to give
the three coordinates (z, y, 2) or, equivalently, the position vector r, as
functions of a parameter s which has a definite value assigned to each
point of the curve. The parameter s is often, though not necessarily, the
distance measured along the curve from some reference point, as in Fig.
3-17 and in Eq. (3—61). The parameter s may also be the time at which
a moving particle arrives at any given point on the curve. If we know
A(r) and r(s), then the line integral can be evaluated from the formula

/A-dr= '/(A-ﬂ’I ds
c ds

_ de | , dy d_)
_/(A” ds+A”ds+Azds ds.

The right member of this equation is an ordinary integral over the vari-
able s.

(3-63)

Figure 3-18

As an example of the calculation of a line integral, let us compute the
work done on a particle moving in a semicirele of radius ¢ about the origin
in the xy-plane, by a force attracting the particle toward the point (x = a,
y = 0) and proportional to the distance of the particle from the point
(@, 0). Using the notation indicated in Fig. 3-18, we can write down the
following relations:

B=%(1r-—a), 0=g_6=%‘x’
D? = 24%(1 — cos a), D = 2a sing;
F= —kD, F=kD=2kasins,

2

s = a(r — ).
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Using these relations, we can evaluate the work done, using Eq. (3-61):
W = | F.dr
A

Ta
= / F cos 0ds
8=0

- _[° 202 ]
= . 2ka sm2cos2da

0

= —4ka? f sin 0 cos 0 do
O=—=x/2

= 2ka®.

In order to calculate the same integral from Eq. (3-63), we express r and
F along the curve as functions of the parameter a:

T = acosa, Yy = asin o,
Fy = kD cos B8 = 2ka sinzg = ka(l — cos a),
F, = —kD sin 8 = —2ka sin = 5 cos% = —ka sin c.

The work is now, accordmg to Eq. (3-63),

W = / F-.dr
[¢]

0
= a=r ( d + Fﬂ )da

0
= / [—ka*(1 — cos @) sin @ — ka? sin « cos a] da

T
= ka2/ sin a de

0
= 2ka’.

3—4 Kinematics in a plane. Kinematics is the science which describes
the possible motions of mechanical systems without regard to the dynami-
cal laws that determine which motions actually occur. In studying the
kinematics of a particle in a plane, we shall be concerned with methods for
describing the position of a particle, and the path followed by the particle,
and with methods for finding the various components of its velocity and
acceleration.
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Fia. 3-19. Position vector and rectangular coordinates of a point P in a plane.

The simplest method of locating a particle in a plane is to set up two
perpendicular axes and to specify any position by its rectangular coordi-
nates x, y with respect to these axes (Fig. 3-19). Equivalently, we may
specify the position vector r = (z, y) from the origin to the position of the
particle. If we locate a position by specifying the vector r, then we need
to specify in addition only the origin O from which the vector is drawn.
If we specify the coordinates z, y, then we must also specify the coordi-
nate axes from which z, y are measured.

Having set up a coordinate system, we next wish to describe the path
of a particle in the plane. A curve in the zy-plane may be specified by
giving y as a function of z along the curve, or vice versa:

y = y(@), ' (364

z = z(y). (3-65)

or

Forms (3-64) and (3-65), however, are not convenient in many cases, for
example when the curve doubles back on itself. We may also specify the
curve by giving a relation between z and y,

fx,y) =0, (3-66)

such that the curve consists of those points whose coordinates satisfy this
relation. An example is the equation of a circle:

22+ 9y —a?=0.

- One of the most convenient ways to represent a curve is in terms of a
parameter s:
r = x(s), y = y(s), (3_67)
or
r = r(s).

The parameter s has a unique value at each point of the curve. As s
varies, the point [2(s), y(s)] traces out the curve. The parameter s may,
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for example, be the distance measured along the curve from some fixed
point. The equations of a circle can be expressed in terms of a parameter 6
in the form

T = acos b,

Yy = asin §,

where 6 is the angle between the z-axis and the radius a to the point (z, y)
on the circle. In terms of the distance s measured around the circle,

s
T = acos—;
a
= asin>
y a

In mechanical problems, the parameter is usually the time, in which
case Eqs. (3-67) specify not only the path of the particle, but also the
rate at which the particle traverses the path. If a particle travels with
constant speed » around a circle, its position at any time ¢ may be given by

vt
T = qgcos—>
~ a
~ gsin?.
y = asin—
If a particle moves along the path given by Eq. (3-67), we may specify
its motion by giving s(¢), or by specifying directly

z=z(t), y=y@), (3-68)
or
r = r(f). (3-69)

The velocity and acceleration, and their components, are given by

_dr__.dz  .dy
vEg T ig Ty

. (3-70)
_d
=W T @
dv _dr . d% | . d%
A= wm Tl i -
_d’ d’y

=@’ BT g
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1
/'\\/n N OO
i do ()
/r “t :—l_ n®
" i 8
Nt U N
ti o + o) n
do
i (]
Fic. 3-20. Plane polar coordinates. Fie. 3-21. Increments in the vee-
tors n and 1.

Polar coordinates, shown in Fig. 3-20, are convenient in many prob-
lems. The coordinates , 6 are related to z, y by the following equations:

x = rcos b, y = rsin 6, (3-72)
and
r= @+

-1Y =1 Y — -1
po @2 T goyie O

(3-73)
0 = tan _—(x2 + y2)1/2 .
We define unit vectors n, 1 in the directions of increasing r and 6, respec-
tively, as shown. The vectors n, 1 are functions of the angle 6, and are
related to i, j by the equations

n =1icos @ + jsin 6,
. (3-74)
1= —isin@ + jcos®.

Equations (3-74) follow by inspection of Fig. 3-20. Differentiating, we
obtain the important formulas

dn dl

EE‘ = l, d—o- = —n, (3“75)
Tormulas (3-75) can also be obtained by studying Fig. 3-21 (remembering
that [n| = |I] = 1). The position vector r is given very simply in terms
of polar coordinates:

r = m(9). (8-76)

We may describe the motion of a particle in polar coordinates by specifying
7(¢), 6(f), thus determining the position vector r(t). The velocity vector is

dr dn do

== n-+r 0 d m + rfl. (3-77)
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Thus we obtain the components of velocity in the n, 1 directions:

v, =7+, vy = rf. (3-78)
The acceleration vector is
v . .dn de .5 dl do
a——(—ﬁ—m—}—rﬁa—l-rél—]-r@l—l—r d_odt
= (f — r6%n + (rf + 2/6)L. (3-79)
The components of acceleration are
ar = ¥ — 182, @y = rd + 270. (3-80)

The term 762 = v2/r is called the centripetal acceleration arising from motion
in the @ direction. If # = # = 0, the path is a circle, and a, = —v2/r.
This result is familiar from elementary physics. The term 276 is some-
times called the coriolis acceleration.

3-5 Kinematics in three dimensions. The development in the preceding
section for kinematics in two dimensions utilizing rectangular coordinates
can be extended immediately to the three-dimensional case. A point is
specified by its coordinates z, y, 2z, with respect to chosen Tectangular axes
in space, or by its position vector r = (z, y, 2) with respect to a chosen
origin. A path in space may be represented in the form of two equations

in z, y, and 2:
f&,y,2) =0, g(z,y,2) = 0. (3-81)

Each equation represents a surface. The path is the intersection of the
two surfaces. A path may also be represented parametrically:

z=as), y=yls), 2= ) (3-82)
Velocity and acceleration are again given by
R N RS (3-83)
- dx % _ _
vx—-—d—t) Uy = dt) V; =— dt’ (3 84)
and
dv . .
a= o = ia, + ja, + ka,, (3-85)
d% d%y d%

az = W’ ay = Et?,' a; = at~2 (3‘86)

Many coordinate systems other than cartesian are useful for special
problems. Perhaps the most widely used are spherical polar coordinates
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Fic. 3-22. Cylindrical polar coordinates.

and cylindrical polar coordinates. Cylindrical polar coordinates (p, ®,2)
are defined as in Fig. 3-22, or by the equations

T = p cos ¢, y = psin o, 2=z, (3-87)
and, conversely,
P = (372 + 3/2)1/2;

—-1Y _ -1 y — -1 z
¢ = tan 5 = 8iln W = €08 m ’ (3—88)
z2 =2z

A system of unit vectors h, m, k, in the directions of increasing p, o, 2, re-
spectively, is shown in Fig. 3-22. k is constant, but m and h are func-
tions of ¢, just as in plane polar coordinates:

h = icos ¢ + jsin ¢, m = —isin ¢ + jcos ¢, (3-89)
and, likewise, _
= m, — = _h. (3_90)
The position vector r can be expressed in cylindrical coordinates in the
form
r = ph + zk. (3-91)
Differentiating, we obtain for velocity and acceleration, using Eq. (3-90):

v=% _ oh pim + i, ' (3-92)

a=2= (i’ + (5 +200m + 2k (3-93)
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Since k, m, h form a set of mutually perpendicular unit vectors, any vector
A can be expressed in terms of its components along k, m, h:

A= Ah+ Am+ Ak (3-94)

It must be noted that since h and m are functions of ¢, the set of com-
ponents (4,, 4,, A.) refers in general to a specific point in space at which
the vector A is to be located, or at least to a specific value of the coordi-
nate ¢. Thus the components of a vector in cylindrical coordinates, and
in fact in all systems of curvilinear coordinates, depend not only on the
vector itself, but also on its location in space. If A is a function of a
parameter, say ¢, then we may compute its derivative by differentiating
Eq. (3-94), but we must be careful to take account of the variation of h
and m if the location of the vector is also changing with ¢ (e.g., if A is the
force acting on a moving particle):

dA dA de dA, do dA,
@ (*df - Aww)‘”“( a +pr)m+—drk- (3-95)
Formulas (3-92) and (3-93) are special cases of Eq. (3-95). A formula
for dA/dt could have been worked out also for the case of polar coordinates
in two dimensions considered in the preceding section, and would, in fact,
have been exactly analogous to Eq. (3-95) except that the last term would
be missing,.

Spherical polar coordinates (r, 6, ¢) are defined as in Fig. 3-23 or by the
equations

& = rsin 6 cos ¢, y = rsin @sin ¢, z=rcosd. (3-96)

The expressions for z and y follow if we note that p = r sin 6, and

F

Fi1c. 3-23. Spherical polar coordinates.
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use Eq. (3-87); the formula for z is evident from the diagram. Conversely,

(@ + % + 22)Y3

r =
. 2 2\1/2

¢ = tan™! _(x_—}-zy_)_ ) (3-97)
— tan—1Y.

¢ = tan po

Unit vectors n, 1, m appropriate to spherical coordinates are indicated in
Fig. 3-23, where m is the same vector as in cylindrical coordinates. The
unit vector h is also useful in obtaining relations involving n and 1. We
note that k, h, n, 1, all lie in one vertical plane. From the figure, and
Eq. (3-89), we have

n = kcosd -+ hsin § = kcos 8 4 isin 8 cos ¢ + jsin 0sin o,
l= —ksind +hecosf = —ksinf +icosfcosy+ jeosfsing, (3-98)
m = —isin ¢ 4 jcose.

By differentiating these formulas, or more easily by inspection of the dia-
gram (as in Fig. 3-21), noting that variation of 6, with ¢ and r fixed, corre-
sponds to rotation in the k, n, h, 1 plane, while variation of ¢, with § and r
fixed, corresponds to rotation around the z-axis, we find

on _ 1 9 _ msino

3 — dp _ MERY

al al

3= " 5, = mcos 6, (3-99)
om om .
30- 0, %———h——nsmo—lcosa.

In spherical coordinates the position vector is simply
r = rn(6, ¢). (3-100)

Differentiating and using Eqgs. (3-99), we obtain the velocity and accelera-
tion:

v= % = fn - r6l + (r¢ sin §)m, (3-101)
a— -fll = (F — r6% — rg® sin® O)n + (rf + 270 — 7¢2 sin 6 cos )

+ (r$ sin @ 4 27¢ sin 6 + 2r6p cos 6)m. (3-102)
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Again, n, m, 1 form a set of mutually perpendicular unit vectors, and any
vector A may be represented in terms of its spherical components:

A=An -+ Al+ Am. (3-103)

Here again the components depend not only on A but also on its location.
If A is a function of ¢, then

dA _ (dd, _ ,do_ , @)
_Jt—_(dt Ay i A,,,smodt n

ddy | 4 db _ -;lg)
+(dt +A'dt A,,,cosodt 1

dA .. d d
+ (ﬁf + A, sin 6 d—‘;’ + Ay cos 6 d—‘;’) m. (3-104)

3-6 Elements of vector analysis. A scalar function u(z, y, 2) has three
derivatives, which may be thought of as the components of a vector point
function called the gradient of u:

ou Jdu du .0u |, 0u ou
gradu-(ay@-;&)_l%—}—]@—i—k&- (3—105)
We may also define grad u geometrically as a vector whose direction is the
direction in which % increases most rapidly and whose magnitude is the
directional derivative of u, i.e., the rate of increase of u per unit distance,
in that direction. That this geometrical definition is equivalent to the

algebraic definition (3-105) can be seen by taking the differential of u:
. Ou ou du
du = 32 dr + 3y dy -+ % dz. (3-106)

Equation (3-106) has the form of a scalar product of grad « with the vector
dr whose components are dz, dy, dz:

du = dr.grad u. (3-107)

Geometrically, du is the change in « when we move from the point r =
(z,y,2) to a nearby point r + dr = (z + dz,y + dy, z + dz). By Eq.
(3-15):

du = |dr| [grad u| cos 6, (3-108)

where ¢ is the angle between dr and grad . Thus at a fixed small dis-
tance |dr| from the point r, the change in u is a maximum when dr is in the
same direction as grad u, and then:

du

lgrad u| = Ta



96 MOTION OF PARTICLE IN TWO OR THREE DIMENSIONS [crAP. 3

This confirms the geometrical description of grad u given above. An al-
ternative geometrical definition of grad « is that it is a vector such that
the change in u, for an arbitrary small change of position dr, is given by
Eq. (3-107).

In a purely symbolic way, the right member of Eq. (3-105) can be
thought of as the “product’’ of a “vector’:

a 4 o . 0 . 0 i)

with the scalar function u:

grad u = Vu. (3-110)

The symbol V is pronounced ‘“‘del.” WV itself is not a vector in the geo-
metrical sense, but an operation on a function » which gives a vector Vu.
However, algebraically, V has properties nearly identical with those of a
vector. The reason is that the differentiation symbols (8/dz, 8/9y, 9/0z)
have algebraic properties like those of ordinary numbers except when they
act on a product of functions:

o 90,

a u i)
53—8(u+v)—£+£’ axay“—ay&zu’ (3-111)
and
3 ou
. (ou) = a Fyol (3-112)
provided a is constant. However,
i) du o
3 () = Fyl + u o (3-113)

In this one respect differentiation operators differ algebraically from ordi-
nary numbers. If 8/dx were a number, 3/0x(uv) would equal either
u(d/9x)v or v(d/0x)u. Thus we may say that d/9x behaves algebraically
as a number except that when it operates on a product, the result is a sum
of terms in which each factor is differentiated separately, as in Eq. (3-113).
A similar remark applies to the symbol V. It behaves algebraically as a
vector, except that when it operates on a product it must be treated also
as a differentiation operation. This rule enables us to write down a large
number of identities involving the V symbol, based on vector identities.
We shall require very few of these in this text, and shall not list them here. *

* For a more complete treatment of vector analysis, see H. B. Phillips, Vector
Analysis. New York: John Wiley & Sons, 1933.
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F1c. 3-24. A volume V bounded by a surface S.
We can form the scalar product of V with a vector point function
A(z, y,2). This is called the divergence of A:

3 A:
dx

i Wk 94, L 24,
0z

S5 3y o= (3-114)
The geometrical meaning of div A is given by the following theorem, called

the divergence theorem, or Gauss’ theorem:

fffv-AdV = f[n-Ads, (3-115)
¥, S

where V is a given volume, S is the surface bounding the volume V, and n
is a unit vector perpendicular to the surface S pointing out from the volume
at each point of S (Fig. 3-24). Thus n-A is the component of A normal
to S, and Eq. (3-115) says that the “total amount of V-A inside V" is
equal to the “total flux of A outward through the surface S.” If v repre-
sents the velocity of a moving fluid at any point in space, then

jfn-vdS

8

represents the volume of fluid flowing across S per second. If the fluid is
incompressible, then according to Eq. (3-115),

fvffv-vdV

would represent the total volume of fluid being produced within the vol-
ume V per second. Hence V-v would be positive at sources from which
the fluid is flowing, and negative at “sinks” into which it is flowing. We
omit the proof of Gauss’ theorem [Eq. (3-115)]; it may be found in any
book on vector analysis, *

* See, e.g., Phillips, op. cit. Chapter 3, Section 32.
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¢
Fi1a. 3-25. A surface S bounded by a curve C.

We can also form a cross product of ¥ with a vector point function
A(z, y, 2). This is called the curl of A:

curlA = V X A = i(&A, L 3_Av +J'(6A’ _GAS)

ay 9z dz ox
L Ay - L "11) . i
+ k ( e 2 (3-116)

The geometrical meaning of the curl is given by Stokes’ theorem:

Nn-(v x A) dS = LA-dr, (3-117)
8

where S is any surface in space, n is the unit vector normal to S, and C is
the curve bounding S, dr being taken in that direction in which a man would
walk around C if his left hand were on the inside and his head in the direc-
tion of n. (See Fig. 3-25.) According to Eq. (3-117), curl A at any point
is a measure of the extent to which the vector function A circles around that
point. A good example is the magnetic field around a wire carrying an
electric current, where the curl of the magnetic field intensity is propor-
tional to the current density. We omit the proof of Stokes’ theorem [Eq.
(3-117)].*

The reader should not be bothered by the difficulty of fixing these ideas
in his mind. Understanding of new mathematical concepts like these
comes to most people only slowly, as they are put to use. The definitions
are recorded here for future use. One cannot be expected to be familiar
with them until he has seen how they are used in physical problems.

The symbolic vector ¥ can also be expressed in cylindrical coordinates in terms
of its components along h, m, k. (See Fig. 3-22.) We note that if u = u(p, ¢, 2),

du du ou

* For the proof see Phillips, op. cit. Chapter 3, Section 29.
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and, from Eqs. (3-91) and (3-90),
dr = hdp -+ mpdp + kdz, (3-119)

a result whose geometric significance will be evident from Fig. 3-22. Hence, if we
write
md

d
2 3¢ + k,ﬂ ’ (3-120)

d
V=hgot

we will have, since h, m, k are a set of mutually perpendicular unit vectors,
du = dr-Vu, (3-121)

as required by the geometrical definition of Vu = grad u. [{See the remarks
following Eq. (3-107).] A formula for ¥ could have been worked out also for
the case of polar coordinates in two dimensions and would have been exactly
analogous to Eq. (3-120) except that the term in z would be missing. In apply-
ing the symbol V to expressions involving vectors expressed in cylindrical co-
ordinates {Eq. (3-94)], it must be remembered that the unit vectors h and m are
functions of ¢ and subject to differentiation when they occur after 9/d¢.

We may also find the vector V in spherical coordinates (Fig. 3-23) by noting
that

du du ou
du = 'a—; dr + a—o d0 + % dgo, (3—122)
and
dr = ndr 4 1r d6 + mr sin 8 do. (3-123)
Hence
a 140 m 9
v_né;_l_;@—l_rsinﬂi—);’ (6-124)

in order that Eq. (3-121) may hold. Again we caution that in working with Eq.
(3-124), th= dependence of n,1, m on 6, ¢ must be kept in mind. For example,
the divergence of a vector function A expressed in spherical coordinates [Eq.
(3-103)] is

OA  10A m JA

V-A=n ar+;'5§+rsin0'5;
=684:,-+%(3_{;40_0+ A')+;—siln—75(%+ A,sino—f—.Aocosﬂ)
=;156%0244,)+®§o(sinem)+rsilna%-

(In the above calculation, we use the fact that 1, m, nn are a set of mutually per-
pendicular unit vectors.)
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3-7 Momentum and energy theorems. Newton’s second law, as formu-
lated in Chapter 1, leads, in two or three dimensions, to the vector equation

. d’r

momy = F. (3-125)

In two dimensions, this is equivalent to two component equations, in three
. dimensions, to three, which are, in cartesian coordinates,
d%x d? d%
meg="F, m dey =F, mzz=F. (3-126)
In this section, we prove, using Eq. (3—125), some theorems for motion in
two or three dimensions which are the vector analogs to those proved in
Section 2-1 for one-dimensional motion.
The linear momentum vector p of a particle is to be defined, according
to Eq. (1-10), as follows:
p = mv. (3-127)

Equations (3—-125) and (3-126) can then be written

d _dp _ .
7 (mv) ¢ F, (3-128)
or, in component, form,
dp: dpy dp, _ F .
a =~ = @ = v a " (3-129)

If we multiply by dt, and integrate from ¢, to ¢5, we obtain the change in
momentum between {; and ts:

Py — p1 = mvy — mvy = [ Fdi. (3-130)

13

The integral on the right is the impulse delivered by the force, and is a
vector whose components are the corresponding integrals of the com-
ponents of F. In component form:

t
pxg_pzlz tzdet,
1
t2
Py — Py = Fydt, (3-131)
31
1]
Dzg — P2y = F,dt.
131
In order to obtain an equation for the rate of change of kinetic energy,

we proceed as in Section 2-1, multiplying Egs. (3-126) by v, vy, v., respec-
tively, to obtain

%(%mvi) — Fooa, %(%mvz) — F, gt-(%mvf) = Fo.. (3-132)
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Adding these equations, we have

d
(—i—t. [%m(vf + 1)3 + vg)] = Fav. + F:Ivy + szzy
or

%(%mv% = % = F.v. (3—133)

This equation can also be deduced from the vector equation (3-125) by
taking the dot product with v on each side, and noting that

d o2y _ @ .oy _dv AP
G0 =gV =gvtvg=2vo

Thus, by Eq. (3-132),

2
F.ov = mv-dv — im0 _ d 2mw?).

a = g = gif

Multiplying Eq. (3-133) by dt, and integrating, we obtain the integrated
form of the energy theorem:

Te — Ty = 3mvi — tmv} = “F.vat (3-134)
3
Since vdt = dr, if F is given as a function of r, we can write the right
member of Eq. (3-134) as a line integral:

Ty — T, = / " F.dr, (3-135)
1

where the integral is to be taken along the path followed by the particle
between the points r; and ry. The integral on the right in Eqgs. (3-134) and
(8-135) is the work done on the particle by the force between the times
t1 and ¢{;. Note how the vector notation brings out the analogy between
the one- and the two- or three-dimensional cases of the momentum and
energy theorems.

3-8 Plane and vector angular momentum theorems. If a particle moves
in a plane, we define its angular momentum Lo about a point O as the
moment of its momentum vector about the point O, that is, as the product
of its distance from O times the component of momentum perpendicular
to the line joining the particle to O. The subscript ¢ will usually be omitted,
except when moments about more than one origin enter into the discussion,
but it must be remembered that angular momentum, like torque, refers
to a particular origin about which moments are taken. The angular
momentum L is taken as positive when the particle is moving in a counter-
clockwise sense with respect to O; L is expressed most simply in terms of
polar coordinates with O as origin. Let the particle have mass m. Then
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Fie. 3-26. Components of velocity in a plane.

its momentum is mv, and the component of momentum perpendicular to
the radius vector from O is mv, (Fig. 3-26), so that, if we use Eq. (3-78),

L = rmy, = mr?f. (3-136)
If we write the force in terms of its polar components:
F = nF, + 1F,, (3-137)

then in plane polar coordinates the equation of motion, Eq. (3-125), be-
comes, by Eq. (3-80),

ma, = mi — mr? = F,, (3-138)
may = mrl -+ 2mi6 = F,. (3-139)
We now note that
dL

—_— = * 2
i 2mrid -+ mr2é.

Thus, multiplying Eq. (3-139) by r, we have

& & () = 1Fy = N. (3-140)
The quantity 7F, is the torque exerted by the force F about the point O.
Integrating Eq. (3-140), we obtain the integrated form of the angular
momentum theorem for motion in a plane:

Ly — Ly = mridy — mrif, = / " F, dt. (3-141)

31
We can generalize the definition of angular momentum to apply to three-
dimensional motion by defining the angular momentum of a particle about
an axis in space as the moment of its momentum vector about this axis,
just as in Section 3-2 we defined the moment of a force about an axis.
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The development is most easily carried out in cylindrical coordinates with
the z-axis as the axis about which moments are to be taken. The generali-
zation of theorems (3-140) and (3~141) to this case is then easily proved in
analogy with the proof given above. This development is left as an exercise.

As a final generalization of the concept of angular momentum, we define
the vector angular momentum L¢ about a point O as the vector moment of
the momentum vector about O:

Lo=rxp=mxv), (3-142)

where the vector r is taken from the point O as origin to the position of the
particle of mass m. Again we shall omit the subscript ¢ when no confusion
can arise. The component of the vector L in any direction is the moment
of the momentum vector p about an axis in that direction through 0.

By taking the cross product of r with both members of the vector equa-
tion of motion [Eq. (3—-125)], we obtain

rx (m %) —rxF. (3-143)

By the rules of vector algebra and vector calculus,

2= L1 x (mw))

=rx%(mv)+%x (mv)

=rx%(mv)—|—vx (mv)

dv
=71 X (m E) .

We substitute this result in Eq. (3-143):
dL/dt =r x F = N. (3-144)

The time rate of change of the vector angular momentum of a particle is
equal to the vector torque acting on it. The integral form of the angular
momentum theorem is

L, — L, = t" N di. (3-145)

The theorems for plahe angular momentum and for angular momentum
about an axis follow from the vector angular momentum theorems by tak-
ing components in the appropriate direction.
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3-9 Discussion of the general problem of two- and three-dimensional
motion. If the force F is given, in general as a function F(v, r, t) of position,
velocity, and time, the equations of motion (3-126) become a set of three
(or, in two dimensions, two) simultaneous second-order differential equa-
tions:

d’ s

m—dt—z = F.(%,9, 492 D,
dy

m a2 = Fv(iy 94,92 8, (3-146)
d%

maz‘ = Fz(j:7 7, 4,z t)-

If we are given the position ro = (o, %o, 20), and the the velocity vy =
(V20) Vyo) V2o) &b any instant o, Eqs. (3-146) give us d®r/dt?, and fromr, , ¥,
at time £, we can determine r, f a short time later or earlier at ¢ + dt, thus
extending the functions r, t, ¥, into the past and future with the help of
Egs. (3-146). This argument can be made mathematically rigorous, and
leads to an existence theorem guaranteeing the existence of a unique solu-
tion of these equations for any given position and velocity at an initial
instant £,. We note that the general solution of Eqgs. (3-146) involves the
six “arbitrary” constants o, Yo, 20, Vzo, Ve Vzo- 1nStead of these six con-
stants, we might specify any other six quantities from which they can be
determined. (In two dimensions, we will have two second-order differential
equations and four initial constants.)

In general, the solution of the three simultaneous equations (3-146)
will be much more difficult than the solution of the single equation (2-9)
for one-dimensional motion. The reason for the greater difficulty is that,
in general, all the variables z, y, 2z and their derivatives are involved in all
three equations, which makes the problem of the same order of difficulty
as a single sixth-order differential equation. [In fact, the set of Egs. (3-146)
can be shown to be equivalent to a single sixth-order equation.] If each
force component involved only the corresponding coordinate and its deriva-
tives,

F, = F,(z,2,1),

— Fy(g; Y, t)l (3_147)
F,= F) 321,

&
l

then the three equations (3-146) would be independent of one another.
We could solve for x(t), y(t), 2(t) separately as three independent problems
in one-dimensional motion. The most important example of this case is
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probably when the force is given as a function of time only:
F = F(t) = [F.(), F (1), F.(1)]. (3-148)

The z, y, and 2 equations of motion can then each be solved separately by
the method given in Section 2-3. The case of a frictional force propor-
tional to the velocity will also be an example of the type (3-147). Other
cases will sometimes occur, for example, the three-dimensional harmonic
oscillator (e.g., a baseball in a tubful of gelatine, or an atom in a crystal
lattice), for which the force is

Fp = —Fkyx,
F,= —ky, (3-149)
F, = —k.z,

when the axes are suitably chosen. The problem now splits into three
separate linear harmonic oscillator problems in z, y, and z. In most cases,
however, we are not so fortunate, and Eq. (3-147) does not hold. Special
methods are available for solving certain classes of two- and three-dimen-
sional problems. Some of these will be developed in this chapter. Prob-
lems not solvable by such methods are always, in principle, solvable by
various numerical methods of integrating sets of equations like Egs. (3-146)
to get approximate solutions to any required degree of accuracy. Such
methods are even more tedious in the three-dimensional case than in the
one-dimensional case, and are usually impractical unless one has the
services of one of the large automatic computing machines.

When we try to extend the idea of potential energy to two or three
dimensions, we will find that having the force given as F(r), a function of
r alone, is not sufficient to guarantee the existence of a potential-energy
function V(r). In the one-dimensional case, we found that if the force is
given as a function of position alone, a potential-energy function can al-
ways be defined by Eq. (2-41). Essentially, the reason is that in one
dimension, a particle which travels from z; to x5 and returns to z; must
return by the same route, so that if the force is a function of position alone,
the work done by the force on the particle during its return trip must nec-
essarily be the same as that expended against the force in going from z,
to z3. In three dimensions, a particle can travel from r; to re and return
by a different route, so that even if F is a function of r, the particle may be
acted on by a different force on the return trip and the work done may
not be the same. In Section 3-12 we shall formulate a criterion to determine
when a potential energy V(r) exists.

When V(r) exists, a consérvation of energy theorem still holds, and the
total energy (T + V) is a constant of the motion. However, whereas in
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one dimension the energy integral is always sufficient to enable us to solve
the problem at least in principle (Section 2-5), in two and three dimensions
this is no longer the case. If x is the only coordinate, then if we know a
relation (T -+ V = E) between z and &, we can solve for £ = f(x) and
reduce the problem to one of carrying out a single integration. But with
coordinates z, ¥, 2, one relation between z, y, 2, &, ¥, £ is not enough. We
would need to know five such relations, in general, in order to eliminate, for
example, z, y, &, and ¢, and find 2 = f(2). In the two-dimensional case, we
would need three relations between z, y, £, ¥ to solve the problem by this
method. To find four more relations like the energy integral from Egs.
(3-146) (or two more in two dimensions) is hopeless in most cases. In
fact, such relations do not usually exist. Often, however, we can find other
quantities (e.g., the angular momentum) which are constants of the motion,
and thus obtain one or two more relations between z, y, 2, £, 3, 2, which in
many cases will be enough to allow a solution of the problem. Examples
will be given later.

3-10 The harmonic oscillator in two and three dimensions. In this
section and the next, we consider a few simple problems in which the force
has the form of Eqgs. (3-147), so that the equations of motion separate into
independent equations in z, y, and z. Mathematically, we then simply
have three separate problems, each of the type considered in Chapter 2.
The only new feature will be the interpretation of the three solutions
z(t), y(2), 2(t) as representing a motion in three-dimensional space.

We first consider briefly the solution of the problem of the three-dimen-
sional harmonic oscillator without damping, whose equations of motion
are

mi = —ky,
mg =3 '_kyy, (3_150)
mi = —k,.

A model could be constructed by suspending a mass between three per-
pendicular sets of springs (Fig. 3-27). The solutions of these equations,
we know from Section 2-8:

z = Az cos (Wit + 6.), w? = ky/m,
y = Aycos (wit +0,), wy = ky/m, (3-151)
2 = A,cos (w,it + 6,), w2 = k,/m.

f

The six constants (4, 4,, 4., 05, 0y, 0;) depend on the initial values
To, Yo, 20, Eo, Yo, 20. Each coordinate oscillates independently with simple
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Fie. 3-27. Model of a three-dimensional harmonic oscillator.

harmonic motion at a frequency depending on the corresponding restoring
force coefficient, and on the mass. The resulting motion of the particle
takes place within a rectangular box of dimensions 24. X 24, X 24,
about the origin. If the angular f requencies w,, wy, w, are commensurable,
that is, if for some set of integers (n., Ny, Nz),

o Iy, s, (3-152)
Nz My N
then the path of the mass m in space is closed, and the motion is periodic.
If (ng, ny,, n.) are chosen so that they have no common integral factor,
then the period of the motion is

2Ny 2mny _ 2mn,
Wy wy W,

T = (3-153)
During one period, the coordinate = makes n, oscillations, the coordinate y
makes n, oscillations, and the coordinate z makes n. oscillations, so that
the particle returns at the end of the period to its initial position and
velocity. In the two-dimensional case, if the path of the oscillating parti-
cle is plotted for various combinations of frequencies w, and wy, and various
phases 6, and 6,, many interesting and beautiful patterns are obtained.
Such patterns are called Lissajous figures (Fig. 3-28), and may be pro-
duced mechanically by a mechanism designed to move a pencil or other
writing device according to Eqs. (3-151). Similar patterns may be ob-
tained electrically on a cathode-ray oscilloscope by sweeping horizontally
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Y Yy

N

wr = wy wr = 2wy

1

<
&l

Swz = 2wy 3wz = Swy

Fic. 3-28. Lissajous figures.

and vertically with suitable oscillating voltages. If the frequencies ws,
@y, @, are incommensurable, so that Eq. (3-152) does not hold for any set
of integers, the motion is not periodic, and the path fills the entire box
24, X 24, X 24,, in the sense that the particle eventually comes ar-
bitrarily close to every point in the box. The discussion can readily be
extended to the cases of damped and forced oscillations in two and three
dimensions.

If the three constants k, k,, k. are all equal, the oscillator is said to be
isofropic, that is, the same in all directions. In this case, the three fre-
quencies w,, w,, @, are all equal and the motion is periodic, with each coordi-
nate executing one cycle of oscillation in a period. The path can be shown
to be an ellipse, a straight line, or a circle, depending on the amplitudes
and phases (4., 4,, 4., 05, 6y, 0).

3-11 Projectiles. An important problem in the history of the science of
mechanies is that of determining the motion of a projectile. A projectile
moving under the action of gravity near the surface of the earth moves, if
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alr resistance is neglected, according to the equation

2
m%; — —mgk, (3-154)

where the z-axis is taken in the vertical direction. In component form:

d’x
moy = 0, (3-155)
d2
m dT;/ = 0, (3-156)
d%
m_og = —mg. (3-157)
The solutions of these equations are
T = z9 - v, (3-158)
Y = Yo + vy, (3-159)
2= 2o + vt — g3, (3-160)
or, in vector form,
r=rg+ vot — igt’k. (3-161)

We assume the projectile starts from the origin (0, 0, 0), with its initial
velocity in the zz-plane, so that »,, = 0. This is no limitation on the
motion of the projectile, but merely corresponds to a convenient choice of
coordinate system. Equations (3-158), (3-159), (3-160) then become

T = vz, (3-162)
y =0, (3-163)
2 = vt — 3gt% (3-164)

These equations give a complete description of the motion of the projectile.
Solving the first equation for ¢ and substituting in the third, we have an
equation for the path in the zz-plane:

=2y 3 9 2 (3-165)

2
v,;o 1),;0

This can be rewritten in the form

2 2 2
_ vzovxo) _ v_’q( — ?ﬂ) B 3-166
(,c L (e — 5 (3-166)
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This is a parabola, concave downward, whose maximum altitude occurs at
Vzo
Zm = 5 (3-167)

and which crosses the horizontal plane z = 0 at the origin and at the point

— 2”";’” (3-168)

If the surface of the earth is horizontal, z,, is the range of the projectile.
Let us now take account of air resistance by assuming a frictional force
proportional to the velocity:
d’r dr
In component notation, if we assume that the motion takes place in the
xz-plane, :

d2 d
moy = —b 7;:’ (3-170)
d’z dz

It should be pointed out that the actual resistance of the air against a mov-
ing projectile is a complicated function of velocity, so that the solutions we
obtain will be only approximate, although they indicate the general nature
of the motion. If the projectile starts from the origin at ¢ = 0, the solu-
tions of Eqgs. (3-170) and (3-171) are (see Sections 24 and 2-6)

vy = vgge U™, (3-172)

3= TR — M), (3-173)

VvV = ( + vzo) —be/m _ % ’ (3-174)
m°g mu, —bt/m

( =+ °) (1 — e~ttmy — %’it. (3-175)

Solving Eq. (3-173) for ¢ and substituting in Eq. (3-175), we obtain an
equation for the trajectory:

2
2= (mg + 3—") z — %z’ In (~——~—m”m° ) (3-176)

bvzy = Uz Myg, — bz
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z

F1e. 3-29. Trajectories for maximum range for projectiles with various muzzle
velocities.

For low air resistance, or short distances, when (bx) /(mv,,) K 1, we may
expand in powers of (bz)/(mv.,) to obtain

) .
R B A S AP R (3-177)
¥z vz, mog,

Thus the trajectory starts out as a parabola, but for larger values of z
(taking v,, as positive), z falls more rapidly than for a parabola. Accord-
ing to Eq. (3-176), as x approaches the value (mv,,)/b, z approaches minus
infinity, i.e., the trajectory ends as a vertical drop at r = (mv,,)/b. From
Eq. (3-174), we see that the vertical fall at the end of the trajectory takes
place at the terminal velocity —mg/b. (The projectile may, of course,
return to earth before reaching this part of its trajectory.) If we take the
first three terms in Eq. (3-177) and solve for x when z = 0, we have ap-
proximately, if z,, < (mvy,)/b,

+ .- (3-178)

2
. 0%V bvzglz,
T = — 3

g mg>?

The second term gives the first-order correction to the range due to air re-
sistance, and the first two terms will give a good approximation when the
effect of air resistance is small. The extreme opposite case, when air
resistance is predominant in determining range (Fig. 3-29), occurs when
the vertical drop at z = (mw,,)/b begins above the horizontal planez = 0.
The range is then, approximately,

Tm e%, (@mi > 1)- (3-179)

We can treat (approximately) the problem of the effect of wind on the
projectile by assuming the force of air resistance to be proportional to
the relative velocity of the projectile with respect to the air:

2
m%t-: = —mgk — b(% — vw) » -(3-180)

where v,, is the wind velocity. If v,, is constant, the term bv,, in Eq. (3-180)
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behaves as a constant force added to —mgk, and the problem is easily
solved by the method above, the only difference being that there may be
constant forces in addition to frictional forces in all three directions z, y, 2.

The air resistance to a projectile decreases with altitude, so that a better
form for the equation of motion of a projectile which rises to appreciable
altitudes would be

2
m%t—; = —mgk — be_z’h%, (3-181)

where & is the height (say about five miles) at which the air resistance falls
to 1/e of its value at the surface of the earth. In component form,

myj = —bye ',

—z/h

mg = —bae ™",

(3-182)

mi = —mg — bie

These equations are much harder to solve. Since z appears in the z and
y equations, we must first solve the z equation for z(¢) and substitute in
the other two equations. The z equation is not of any of the simple types
discussed in Chapter 2. The importance of this problem was brought out
during the First World War, when it was discovered accidentally that
aiming a cannon at a much higher elevation than that which had previ-
ously been believed to give maximum range resulted in a great increase in
the range of the shell. The reason is that the reduction in air resistance,
at altitudes of several miles, more than makes up for the loss in horizontal
component of muzzle velocity resulting from aiming the gun higher.

3-12 Potential energy. If the force F acting on a particle is a function
of its position r = (z, ¥, 2), then the work done by the force when the
particle moves from ry to r is given by the line integral

N
/: F-dr.

It is suggested that we try to define a potential ehergy V() = V(iz,y,2) in
analogy with Eq. (2-41) for one-dimensional motion, as the work done by
the force on the particle when it moves from r to some chosen standard
point rs:

V@) = — j F(r)-dr. (3-183)

Such a definition implies, however, that the function V(r) shall be a func-
tion only of the coordinates (z, y, 2) of the point r (and of the standard
point r,, which we regard as fixed), whereas in general the integral on the
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right depends upon the path of integration from r, tor. Only if the integral
on the right is independent of the path of integration will the definition
be legitimate.

Let us assume that we have a force function F(z, ¥, 2) such that the line
integral in Eq. (3-183) is independent of the path of integration from r, to
any point r. The value of the integral then depends only on r (and on r,),
and Eq. (3-183) defines a potential energy function V(r). The change in
V when the particle moves from r to r - dr is the negative of the work
done by the force F:

dV = —F-.dr. (3-184)

Comparing Eq. (3-184) with the geometrical definition [Eq. (3-107)] of
the gradient, we see that
- —F=gradV,

(3-185)
F=—-vV.

Equation (3-185) may be regarded as the solution of Eq. (3-183) for F in
terms of V. In component form,

v AV v
Fo=—% Fi=—% F.=—%. (18

In seeking a condition to be satisfied by the function F(r) in order that
the integral in Eq. (3-183) be independent of the path, we note that, since
Eq. (3-28) can be proved from the algebraic definition of the cross product,
it must hold also for the vector symbol V:

VXV=0 (3-187)
Applying (V x V) to the function V, we have

V X VV = curl (grad V) = 0. (3-188)

Equation (3-188) can readily be verified by direct computation. From -

Egs. (3-188) and (3-185), we have
VXF=culF =0 (3-189)

Since Eq. (3-189) has been deduced on the assumption that a potential
function exists, it represents a necessary condition which must be satisfied
by the force function F(z, y, z) before a potential function can be defined.
We can show that Eq. (3—189) is also a sufficient condition for the existence
of a potential by making use of Stokes’ theorem [Eq. (3-117)]. By Stokes’
theorem, if we consider any closed path C in space, the work done by the
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rg

I

Fia. 3-30. Two paths between r; and rz, forming a closed path.

force F(r) when the particle travels around this path is

/C F-dr = / / n-(v x F)dS, (3-190)
S

where S is a surface in space bounded by the closed curve C. If now
Eq. (3-189) is assumed to hold, the integral on the right is zero, and we
have, for any closed path C,

fc F-dr = 0. (3-191)

But if the work done by the force F around any closed path is zero, then
the work done in going from r; to r; will be independent of the path fol-
lowed. For consider any two paths between r; and rj, and let a closed
path C be formed going from r; to rp by one path and returning to r,
by the other (Fig. 3-30). Since the work done around C is zero, the work
going from r; to r must be equal and opposite to that on the return trip,
hence the work in going from r; to rs by either path is the same. Applying
this argument to the integral on the right in Eq. (3-183), we see that the
result is independent of the path of integration from r, to r, and therefore
the integral is a function V(r) of the upper limit alone, when the lower
limit r, is fixed. Thus Eq. (3-189) is both necessary and sufficient for the
existence of a potential function V(r) when the force is given as a function
of position F(r).

When curl F is zero, we can express the work done by the force when
the particle moves from r; to r; as the difference between the values of the
potential energy at these points:

* Fedr = /”F-dr + [ F-dr
3] Ty Iy

= V(r)) — V(ra). (3-192)
Combining Eq. (3-192) with the energy theorem (3-135), we have for any

two times £; and i5:
T+ V() = T2 4 V(ra). (3-193)
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Hence the total energy (T + V) is again constant, and we have an energy
integral for motion in three dimensions:

T+V=13m@*+9>+2% + Vi, y,2) = E. (3-194)

A force which is a function of position alone, and whose curl vanishes, is
said to be conservative, because it leads to the theorem of conservation of
kinetic plus potential energy [Eq. (3-194)].

In some -cases, a force may be a function of both position and time
F(r, t). If at any time ¢ the curl of F(r, ) vanishes, then a potentlal-energy
function V{(r, £} can be defined as

Vi, ) = — [ F(r, 1) -dr, (3-195)

and we will have, for any time ¢ such that v x F(r, {) = 0,
F(r, i) = —vV(, 1. (3-196)

However, the conservation law of energy can no longer be proved, for
Eq. (3—-192) no longer holds. It is no longer true that the change in po-
tential energy equals the riegative of the work done on the particle, for
the integral which defines the potential energy at time ¢ is computed from
the force function at that time, whereas the integral that defines the work
is computed using at each point the force function at the time the particle

passed through that point. Consequently, the energy T + V is not a
constant when F and V are functions of time, and such a force is not to
be called a conservative force.

When the forces acting on a particle are conservative, Eq. (3-194)
enables us to compute its speed as a function of its position. The energy E
is fixed by the initial conditions of the motion. Equation (3-194), like
Eq. (2~44), gives no information as to the direction of motion. This lack
of knowledge of direction is much more serious in two and three dimensions,
where there is an infinity of possible directions, than in one dimension,
where there are only two opposite directions in which the particle may
move. In one dimension, there is only one path along which the particle
may move. In two or three dimensions, there are many paths, and unless
we know the path of the particle, Eq. (3-194) alone allows us to say very
little about the motion except that it can occur only in the region where
V(x,y,2) < E. As an example, the potential energy of an electron in the
attractive electric field of two protons (ionized hydrogen molecule Hyt) is

62 2

e .
V = — ;-1- —_ E ’ (esu) (3_197)
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—18

Fig. 3-31. Potential energy of electron in electric field of two protons 2 A
apart. (Potential energies in units of 10—!2 erg.)

where r;, rg are the distances of the electron from the two protons. The
function V(z, y) (for motion in the zy-plane only) is plotted in Fig. 3-31
as a contour map, where the two protons are 2 A apart at the points y = 0,
2 = =1 A, and the figures on the contours of constant potential energy are
the corresponding potential energies in units of 10=!2 erg. So long as
E < —46 X 1012 erg, the electron is confined to a region around one
proton or the other, and we expect its motion will be either an oscillation
through the attracting center or an orbit around it, depending on initial
conditions. (These comments on the expected motion require some physical
insight or experience in addition to what we can say from the energy integral
alone.) For 0 > E > —46 X 1072 erg, the electron is confined to a
region which includes both protons, and a variety of motions are possible.
For E > 0, the electron is not confined to any finite region in the plane.
For E <« —46 X 107'2 erg, the electron is confined to a region where the
equipotentials are nearly circles about one proton, and its motion will be
practically the same as if the other proton were not there. For E < 0,
but |[E| < 46 X 10712 erg, the electron may circle in an orbit far from the
attracting centers, and its motion then will be approximately that of an
electron bound to a single attracting center of charge 2e, as the equi-
potential lines far from the attracting centers are again very nearly circles.
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Given a potential energy function V(z, y, 2), Eq. (3-186) enables us to
compute the components of the corresponding force at any point. Con-
versely, given a force F(z, y, z), we may compute its curl to determine
whether a potential energy function exists for it. If all components of
curl F are zero within any region of space, then within that region, F may
be represented in terms of a potential-energy function as —VV. The
potential energy is to be computed from Eq. (3-183). Furthermore, since
curl F = 0, the result is independent of the path of integration, and we
may compute the integral along any convenient path. As an example,
consider the following two force functions:

(a) F. = axy, F, = —az2? F, = —az?
(b) F, = ay(y® — 32%), F, = 3ax(y® — 2%, F, = —6azye,
where a is a constant. We compute the curl in each case:
_; an_e&) (aF (E_B_F_)
@) VXF_1<6y 9z +i 0z ox ay
= (2a2)i + (2ax)j — (av)k,

(b) vx F=0.

In case (a) no potential energy exists. In case (b) there is a potential
energy function, and we proceed to find it. Let us take r, = 0, i.e., take
the potential as zero at the origin. Since the components of force are given
as functions of z, y, 2, the simplest path of integration from (0, 0, 0) to
(%o, Yo, 20) along which to compute the integral in Eq. (3-183) is one which
follows lines parallel to the coordinate axes, for example as shown in
Fig. 3-32:

’ £l )
V(ﬁo,yo,zo)=—/wwozo Fedr = — Fdr / Fdr—/ F.dr.
(0,0.0)
4
((-’60,.1/0,20)
! s
(0,0,0) v
C1
(20,0,0) Ca (%0,50,0)

z

F1a. 3-32. A path of integration from (0, 0, 0) to (zo, yo, 20).
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Now along C;, we have

y=2=0, Fx=Fy=Fz=0, dr = idx.

Thus
Fedr = [ F,dz = 0.
P = [ Fade
Along Cg,
T = Zo, z2=0,
F, = ay’, Fy, = 3azoy’, F,=0,
dr = jdy.
Thus
. Yo .. — 3
czF dr = /0 F,dy = azxoyo.
Along C3,
T = Ty, Yy = Yo
F. = ayo(yd — 32%), F, = 3axoy — 2°), F.= —6azeyez
dr = kdz.
Thus

Fedr = /zo F,dz = —3axoyozs.
Cs 0

Thus the potential energy, if the subscript zero is dropped, is
V(z,y,2) = —axy® + 3azyz>.

It is readily verified that the gradient of this function is the force given by
(b) above. In fact, one way to find the potential energy, which is often
faster than the above procedure, is simply to try to guess a function whose
gradient will give the required force.

An important case of a conservative force is the central force, a force
directed always toward or away from a fixed center O, and whose magni-
tude is a function only of the distance from O. In spherical coordinates,
* with O as origin,

F = nF(r). (3-198)

The cartesian components of a central force are (since n = r/r)
z
F, = ;F (T)y
F,=YF@), =G4y +0" (3-199)

F, = §F(r).
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(ro,80,¢0) (rufioen)
C2

e C1

.
3 (ro,0s,05)
” 0 > chbdd

-
-
-
e
.

Fia. 3-33. Path of integration for a central force.

The curl of this force can be shown by direct computation to be Z€ro, No ,
matter what the function F(r) may be. For example, we find

% =T (FY)) 3y 7 ({"@)

d
dr
oF, (F(r)) _wa (F(r))
oz Yar\ v dx ~ r dr
Therefore the 2-component of curl F vanishes, and so, likewise, do the other
two components. To compute the potential energy, we choose any stand-
ard point r,, and integrate from r, to ro along a path (Fig. 3-33) following
a radius (C;) from r,, whose coordinates are (r, 6, ¢,), to the point
(ro, 0s, ¢s), then along a circle (C3) of radius r¢ about the origin to the
pOint’ (TOJ 007 900)' A].OIlg Cl;

dr = ndr,
[ Fdr—[ F(r) dr.

Along C,,
dr = Ir d6 4 mr sin 0 do,
Fedr = 0.
Ca
Thus )
V(re) = —/r” Fedr = —/CIF-dr — [, Far
= — / " F(r) dr.

The potential energy is a function of r alone:

V@) = V() = — f " F(r dr. (3-200)
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3-13 Motion under a central force. A central force is a force of the form
given by Eq. (3-198). Physically, such a force represents an attraction
{if F(r) < 0] or repulsion [if F(r) > 0] from a fixed point located at the
origin r = 0. In most cases where two particles interact with each other,
the force between them is (at least primarily) a central force; that is, if
either particle be located at the origin, the force on the other is given by
Eq. (3-198). Examples of attractive central forces are the gravitational
force acting on a planet due to the sun, or the electrical attraction acting
on an electron due to the nucleus of an atom. The force between a proton
or an alpha particle and another nucleus is a repulsive central force. In
the most important cases, the force F(r) is inversely proportional to rZ.
This case will be treated in the next section. Other forms of the function
F(r) occur occasionally; for example, in some problems involving the struc-
ture and interactions of nuclei, complex atoms, and molecules. In this
section, we present the general method of attack on the problem of a par-
ticle moving under the action of a central force.

Since in all these examples, neither of the two interacting particles
is actually fastened to a fixed position, the problem we are solving, like
most problems in physics, represents an idealization of the actual problem,
valid when one of the particles can be regarded as practically at rest at
the origin. This will be the case if one of the particles is much heavier
than the other. Since the forces acting on the two particles have the same
magnitude by Newton’s third law, the acceleration of the heavy one will
be much smaller than that of the lighter one, and the motion of the heavy
particle can be neglected in comparison with the motion of the lighter one.
We shall discover later, in Section 4-7, that, with a slight modification, our
solution can be made to yield an exact solution to the problem of the
motion of two interacting particles, even when their masses are equal.

We may note that the vector angular momentum of a particle under
the action of a central force is constant, since the torque is

N=rxF=(xn)f{r) = 0. (3-201)

Therefore, by Eq. (3-144),
dL
7 =0 (3-202)
As a consequence, the angular momentum about any axis through the
center of force is constant. It is because many physical forces are central
forces that the concept of angular momentum is of importance.

In solving for the motion of a particle acted on by a central force, we
first show that the path of the particle lies in a single plane containing the
center of force. To show this, let the position rq and velocity vy be given
at any initial time ¢, and choose the z-axis through the initial position rq
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of the particle, and the z-axis perpendicular to the initial velocity vo. Then
we have initially:
xo = [ro], yo = 20 =0, (3-203)

Vzy = Vo-i, Vyo = Vo', vz = 0. (3-204)
The equations of motion in rectangular coordinates are, by Eqs. (3-199),
mi=TF@), mj=YF@), m= ZF@.  (3-209)

A solution of the z-equation which satisfies the initial conditions on zo and
Vg 18
2(t) = 0. (3—-206)

Hence the motion takes place entirely in the zy-plane. We can see phys-
ically that if the force on a particle is always toward the origin, the particle
can never acquire any component of velocity out of the plane in which it
is initially moving. We can also regard this result as a consequence of
the conservation of angular momentum. By Eq. (3-202), the vector
L = m(r x v) is constant; therefore both r and v must always lie in a
fixed plane perpendicular to L.

We have now reduced the problem to one of motion in a plane with two
differential equations and four initial conditions remaining to be satisfied.
If we choose polar coordinates r, 6 in the plane of the motion, the equations
of motion in the r and @ directions are, by Eqgs. (3-80) and (3-198),

mi — mré® = F(r), (3-207)
mrl + 2mré = 0. (3-208)

Multiplying Eq. (3—208) by r, as in the derivation of the (plane) angular
momentum theorem, we have
dL

% (m*) =42 = o. (3-209)

This equation expresses the conservation of angular momentum about the
origin and is a consequence also of Eq. (3-202) above. It may be inte-
grated to give the angular momentum integral of the equations of motion:

mr?6 = L = a constant. (3-210)

The constant L is to be evaluated from the initial conditions. Another
integral of Egs. (3-207) and (3-208), since the force is conservative, is

T+ V= 3mi® + 3mr®6® + V() = E, (3-211)
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where V(r) is given by Eq. (3-200) and E is the energy constant, to be
evaluated from the initial conditions. If we substitute for 8 from Eqg.
(8-210), the energy becomes

1mi? + 2 ) = E. (3-212)

_ J%(E — Ve - Q,ﬁni—z)w- | (3-213)
2mr2

The integral is to be evaluated and the resulting equation solved for r(?).
We then obtain 6(f) from Eq. (3-210):

We can solve for #:

Therefore

t
L
0= 0y + -/0 proer dt. (3-215)

We thus obtain the solution of Eqs. (3-207) and (3-208) in terms of the
four constants L, E, ro, 8o, which can be evaluated when the initial position
and velocity in the plane are given.

It will be noted that our treatment based on Eq. (3-212) is analogous
to our treatment of the one-dimensional problem based on the energy in-
tegral [Eq. (2-44)]. The coordinate r here plays the role of z, and the 6
term in the kinetic energy, when 4 is eliminated by Eq. (3-210), plays the
role of an addition to the potential energy. We may bring out this analogy
further by substituting from Eq. (3-210) into Eq. (3-207):

2

L
mi — prove F(r). (3-216)

If we transpose the term —L2/mr3 to the right side, we obtain

2
= F() + (3-217)

This equation has exactly the form of an equation of motion in one dimen-
sion for a particle subject to the actual force F(r) plus a “centrifugal force”
L2/mr3. The centrifugal force is not really a force at all but a part of the
mass times acceleration, transposed to the right side of the equation in
order to reduce the equation for r to an equation of the same form as for
one-dimensional motion.  We may call it a “fictitious force.” If we treat
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Eq. (3—217) as a problem in one-dimensional motion, the effective “poten-
tial energy” corresponding to the “force” on the right is

V() = — /F(r) dr — f—— dr

= V() + 5= (3-218)

2mr2

The second term in ‘V’ is the ‘‘potential energy” associated with the
“centrifugal force.” The resulting energy integral is just Eq. (3-212).
The reason why we have been able to obtain a complete solution to our
problem based on only two integrals, or constants of the motion (L and E),
is that the equations of motion do not contain the coordinate 8, so that the
constancy of L is sufficient to enable us to eliminate 6 entirely from Eq.
(3—207) and to reduce the problem to an equivalent problem in one-dimen-
sional motion.

The integral in Eq. (3-214) sometimes turns out rather difficult to eval-
uate in practice, and the resulting equation difficult to solve for 7(z). It is
sometimes easier to find the path of the particle in space than to find its
motion as a function of time. We can describe the path of the particle by
giving 7(6). The resulting equation is somewhat simpler if we make the
substitution

1 .
u=_1 r=_ (3-219)

Then we have, using Eq. (3-210),

1 du 2, du
T u2 do = —r do
=L, (3-220)
. _ L d®u L2u2 d*u
F= m 4oz 0= ralT (3-221)

Substituting for r and # in Eq. (3-217), and multiplying by —m/(L?u?), we
have a differential equation for the path or orbit in terms of u(6):

d’u 1
= —u— e (2): -222)

In case L = 0, Eq. (3-222) blows up, but we see from Eq. (3-210) that in
this case 6 is constant, and the path is a straight line through the origin.
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Even in cases where the explicit solutions of Egs. (3-214) and (3-215),
or Eq. (3-222), are difficult to carry through, we can obtain qualitative
information about the r motion from the effective potential ‘V’ given by
Eq. (3-218), just as in the one-dimensional case discussed in Section 2-5.
By plotting ‘V’(r), we can decide for any total energy E whether the
motion in r is periodic or aperiodic, we can locate the turning points, and
we can describe roughly how the velocity # varies during the motion. If
‘¥’(r) has a minimum at a point ro, then for energy E slightly greater than
‘V’(ro), r may execute small, approximately harmonic oscillations about 7o
with angular frequency given by

2¢y72
W =2 (%) : (3-223)
]

m

[See the discussion in Section 2-7 concerning Eq. (2-87).] We must re-
member, of course, that at the same time the particle is revolving around
the center of force with an angular velocity

L

= 2’ (3-224)

The rate of revolution decreases as r increases. When the r motion is
periodic, the period of the r motion is not, in general, the same as the
period of revolution, so that the orbit may not be closed, although it is
confined to a finite region of space. (See Fig. 3-34.) In cases where the
r motion is not periodic, then § — 0 as r — oo, and the particle may or
may not perform one or more complete revolutions as it moves toward
r = o0, depending on how rapidly r increases. In the event the motion is
periodic, that is, when the particle moves in a closed orbit, the period of
~ orbital motion is related to the area of the orbit. This can be seen as
follows. The area swept out by the radius from the origin to the particle

F1a. 3-34. An aperiodic bounded orbit.
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rdf

do r

Y.

Fia. 3-35. Area swept out by radius vector.

when the particle moves through a small angle df is approximately
(Fig. 3-35)
dsS = 2 de. (3-225)

Hence the rate at which area is swept out by the radius is, by Eq. (3-210),

%f — 1% — % (3-226)

This result is true for any particle moving under the action of a central
force. If the motion is periodic, then, integrating over a complete period 7
of the motion, we have for the area of the orbit

Lt

(3—227)
If the orbit is known, the period of revolution can be calculated from this
formula.

3~14 The central force inversely proportional to the square of the
distance. The most important problem in three-dimensional motion is
that of a mass moving under the action of a central force inversely pro-
portional to the square of the distance from the center;

K
F=>n, (3-228)
for which the potential energy is
ve) = &, (3-220)

where the standard radius r, is taken to be infinite in order to avoid an
additional constant term in V(r). As an example, the gravitational force
(Section 1-5) between two masses m; and m, a distance r apart is given by
Eq. (3—228) with

K= —Gmm,;, G = 6.67 X 1078 dyne-gm—2-cm?, (3-230)

where K is negative, since the gravitational force is attractive. Another



126 MOTION OF PARTICLE IN TWO OR THREE DIMENSIONS [cHaP. 3
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Fic. 3-36. Effective potential for central inverse square law of force.

example is the electrostatic force between two electric charges ¢; and g2 a
distance r apart, given by Eq. (3-228) with

K = qqs, (3-231)

where the charges are in electrostatic units, and the force is in dynes. The
electrostatic force is repulsive when ¢; and ¢» have the same sign, other-
wise attractive. Historically, the first problems to which Newton’s me-
chanics was applied were problems involving the motion of the planets
under the gravitational attraction of the sun, and the motion of satellites
around the planets. The success of the theory in accounting for such
motions was responsible for its initial acceptance.

We first determine the nature of the orbits given by the inverse square
law of force. In Fig. 3-36 is plotted the effective potential

i K L°

For a repulsive force (K > 0), there are no periodic motions in r; only
positive total energies E are possible, and the particle comesin fromr = o0
to a turning point and travels out to infinity again. For a given energy
and angular momentum, the turning point occurs at a larger value of  than
for K = 0 (no foree), for which the orbit would be a straight line. For an
attractive force (K < 0) with L # 0, the motion is also unbounded if
E > 0, but in this case the turning point occurs at a smaller value of r than
for K = 0. Hence the orbits are as indicated in Fig. 3-37. The light
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Fia. 3-37. Sketch of unbounded inverse square law orbits.

lines in Fig. 3-37 represent the turning point radius or perihelion distance
measured from the point of closest approach of the particle to the attracting
or repelling center. For K < 0,and —3K?m/L? < E < 0, the coordinate
r oscillates between two turning points. For £ = —3K?m/L%, the particle
moves in a circle of radius 7o = L?/(—Km). Computation shows (see
Problem 30 at the end of this chapter) that the period of small oscillations
in r is the same as the period of revolution, so that for E near —3K?m /L%,
the orbit is a closed curve with the origin slightly off center. We shall show
later that the orbit is, in fact, an ellipse for all negative values of E if
L # 0. If L = 0, the problem reduces to the one-dimensional motion of
a falling body, discussed in Section 2-6.

To evaluate the integrals in Eqs. (3-214) and (3—-215) for the inverse
square law of force is rather laborious. We shall find that we can obtain all
the essential information about the motion more simply by starting from
Eq. (3-222) for the orbit. Equation (3-222) for the orbit becomes, in this
case,

du mK

This equation has the same form as that of a harmonic oscillator (of unit
frequency) subject to a constant force, where 6 here plays the role of ¢.
The homogeneous equation and its general solution are

d%u

(_lﬁ +u= 0, (3—234)

u = A cos (8 — ), (3-235)
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where A, 6, are arbitrary constants. An obvious particular sollxlon of the
inhomogeneous equation (3—233) is the constant solution

mK
U= — g5 (3-236)
Hence the general solution of Eq. (3-233) is
1 mK
u==— 73 -+ A cos (6 — 8y). (3-237)

This is the equation of a conie section (ellipse, parabola, or hyperbola) with
focus at r = 0, as we shall presently show. The constant 8y determines
the orientation of the orbit in the plane. The constant 4, which may be
taken as positive (since 8, is arbitrary), determines the turning points of
the r motion, which are given by
1 mK 1 mK

If A > —mK/L? (as it necessarily is for K > 0), then there is only one
turning point, 4, since r cannot be negative. We cannothave A < mK/L?
since r could then not be positive for any value of . For a given E, the
turning points are solutions of the equation

K L
‘V’(r) = 7 + W = E. (3—239)
The solutions are
1 = mK mK\? 2mE]l/2
" “F+[<‘L’2‘) tI7]
(3-240)

1_ _mK_ [(m_K) + 2mE]”2
re L2 L2 L2

Comparing Eq. (3-238) with Eq. (3—240), we see that the value of A in
terms of the energy and angular momentum is given by

m?K?  2mE

2 __
A_L4+L2'

(3-241)
The orbit is now determined in terms of the initial conditions.

An ellipse is defined as the curve traced by a particle moving so that
the sum of its distances from two fixed points F, F’ is constant.* The

* For a more detailed treatment of conic sections, see W. F. Osgood and
W. C. Graustein, Plane and Solid Analytic Geometry. New York: Macmillan,
1938. (Chapters 6, 7, 8, 10.)
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F1q. 3-38. Geometry of the ellipse.

points F, F’ are called the foci of the ellipse. Using the notation indicated
- in Fig. 3-38, we have
" 4+ r = 2a, (3-242)

where a is half the largest diameter (major axis) of the ellipse. In terms
of polar coordinates with center at the focus F and with the negative z-axis
through the focus #”, the cosine law gives

"% = r2 4 4022 + 4rae cos 6, (3-243)

where ae is the distance from the center of the ellipse to the focus. € is
called the eccentricity of the ellipse. If € = 0, the foci coincide and the
ellipse is a circle. As € — 1, the ellipse degenerates into a parabola or
straight line segment, depending on whether the focus #’ recedes to in-
finity or remains a finite distance from F. Substituting r’ from Eq. (3-242)
in Eq. (3-243), we find

. a(l — €%

r= 1+ecos0'

(3—244)
This is the equation of an ellipse in polar coordinates with the origin at one
focus. If b is half the smallest diameter (minor axis), we have, from
Fig. 3-38,

b=a(l — &2 (3-245)

The area of the ellipse can be obtained in a straightforward way by in-
tegration:
S = mab. (3-246)

A hyperbola is defined as the curve traced by a particle moving so that
the difference of its distances from two fixed foci F, F' is constant (Fig.
3-39). A hyperbola has two branches defined by

v —r=2a (++ branch),
(3-247)
" — r = —2a (— branch).
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D

+branch —branch

Fia. 3-39. Geometry of the hyper- Fig. 3-40. Geometry of the para-
bola. bola.

We shall call the branch which encircles F the + branch (left branch in the
figure), and the branch which avoids F, the — branch (right branch in the
figure). Equation (3-243) holds also for the hyperbola, but the eccen-
tricity € is now greater than one. The equation ¢f the hyperbola becomes
in polar coordinates:

I Gl VIO _
"= X1 F ecos o (3-248)
(The + sign refers to the -+~ branch, the — sign to the — branch.) The
asymptotes of the hyperbola (dotted lines in Fig. 3-39) make an angle o
with the axis through the foci, where a is the value of 6 for which r is infinite:

1

cosa = = P (3-249)

A parabola is the curve traced by a particle moving so that its distance
from a fixed line D (the direciriz) equals its distance from a fixed focus F.

From Fig. 3-40, we have
a

T =1 coso’ (3-250)

where a is the distance from the focus F to the directrix D.
We can write the equations for all three conic sections in the standard
form \

= B+ A cos b, (3-251)

=
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where A is positive, and B and A are given as follows:

B > A, ellipse,
1 €
T a1l — ey’ 4 = a(l — €2)’ (3-252)
B = A, parabola,
B=1, 41 (3-253)
a a
0 < B < A, hyperbola, + branch,
. 1 €
ey A=gee1 (3-254)
—A < B < 0, hyperbola, — branch,
1 p €
B——my A_a(e2——1) (3-255)

The case B < — A cannot oceur, since r would then not be positive for any
value of 6. If we allow an arbitrary orientation of the curve with respect
to the z-axis, then Eq. (3-251) becomes

T =B+ Acos (0 — 6p), (3-256)

where 6, is the angle between the z-axis and the line from the origin to the
perihelion (point of closest approach of the curve to the origin). It will
be noted that in all cases

e = ﬁ- (3-257)
For an ellipse or hyperbola,
B
a = m . (3—258)

Equation (3-237) for the orbit of a particle under an inverse square law
force has the form of Eq. (3-256) for a conic section, with [if we use
Eq. (3-241)]
mK
L2’

o2omE 1/2
4= (2 + 228"

B = —
(3-259)



]
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The eccentricity of the orbit, by Eq. (3-257), is

2\1/2 .
e = (14 2ELY". (3-260)

For an attractive force (K < 0), the orbit is an ellipse, parabola, or hyper-
bola, depending on whether E < 0, E = 0, or E > 0;if a hyperbola, it is
the -+ branch. For a repulsive force (K > 0), we must have £ > 0, and
the orbit can only be the — branch of a hyperbola. These results agree
with our preliminary qualitative discussion. For elliptic and hyperbolic
orbits, the semimajor axis a is given by

K
o= ‘ﬁ . (3-261)

Tt is curious that this relation does not involve the eccentricity or the angu-
lar momentum; the energy E depends only on the semimajor axis a, and
vice versa. Equations (3—-260) and (3—261) may be obtained directly from
Eq. (3-239) for the turning points of the r motion. If we solve this equa-
tion for r, we obtain the turning points

_K KY , L ]”2
no= gy G vael - o

The maximum and minimum radii for an ellipse are

r1,2 = a(l £ ¢, (3-263)
and the minimum raciius for a hyperbola is

ry = a(e F 1), (3-264)

where the upper sign is for the 4+ branch and the lower sign for the —
branch. Comparing Eqgs. (3-263) and (3-264) with Eq. (3-262), we can
read off the values of a and €. Thus if we know that the path is an ellipse
or hyperbola, we can find the size and shape from Eq. (3-239), which fol-
lows from the simple energy method of treatment, without going through
the exact solution of the equation for the orbit. This is a useful point to
remember.

3-15 Elliptic orbits. The Kepler problem. Early in the seventeenth
century, before Newton’s discovery of the laws of motion, Kepler an-
nounced the following three laws describing the motion of the planets, de-
duced from the extensive and accurate observations of planetary motions
by Tycho Brahe:
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(1) The planets move in ellipses with the sun at one focus.

(2) Areas swept out by the radius vector from the sun to a planet in
equal times are equal.

(3) The square of the period of revolution is proportional to the cube
of the semimajor axis,

The second law is expressed by our Eq. (3-226), and is a consequence of
the conservation of angular momentum; it shows that the force acting on
the planet is a central force. The first law follows, as we have shown,
from the fact that the force is inversely proportional to the square of the
distance. The third law follows from the fact that the gravitational force
is proportional to the mass of the planet, as we now show.

In the case of an elliptical orbit, we can find the period of the motion
from Eqs. (3-227) and (3-246):

2702, \1/2
T = ngmzb = 2Tmﬂraz(l — )12 = (7%E(3m> » (3-265)

or, using Eq. (3-261),
72 = 47%3 ]k"—‘] : (3-266)

In the case of a small body of mass m moving under the gravitational at-
traction [Eq. (3-230)] of a large body of mass M, this becomes

2

= é]‘}r—aaa. (3-267)
The coefficient of a® is now a constant for all planets, in agreement with
Kepler’s third law. Equation (3-267) allows us to “weigh” the sun, if we
know the value of G, by measuring the period and major axis of any plane-
tary orbit. This has already been worked out in Chapter 1, Problem 9,
for a circular orbit. Equation (3-267) now shows that the result applies
also to elliptical orbits if the semimajor axis is substituted for the radius.

We have shown that Kepler’s laws follow from Newton’s laws of motion
and the law of gravitation. The converse problem, to deduce the law of
force from Kepler’s laws and the law of motion, is an easier problem, and a
very important one historically, for it was in this way that Newton de-
duced the law of gravitation. We expect that the motions of the planets
should show slight deviations from Kepler’s laws, in view of the fact that
the central force problem which was solved in the last section represents an
idealization of the actual physical problem. In the first place, as pointed
out in Section 3-13, we have assumed that the sun is stationary, whereas
actually it must wobble slightly due to the attraction of the planets going



134 MOTION OF PARTICLE IN TWO OR THREE DIMENSIONS [cHAP. 3

around it. This effect is very small, even in the case of the largest planets,
and can be corrected for by the methods explained later in Section 4-7.
In the second place, a given planet, say the earth, is acted on by the gravi-
tational pull of the other planets, as well as by the sun. Since the masses
of even the heaviest planets are only a few percent of the mass of the sun,
this will produce small but measurable deviations from Kepler’s laws. The
expected deviations can be calculated, and they agree with the very pre-
cise astronomical observations. In fact, the planets Neptune and Pluto
were discovered as a result of their effects on the orbits of the other planets.
Observations of the planet Uranus for about sixty years after its discovery
in 1781 showed unexplained deviations from the predicted orbit, even after
corrections were made for the gravitational effects of the other known
planets. By a careful and elaborate mathematical analysis of the data,
Adams and Leverrier were able to show that the deviations could be ac-
counted for by assuming an unknown planet beyond Uranus, and they cal-
culated the position of the unknown planet. The planet Neptune was
promptly discovered in the predicted place.

The orbits of the comets, which are occasionally observed to move in
around the sun and out again, are, at least in some cases, very elongated
ellipses. It is not at present known whether any of the comets come from
beyond the solar system, in which case they would, at least initially, have
parabolic or hyperbolic orbits. Even those comets whose orbits are known
to be elliptical have rather irregular periods due to the perturbing gravita-
tional pull of the larger planets near which they occasionally pass. Be-
tween close encounters with the larger planets, a comet will follow fairly
closely a path given by Eq. (3-256), but during each such encounter, its
motion will be disturbed, so that afterwards the constants A, B, and 6,
will have values different from those before the encounter.

As noted in Section 3-13, we expect in general that the bounded orbits
arising from an attractive central force F(r) will not be closed (Fig. 3-34).
Closed orbits (except for circular orbits) arise only where the period of
radial oscillations is equal to, or is an exact rational multiple of, the period
of revolution. Only for certain special forms of the function F(r), of which
the inverse square law is one, will the orbits be closed. Any change in the
inverse square law, either a change in the exponent of r or an addition to
F(r) of a term not inversely proportional to r2, will be expected to lead to
orbits that are not closed. However, if the change is very small, then the
orbits ought to be approximately elliptical. The period of revolution will
then be only slightly greater or slightly less than the period of radial oscilla-
tions, and the orbit will be approximately an ellipse whose major axis
rotates slowly about the center of force. As a matter of fact, a slow pre-
cession of the major axis of the orbit of the planet Mercury has been ob-
served, with an angular velocity of 41 seconds of arc per century, over and
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above the perturbations accounted for by the gravitational effects of the
other planets. It was once thought that this could be accounted for by
the gravitational effect of dust in the solar system, but it can be shown
that the amount of dust is far too small to account for the effect. It is
now fairly certain that the effect is due to slight corrections to Newton’s
theory of planetary motion required by the theory of relativity.*

The problem of the motion of electrons around the nucleus of an atom
would be the same as that of the motion of planets around the sun, if
Newtonian mechanics were applicable. Actually, the motion of electrons
must be calculated from the laws of quantum mechanics. Before the dis-
covery of quantum mechanics, Bohr was able to give a fair account of the
behavior of atoms by assuming that the electrons revolve in orbits given
by Newtonian mechanics. Bohr's theory is still useful as a rough picture
of atomic structure.}

3-16 Hyperbolic orbits. The Rutherford problem. Scattering cross
section. The hyperbolic orbits are of interest in connection with the mo-
tion of particles around the sun which may come from or escape to outer
space, and also in connection with the collisions of two charged particles.
If a light particle of charge ¢; encounters a, heavy particle of charge g, at
rest, the light particle will follow a hyperbolic trajectory past the heavy
particle, according to the results obtained in Section 3-14. In the case
of collisions of atomic particles, the region in which the trajectory bends
from one asymptote to the other is very small (a few angstrom units or
less), and what is observed is the deflection angle ® = 7w — 2« (Fig. 3-41)
between the paths of the incident particle before and after the collision.
Figure 3-41 is drawn for the case of a repelling center of force at F, but the
figure may also be taken to represent the case of an attracting center at
F'. By Egs. (3-249) and (3-260),

2\ 1/2
tan—g)— =cota = (& — 1)7V/2 = (E%) . (3-268)

Let the particle have an initial speed v, and let it be traveling in such a
direction that, if undeflected, it would pass a distance s from the center of
force (F). The distance s is called the smpact parameter for the collision.
We can readily compute the energy and angular momentum in terms of

* A. Einstein and L. Infeld, The Evolution of Physics. New York: Simon and
Schuster, 1938. (Page 253.) For a mathematical discussion, see R. C. Tolman,
Relativity, Thermodynamics, and Cosmology. Oxford: Oxford University Press,
1934. (Section 83.)

t M. Born, Atomic Physics, tr. by John Dougall. New York: Stechert, 1936.
(Chapter 5.)
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mvo
Fig. 3-41. A hyperbolic orbit.

the speed and impact parameter:
E = Imv}, (3-269)
L = mues. (3-270)

Substituting in Eq. (3-268), we have for the scattering angle ©O:

tan ® = K] . (3-271)

2 msv%

If a light particle of charge g3 collides with a heavy particle of charge g3,
this is, by Eq. (3-231),

tan & — 10122 . (3-272)

In a typical scattering experiment, a stream of charged particles may be
shot in a definite direction through a thin foil. Many of the particles
emerge from the foil in a different direction, after being deflected or scat-
tered through an angle © by a collision with a particle within the foil.
To put Eq. (3-272) in a form in which it can be compared with experiment,
we must eliminate the impact parameter s, which cannot be determined
experimentally. In the experiment, the fraction of incident particles scat-
tered through various angles © is observed. It is customary to express
the results in terms of a cross section defined as follows. If N incident
particles strike a thin foil containing n scattering centers per unit area, the
average number dN of particles scattered through an angle between © and
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e
e

Fi1a. 3-42. Cross section for scattering.

O + dO is given in terms of the cross section do by the formula

dw]l' — n do. (3-273)

do is called the cross section for scattering through an angle between © and
© + dB©, and can be thought of as the effective area surrounding the scat-
tering center which the incident particle must hit in order to be scattered
through an angle between ® and ® 4 d®. For if there is a “target area”
do around each scattering center, then the total target area in a unit area
is nde. If N particles strike one unit area, the average number striking
the target area is Nn do, and this, according to Eq. (3-273), is just dN, the
number of particles scattered through an angle between ® and © 4 d@.

Now consider an incident particle approaching a scattering center F
as in Figs. 3-41 and 3—42. If the impact parameter is between s and
8 + ds, the particle will be scattered through an angle between © and
© + dO, where 0 is given by Eq. (3-272), and d0 is given by the differen-
tial of Eq. (3-272):

1 . 9192 .
‘ W(@/z)d@ = “——'—ms2v(2) ds. (3 274)

The area of the ring around F of inner radius s, outer radius s + ds, at
_ which the incident particle must be aimed in order to be scattered through
an angle between ® and © + d0, is

do = 2wsds. (3-275)

Substituting for s from Eq. (3-272), and for ds from Eq. (3-274) (omitting
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the negative sign), we obtain

do — 4142)2 2rsin O ;4 (3-276)

mot) S0t (8/2) “°

This formula can be compared with do determined experimentally as given
by Eq. (3-273). Formula (3-276) was deduced by Rutherford and used in
interpreting his experiments on the scattering of alpha particles by thin
metal foils. He was able to show that the formula agrees with his experi-
ments with ¢, = 2e (charge on alpha particle),* and ¢z = Ze (charge on
atomie nucleus), so long as the perihelion distance (a + ae in Fig. 3—41) is
larger than about 10~!2 ¢cm, which shows that the positive charge on the
atom must be concentrated within a region of radius less than 1072 cm.
This was the origin of the nuclear theory of the atom. The perihelion
distance can be computed from formula (3-262) or by using the conserva-
tion laws for energy and angular momentum, and is given by

2\1/2

meigs

The smallest perihelion distance for incident particles of a given energy
occurs when L = 0 (s = 0), and has the value

rimin = T2 (3-278)

Hence if there is a deviation from Coulomb’s law of force when the alpha -
particle grazes or penetrates the nucleus, it should show up first as a devia-
tion from Rutherford’s law [Eq. (3—276)] at large angles of deflection ®, and
should show up when the energy E is large enough so that

E > 1%z, (3-279)
To
where rq is the radius of the nucleus. The earliest measurements of nuclear
radii were made in this way by Rutherford, and turn out to be of the order
of 10712 ¢m.

The above calculation of the cross section is strictly correct only when
the alpha particle impinges on a nucleus much heavier than itself, since the
scattering center is assumed to remain fixed. This restriction can be re-
moved by methods to be discussed in Section 4-8. Alpha particles also
collide with electrons, but the electron is so light that it cannot appreciably
deflect the alpha particle. The collision of an alpha particle with a nucleus

* Here e stands for the magnitude of the electronic charge.
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should really be treated by the methods of quantum mechanics. The con-
cept of a definite trajectory with a definite impact parameter s is no longer
valid in quantum mechanics. The concept of cross section is still valid in
quantum mechanics, however, as it should be, since it is defined in terms of
experimentally determined quantities. The final result for the scattering
cross section turns out the same as our formula (3-276).* It is a fortunate
coincidence in the history of physics that classical mechanics gives the right
answer to this problem.

3-17 Motion of a particle in an electromagnetic field. The laws deter-
mining the electric and magnetic fields due to various arrangements of
electric charges and currents are the subject matter of electromagnetic
theory. The determination of the motions of charged particles under given
electric and magnetic forces is a problem in mechanics. The electric force
on a particle of charge ¢ located at a point r is

F = ¢E(r), (3-280)

where E(t) is the electric field intensity at the point r. The electric field
intensity may be a function of time as well as of position in space. The
force exerted by a magnetic field on a charged particle at a point r depends
on the velocity v of the particle, and is given in terms of the magnetic
induetion B(r) by the equation:t

F= %v x B(r), (3-281)

where ¢ = 3 X 10'° em/sec is the velocity of light, and all quantities are
in gaussian units, i.e., g is in electrostatic units, B in electromagnetic units
(gauss), and v and F are in cgs units. In mks units, the equation reads

F = ¢v x B(r). (3-282)

Equation (3-280) holds for either gaussian or mks units. We shall base
our discussion on Eq. (3-281) (gaussian units), but the results are readily
transcribed into mks units by omitting ¢ wherever it occurs. The total
electromagnetic force acting on a particle due to an electric field intensity E
and a magnetic induction B is

F = ¢E %v x B. © (3-283)
* D. Bohm, Quantum Theory. New York: Prentice-Hall, 1951. (Page 537).

t G. P. Harnwell, Principles of Electricity and Electromagnetism, 2nd ed. New
York: McGraw-Hill, 1949. (Page 302.)
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If an electric charge moves near the north pole of a magnet, the magnet
will exert a force on the charge given by Eq. (3-281); and by Newton’s
third law the charge should exert an equal and opposite force on the
magnet. This is indeed found to be the case, at least when the velocity
of the particle is small compared with the speed of light, if the magnetic
field due to the moving charge is calculated and the force on the magnet
computed. However, since the magnetic induction B is directed radially
away from the pole, and the force F is perpendicular to B, the forces on
the charge and on the pole are not directed along the line joining them,
as in the case of a central force. Newton’s third law is sometimes stated
in the “strong” form in which action and reaction are not only equal and
opposite, but are directed along the line joining the interacting particles.
For magnetic forces, the law holds only in the “weak’” form in which nothing
is said about the directions of the two forces except that they are opposite.
This is true not only of the forces between magnets and moving charges,
but also of the magnetic forces exerted by moving charges on one another.

If the magnetic field is constant in time, then the electric field intensity
can be shown to satisfy the equation

vxE=0. (3-284)
The proof of this statement belongs to electromagnetic theory and need
not concern us here.* We note, however, that this implies that for static

electric and magnetic fields, the electric forece on a charged particle is con-
servative. We can therefore define an electric potential

o) = — [ "E-dr, (3-285)

such that
E= —Ve¢. (3-286)

Since E is the force per unit charge, ¢ will be the potential energy per unit
charge associated with the electric force:

V(r) = qo(r). (3-287)

Furthermore, since the magnetic force is perpendicular to the velocity, it
can do no work on a charged particle. - Consequently, the law of con-
servation of energy holds for a particle in a static electromagnetic field:

T + g6 = E, (3-288)

where FE is a constant.

¥ Harnwell, op. cit. (Page 340.)
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A great variety of problems of practical and theoretical interest arise
involving the motion of charged particles in electric and magnetic fields.
In general, special methods of attack must be devised for each type of
problem. We shall discuss two special problems which are of interest both
for the results obtained and for the methods of obtaining those results.

We first consider the motion of a particle of mass m, charge ¢, in a uni-
form constant magnetic field. Let the z-axis be chosen in the direction of
the field, so that

B(r, t) = Bk, (3-289)

where B is a constant. The equations of motion are then, by Eq. (3-281),

mi = =g, mj = — =3, mi = 0. (3-290)

According to the last equation, the z-component of velocity is constant,
and we shall consider the case when v, = 0, and the motion is entirely in
the zy-plane. The first two equations are not hard to solve, but we can
avoid solving them directly by making use of the energy integral, which in
this case reads

imv® = E. (3-291)

The force is given by:
F = %v x k, (3-292)
F = %2 . (3-293)

The force, and consequently the acceleration, is therefore of constant
magnitude and perpendicular to the velocity. A particle moving with
constant speed v and constant acceleration a perpendicular to its direction
of motion moves in a circle of radius 7 given by Eq. (3-80):

2
a=r?="_F. (3-294)
r m

We substitute for F from Eq. (3-293) and solve for r:

cmy

r="g" (3-295)

The product Br is therefore proportional to the momentum and inversely
proportional to the charge.
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This result has many practical applications. If a cloud chamber is placed in a
uniform magnetic field, one can measure the momentum of a charged particle by
measuring the radius of curvature of its track. The same principle is used in a
beta-ray spectrometer to measure the momentum of a fast electron by the curva-
ture of its path in a magnetic field. In a mass spectrometer, a particle is ac-
celerated through a known difference of electric potential, so that, by Eq. (3-288),
its kinetic energy is

3mv? = q(do — ¢1). (3-296)

It is then passed through a uniform magnetic field B. If ¢ is known, and r, B,
(9o — ¢1) are measured, we can climinate v between Eqs. (3-295) and(3-296),
and solve for the mass:
22
¢B°r

™ g0 — 60 ¢-20n

There are many variations of this basic idea. The historic experiments of
J. J. Thomson which demonstrated the existence of the electron were essentially
of this type, and by them Thomson succeeded in showing that the path traveled
by a cathode ray is that which would be followed by a stream of charged particles,
all with the same ratio ¢/m. In a eyclotron, charged particles travel in circles in
& uniform magnetic field, and receive increments in energy twice per revolution
by passing through an alternating electric field. The radius r of the circles there-
fore increases, according to Eq. (3—295), until a maximum radius is reached, at
which radius the particles emerge in a beam of definite energy determined by
Eq. (3-295). The frequency v of the alternating electric field must be the same
as the frequency » of revolution of the particles, which is given by

v = 2xry. (3-298)
Combining this equation with Eq. (3—295), we have

_ 9B
Y= orme

(3-299)

Thus if B is constant, » is independent of 7, and this is the fundamental principle
on which the operation of the cyclotron is based.* In the betatron, electrons
travel in circles, and the magnetic field within the circle is made to increase.
Since B is changing with time, V X E is no longer zero; the changing magnetic
flux induces a voltage around the circle such that a net amount of work is done
on the electrons by the electric field as they travel around the circle. The betatron
is so designed that the increase of B at the electron orbit is proportional to the
increase of my, so that r remains constant.

* According to the theory of relativity, the mass of a particle increases with
velocity. at velocities near the speed of light, and consequently the cyclotron
cannot accelerate particles to such speeds unless » is reduced or B is increased as
the particle velocity increases. [It turns out that Eq. (3-295) still holds in
relativity theory.]
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Finally, we consider a particle of mass m, charge ¢, moving in a uniform
constant electric field intensity E and a umform constant magnetic induc-
tion B. Again let the z-axis be chosen in the direction of B, and let the
y-axis be chosen so that E is parallel to the yz-plane:

B= Bk, E=E,j+ Ek, (3-300)

where B, E,, E, are constants. The equations of motion, by Eq. (3-283),
are

mi = -qc—B J, (3-301)
mj = — 265 &+ g, (3-302)
mé = qFE,. (3-303)

The z-component of the motion is uniformly accelerated:

lqE

2 = zg + %ot + (3-304)

To solve the z and y equa.tlons we differentiate Eq. (3-301) and substitute
in Eq. (3-302) in order to eliminate .

m’.. gB . _ans
B z= P + ¢E,. (3-305)
By making the substitutions
— 9B _
= - (3-306)
_ 9, =
o= "t (3-307)

we can write Eq. (3-305) in the form

d2
7y + i = aw. (3—308)

This equation has the same form as the equation for a harmonic oscillator
with angular frequency w subject to a constant applied “force” aw, except
that & appears in place of the coordinate. The corresponding oscillator
problem was considered in Chapter 2, Problem 33. The solution in this

case will be o
=5 + 4, cos (wt + 8,), (3-309)

where A, and 6, are arbitrary constants to be determined. By eliminating &
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from Egs. (3-301) and (3-302), in a similar way, we obtain a solution for 7:
g = A, cos (wt + 6). (3-310)

We get z and y by integrating Eqs. (3-309) and (3-310):
v =Co+ %+ A2 gin (wt + o)), (3-311)
©w W
Ay .
y=0Cy+ - Sin (wt + 6,). (3-312)

Now a difficulty arises, for we have six constants 4, 4, 6,, 6,, Cz, and C
to be determined, and only four initial values zq, ¥, £o, o to determine
them. The trouble is that we obtained the solutions (3-311) and (3-312) by
differentiating the original equations, and differentiating an equation may
introduce new solutions that do not satisfy the original equation. Con-
sider, for example, the very simple equation

z = 3.
Differentiating, we get

=0,
whose solution is

z = C.

Now only for one particular value of the constant C' will this satisfy the
original equation. Let us substitute Egs. (3-311) and (3-312) or, equiva-
lently, Eqgs. (3-309) and (3-310) into the original Eqgs. (3-301) and (3-302),
using Eqgs. (3—-306) and (3-307):

~ % A, sin (f + 6;) = %A,,cos (ot + 6,), (3-313)
~ B gysin i+ 0) = — L docos @+ 6).  (3-314)

These two equations will hold only if A,, 4,, 6,, and 6, are chosen so that

A, = Ay (3-315)
sin (wt + 6;) = —cos (wt + 6,), (3-316)
cos (wt + 6,) = sin (ot + 6,). (3-317)

The latter two equations are satisfied if

8, = 6, + g (3-318)
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z

F16. 3-43. Orbits in the zy-plane of a charged particle subject to a magnetic
field in the z-direction and an electric field in the y-direction.

Let us set
Ay, = Ay = wA, (3-319)
8, = 0, (3-320)
0, = 6+ ’2—r (3-321)
Then Egs. (3-311) and (3—-312) become
z = C, + Asin (ot +6) + %f (3-322)
y=C,+ Acos(wt+ 8). (3-323)

There are now only four constants, 4, 6, C,, C,, to be determined by the
initial values zg, yo, &0, 0. The z-motion is, of course, given by Eq. (3-304).
If E, = 0, the zy-motion is in a circle of radius A with angular velocity w
about the point (C;, C,); this is the motion considered in the previous
example. The effect of E, is to add to this uniform circular motion a
uniform translation in the z-direction! The resulting path in the zy-plane .
will be a cycloid having loops, cusps, or ripples, depending on the initial
conditions and on the magnitude of E, (Fig. 3-43). This problem is of
interest in connection with the design of magnetrons.
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ProBLEMS

1. Prove, on the basis of the geometric definitions of the operations of vector
algebra, the following equations. In many cases a diagram will suffice. (a) Eq.
(3-7D, () Eq. (3-17), (¢) Eq. (3-26), (d) Eq. (3-27), *(e) Eq. (3-35).

2. Prove, on the basis of the algebraic definitions of the operations of vector
algebra in terms of components, the following equations: (a) Eq. (3-8), (b) Eq.
(3-17), (¢) Eq. (3-27), (d) Eq. (3-34), (e) Eq. (3-35).

- 3. Derive Eq. (3-32) by direct calculation, using Eq. (3-10) to represent A
and B, and making use of Egs. (3-25) to (3-31).

4. (a) Prove that A - (B X C) is the volume of the parallelepiped whose edges
are A, B, C with positive or negative sign according to whether a right-hand screw
rotated from A toward B would advance along C in the positive or negative direc-
tion. A, B, C are any three vectors not lying in a single plane. (b) Use this
result to prove Eq. (3-34) geometrically. Verify that the right and left members
of Eq. (3-34) are equal in sign as well as in magnitude.

5. Prove the following inequalities. Give a geometric and an algebraic proof
(in terms of components) for each:

(a) |A 4+ B| < |A[ + [B|.
(b) |A-B| < || [B].
) IA x B| < |A] B|.

6. {(a) Obtain a formula analogous fo Eq. (3-40) for the magnitude of the
sum of three forces F1, Fo, F3, in terms of F1, F, F3, and the angles 612, 623, 031
between pairs of forces. [Use the suggestions following Eq. (3—40).]

(b) Obtain a formula in the same terms for the angle a1, between the total
force and the component force F.

7. Prove Egs. (3-54) and (3-55) from the definition (3-52) of vector differen-
tiation.

8. Prove Eqs. (3-56) and (3-57) from the algebraic definition (3-53) of vector
differentiation.

9. Give suitable definitions, analogous to Eqgs. (3-52) and (3-53), for the
integral of a vector function A(f) with respect to a scalar ¢:

t2
/: A(t) dt -

Write a set of equations like Eqs. (3—54)—(3-57) expressing the algebraic proper-
ties. you would expect such an integral to have. Prove that on the basis of either
definition

t
d
= /0 A() dt = A(Y).

10. A 45° isosceles right triangle ABC has a hypotenuse AB of length 4a. A
particle is acted on by a force attracting it toward a point O on the hypotenuse a
distance a from the point A. The force is equal in magnitude to k/r2, where r is
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the distance of the particle from the point 0. Calculate the work done by this
force when the particle moves from A to C to B along the two legs of the triangle.
Make the calculation by both methods, that based on Eq. (3—-61) and that based
on Eq. (3-63).

11. (a) A particle in the zy-plane is attracted toward the origin by a force
.F = k/y, inversely proportional to its distance from the z-axis. Calculate the
work done by the force when the particle moves from the point £ =0,y = a to
the point £ = 2a,y = 0 along a path which follows the sides of a rectangle
consisting of a segment parallel to the z-axis from z = 0,y = a to x = 2a,
y = a, and a vertical segment from the latter point to the z-axis. (b) Calculate
the work done by the same force when the particle moves along an ellipse of
semiaxes a, 2a. [Hint: Set x = 2asin 6,y = acos6.]

12. (a) Find the components of d3t/di? in spherical coordinates. (b) Find
the components of d?A/dt? in cylindrical polar coordinates, where the vector A
is a function of ¢ and is located at a moving point.

*13. (a) Plane parabolic coordinates f, b are defined in terms of cartesian
coordinates z, y by the equations

s=f—h y =24

where f and & are never negative. Find f and A in terms of z and y. Let unit
vectors f, h be defined in the directions of increasing f and & respectively. That
is, f is a unit vector in the direction in which a point would move if its f-coordinate
increases slightly while its A-coordinate remains constant. Show that f and h are
perpendicular at every point. [Hint: f = (idz + j dy)[(dz)? 4 (dy)?]~1/2, when
df > 0,dh = 0. Why?]

(b) Show that f and h are functions of f, 4, and find their derivatives with
respect to f and h. Show that r = fU2(f + h)1/2f 4 RV2(f + h)V/2h. Find
the components of velocity and acceleration in parabolic coordinates.

14. A particle moves along the parabola

y® = 4§85 — 4foz,

where fo is a constant. Its épeed v is constant. Find its velocity and acceleration
components in rectangular and in polar coordinates. Show that the equation of
the parabola in polar coordinates is

260
reos” 5 = fo.

What is the equation of this parabola in parabolic coordinates (Problem 13)?

15. A particle moves with varying speed along an arbitrary curve lying in the
zy-plane. The position of the particle is to be specified by the distance s the par-
ticle has traveled along the curve from some fixed point on the curve. Let r(s)
be a unit vector tangent to the curve at the point s in the direction of increasing s.
Show that

dr

1 4
—_ = -
r

ds
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where »(s) is a unit vector normal to the curve at the point s, and r(s) is the radius
of curvature at the point s, defined as the distance from the curve to the point of
intersection of two nearby normals.* Hence derive the following formulas for the

velocity and acceleration of the particle:
o2

. a S
v = §r, a=sr+—;v.

16. Using the properties of the vector symbol V, derive the vector identities:

curl (curl A) = grad (divA) — V24,
ugradv = grad (w) — v grad u.

Then write out the z-components of each:side of these equations and prove by
direct calculation that they are equal in each case. (One must be very careful,
in using the first identity in curvilinear coordinates, to take proper account of the
dependence of the unit vectors on the coordinates.)

17. Calculate curl A in cylindrical coordinates.

18. Give a suitable definition of the angular momentum of a particle about an
axis in space. Taking the specified axis as the z-axis, express the angular momen-
tum in terms of cylindrical coordinates. If the force acting on the particle has
cylindrical components F., F,, F,, prove that the time rate of change of angular
momentum about the z-axis is equal to the torque about that axis.

19. A moving particle of mass m is located by spherical coordinates r(f), B(t),
¢(t). The force acting on it has spherical components F,, Fy, F,. Calculate the
spherical components of the angular momentum vector and of the torque vector
about the origin, and verify by direct calculation that the equation

dL
=N
follows from Newton’s equation of motion.

20. Solve for the next term beyond those given in Egs. (3-177) and (3-178).

21. A projectile is to be fired from the origin in the zz-plane (z-axis vertical)
with muzzle velocity vo to hit a target at the point z = x9, 2 = 0. (a) Neglect-
ing air resistance, find the correct angle of elevation of the gun. Show that, in
general, there are two such angles unless the target is at or beyond the maximum
range. (b) Find the first-order correction to the angle of elevation due to air
resistance.

22. A projectile is fired from the origin with initial velocity Vo = (Vzq, Uyo; ¥z0)-
The wind velocity is v, = wj. Solve the equations of motion (3-180) for x, y, 2
as functions of £. Find the point x1, y1 at which the projectile will return to the
horizontal plane, keeping only first-order terms in b. Show that if air resistance
and wind velocity are neglected in aiming the gun, air resistance alone will cause
the projectile to fall short of its target a fraction 4bv.,/3myg of the target distance,

*W. F. Osgood, Introduction to the Calculus. New York: Macmillan, 1937,
p. 259.
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and that the wind causes an additional miss in the y-coordinate of amount
2bwvZy/ (mg?).

23. Determine which of the following forces are conservative, and find the
potential energy for those which are:

(a) F. = 6abz®y — 20bz3y2, F, = 6abzz® — 10bxty,

F, = 18abzz?%y.
(b)  F, = 18abyz® — 20bx3y2, F, = 18abrz® — 10bzty,
F, = 6abzyz2.

(c) F = iF,(z) + iF,(y) + kF.(2).

24. Determine the potential energy for any of the following forces which are
conservative:

(@)  Fo =2+, F, =20y~ 1% + 30y’ + 97,

F, = 3a2%(z2 -+ y2).
(b) F, = apZcos ¢, F, = ap®sin ¢, F, = 2a2°.
(c) F, = —2arsin 0 cos ¢, Fg = —ar cos 8 cos ¢,

F, = arsin 0 sin .

25. A particle is attracted toward the z-axis by a force proportional to the
square of its distance from the zy-plane and inversely proportional to its distance
from the z-axis. Add an additional perpendicular force in such a way as to
make the total force conservative, and find the potential energy. Be sure to
write expressions for the forces and potential energy which are dimensionally
consistent.

26. Find the components of force for the following potential-energy functions:

(a) V = azy?s5.
(b) V= 3kr2.
(e) V = 3k2? + 32+ k.22

27. Find the force on the electron in the hydrogen molecule ion for which the
potential is

2 2
vo_%_¢2,
71 re
where 71 is the distance from the electron to the point y = 2z = 0, z = —a,

and rg is the distance from the electron to the pointy = z = 0, z = a.
28. Show that F = nF(r) (where n is a unit vector directed away from the
origin) is a conservative force by showing by direct calculation that the integral

[ P Fedr

1

along any path between r; and r2 depends only on r1 and re. [Hent: Express F
and dr in spherical coordinates.]
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29. The potential energy for an isotropic harmonic oscillator is
Vo= ¥kt

Plot the effective potential energy for the r-motion when a particle of mass m
moves with this potential energy and with angular momentum L about the
origin. Discuss the types of motion that are possible, giving as complete a descrip-
tion as is possible without carrying out the solution. Find the frequency of
revolution for circular motion and the frequency of small radial oscillations
about this circular motion. Hence describe the nature of the orbits which differ
slightly from circular orbits.

30. Find the frequency of small radial oscillations about steady circular mo-
tion for the effective potential given by Eq. (3-232) for an attractive inverse
square law force, and show that it is equal to the frequency of revolution.

31. Find r(t), 6(t) for the orbit of the particle in Problem 29. Compare with
the orbits found in Section 3-10 for the three-dimensional harmonic oscillator.

32. A particle of mass m moves under the action of a central force whose poten-
tial is

V@) = KErf, K >o.

For what energy and angular momentum will the orbit be a circle of radius a
about the origin? What is the period of this circular motion? If the particle is
slightly disturbed from this circular motion, what will be the period of small
radial oscillations about r = a?

33. According to Yukawa’s theory of nuclear forces, the attractive force be-
tween a neutron and a proton has the potential

Ke—ar

v = ==

’ K < 0.

(a) Find the force, and compare it with an inverse square law of force. (b) Dis-
cuss the types of motion which can occur if a particle of mass m moves under
such a force. (c¢) Discuss how the motions will be expected to differ from the
corresponding types of motion for an inverse square law of force. (d) Find L
and E for motion in a circle of radius a. (e) Find the period of circular motion
and the period of small radial oscillations. (f) Show that the nearly circular
orbits are almost closed when ¢ is very small.

34. (a) Discuss by the method of the effective potential the types of motion to
be expected for an attractive central force inversely proportional to the cube of
the radius:

F(r) = —f—g, K > 0.
(b) Find the ranges of energy and angular momentum for each type of motion.
(c¢) Solve the orbital equation (3-222), and show that the solution is one of the
forms:
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2 = Acos (80 — 60, 6
% = A cosh [8(6 — 60)], @
; — Asinh [8(8 — 60)), 3)
% = A(6 — 60), @

(d) For what values of L and E does each of the above types of motion occur?
Express the constants A and 8 in terms of E and L for each case. (e) Sketch a
typical orbit of each type.

35. (a) Discuss the types of motion that can occur for a central force

K K
o =—5t
Assume that K > 0, and consider both signs for K’.
(b) Solve the orbital equation, and show that the bounded orbits have the form
(if L2 > —mK")
_ a1l — e2) )
T =T ccosab

(¢) Show that this is a precessing ellipse, determine the angular velocity of pre-
cession, and state whether the precession is in the same or in the opposite direc-
tion to the orbital angular velocity.

36. A comet is observed a distance of 1.00 X 108 km from the sun, travel-
ing toward the sun with a velocity of 51.6 km per second at an angle of 45°
with the radius from the sun. Work out an equation for the orbit of the comet
in polar coordinates with origin at the sun and z-axis through the observed
position of the comet. (The mass of the sun is 2.00 X 1039 kgm.)

37. 1t will be shown in Chapter 6 (Problem 5) that the effect of a uniform dis-
tribution of dust of density p about the sun is to add to the gravitational attrac-
tion of the sun on a planet.of mass m an additional attractive central force

F' = —mkr,
where

4r
k—-3—pG

(a) If the mass of the sun is M, find the angular velocity of revolution of the
planet in a circular orbit of radius ro, and find the angular frequency of small
radial oscillations. Hence show that if F’ is much less than the attraction due
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to the sun, a nearly circular orbit will be approximately an ellipse whose major
axis precesses slowly with angular velocity

12
- or (r G) .

(b) Does the axis precess in the same or in the opposite direction to the orbital
angular velocity? Look up M and the radius of the orbit of Mercury, and cal-
culate the density of dust required to cause a precession of 41 seconds of arc
per century.

'38. It can be shown (Chapter 6, Problems 15 and 19) that the correction to
the potential energy of a mass m in the earth’s gravitational field, due to the
oblate shape of the earth, is approximately, in spherical coordinates, relative
to the polar axis of the earth,

2
V' = _mlfl)f?gﬂ_ (1 — 3cos’0),

where M is the mass of the earth and 2R, 2R(1 — 7) are the equatorial and
polar diameters of the earth. Calculate the rate of precession of the perigee
(point of closest approach) of an earth satellite moving in a nearly circular
orbit in the equatorial plane. Look up the mass of the earth and the equatorial
and polar diameters, and estimate the rate of precession in degrees per revolution
for a satellite 400 miles above the earth.

*39, Calculate the torque on an earth satellite due to the oblateness potential
energy correction given in Problem 38. A satellite moves in a circular orbit of
radius » whose plane is inclined so that its normal makes an angle a with the
polar axis. Assume that the orbit is very little affected in one revolution, and
calculate the average torque during a revolution. Show that the effect of such a
torque is to make the normal to the orbit precessin a cone of half angle « about
the polar axis, and find a formula for the rate of precession in degrees per revolu-
tion. Calculate the rate for a satellite 400 miles above the earth, using suitable
values for M, », and R.

40. (a) A satellite is to be launched from the surface of the earth. Assume
the earth is a sphere of radius R, and neglect friction with the atmosphere. The
satellite is to be launched at an angle a with the vertical, with a velocity vo, so
as to coast without power until its velocity is horizontal at an altitude h; above
the earth’s surface. A horizontal thrust is then applied by the last stage rocket
so as to add an additional velocity Av; to the velocity of the satellite. The final
orbit is to be an ellipse with perigee k1 (point of closest approach) and apogee
h2 (point farthest away) measured from the earth’s surface. Find the required
initial velocity vo and additional velocity Avy, in terms of R, «, hi, he, and g,
the acceleration of gravity at the earth’s surface.

(b) Write a formula for the change 641 in perigee height due to a small error
&8 in the final thrust direction, to order (6/3)2

41. Two planets move in the same plane in circles of radii 71, r2 about the
sun. A space probe is to be launched from planet 1 with velocity v; relative
to the planet, so as to reach the orbit of planet 2. (The velocity v is the relative
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velocity after the probe has escaped from the gravitational field of the planet.)
Show that v; is a minimum for an elliptical orbit whose perihelion and aphelion
are r1 and rz. In that case, find v1, and the relative velocity v2 between the
space probe and planet 2 if the probe arrives at radius ro at the proper time to
intercept planet 2. Express your results in terms of r1, 2, and the length of
the year Y of planet 1. Look up the appropriate values of r; and rg, and esti-
mate v; for trips to Venus and Mars from the earth.

42. A rocket is in an elliptical orbit around the earth, perigee r1, apogee 3,
measured from the center of the earth. At a certain point in its orbit, its engine
is fired for a short time so as to give a velocity increment Av in order to put
the rocket on an orbit which escapes from the earth with a final velocity g
relative to the earth. (Neglect any effects due to the sun and moon.) Show
that Av is & minimum if the thrust is applied at perigee, parallel to the orbital
velocity. Find Av in that case in terms of the elliptical orbit parameters ¢, @,
the acceleration g at a distance R from the earth’s center, and the final velocity
vg. Can you explain physically why Av is smaller for larger €?

43. A satellite moves around the earth in an orbit which passes across the
poles. The time at which it crosses each parallel of latitude is measured so that
the function 6(f) is known. Show how to find the perigee, the semimajor axis,
and the eccentricity of its orbit in terms of 6(t), and the value of g at the surface
of the earth. Assume the earth is a sphere of radius R.

44. It can be shown that the orbit given by the special theory of relativity for
a particle of mass m moving under a potential energy V(r) is the same as the orbit
which the particle would follow according to Newtonian mechanics if the poten-
tial energy were

2
vy — E— VO ;":2(’)] ,

where E is the energy (kinetic plus potential), and c is the speed of light. Discuss
the nature of the orbits for an inverse square law of force according to the theory
of relativity. Show by comparing the orbital angular velocity with the frequency
of radial oscillations for nearly circular motion that the nearly circular orbits,
when the relativistic correction is small, are precessing elhpses, and calculate
the angular velocity of precession.

45. A particle of mass m moves in an elliptical orbit of major axis 2a, eccentric-
ity ¢, in such a way that the radius to the particle from the center of the ellipse
sweeps out area at a constant rate

and with period 7 independent of @ and e. (a) Write out the equation of the ellipse
in polar coordinates with origin at the center of the ellipse. (b) Show that the
force on the particle is a central force, and find F(r) in terms of m,

46. A rocket moves with initial velocity vo toward the moon of mass M,
radius ro. Find the cross section o for striking the moon. Take the moon to be
at rest, and neglect all other bodies.
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47. Show that for a repulsive central force inversely proportional to the cube
of the radius, K
F (7') = 1'_3 H K > O,

the orbits are of the form (1) given in Problem 34, and express 8 in terms of K, E,
L, and the mass m of the incident particle. Show that the cross section for
scattering through an angle between © and © - d® for a particle subject to
this force is s

do = 2r K T— 0 doe.

mog 0%(2r — 0)%

48. A velocity selector for a beam of charged particles of mass m, charge e,
is to be designed to select particles of a particular velocity vo. The velocity
selector utilizes a uniform electric field E in the a-direction and a uniform
magnetic field B in the y-direction. The beam emerges from a narrow slit along
the y-axis and travels in the z-direction. After passing through the crossed
fields for a distance I, the beam passes through a second slit parallel to the first
and also in the yz-plane.

(a) If a particle leaves the origin with a velocity vo at a small angle with the
z-axis, find the point at which it arrives at the plane z = I. Assume that the
initial angle is small enough so that second-order terms in the angle may be
neglected.

(b) What is the best choice of E, B in order that as large a fraction as possible
of the partlcles with velocity vo arrive at the second slit, while partlcles of other
velocities miss the slit as far as possible?

(c) If the slit width is A, what is the maximum velocity deviation &y from
vo for which a particle moving initially along the z-axis can pass through the
second slit? Assume that E, B have the values chosen in part (b).

49. A particle of charge ¢ in a cylindrical magnetron moves in a uniform mag-
netic field

B = Bk,

and an electric field, directed radially outward or inward from a central wire

along the z-axis, o
E = > h,

where p is the distance from the z-axis, and h is a unit vector directed radially
outward from the z-axis. The constants ¢ and B may be either positive or
negative. (a) Set up the equations of motion in cylindrical coordinates. (b)
Show that the quantity

. B
mp2<p+g2?p2 = K

is a constant of the motion. (¢) Using this result, give a qualitative discussion,
based on the energy integral, of the types of motion that can occur. Consider all
cases, including all values of a, B, K, and E. (c¢) Under what conditions can
circular motion about the axis occur? (d) What is the frequency of small radial
oscillations about this circular motion?




CHAPTER 4
THE MOTION OF A SYSTEM OF PARTICLES

4-1 Conservation of linear momentum. Center of mass. We consider
in this chapter the behavior of mechanical systems containing two or more
particles acted upon by internal forces exerted by the particles upon one
another, and by external forces exerted upon particles of the system by
agents not belonging to the system. We assume the particles to be point
masses each specified by its position (z, y, 2) in space, like the single par-
ticle whose motion was studied in the preceding chapter.

Let the system we are studying contain N particles, and let them be
numbered 1,2, ..., N. The masses of the particles we designate by
my, Mg, . .., my. The total force acting on the kth particle will be the sum
of the internal forces exerted on particle & by all the other (N — 1) parti-
cles in the system, plus any external force which may be applied to particle
k. Let the sum of the internal forces on particle k be F%, and let the total
external force on particle k£ be F{. Then the equation of motion of the
kth particle will be

mif, = Fy+F, k=12...,N. (4-1)

The N equations obtained by letting k in Egs. (4-1) run over the num-
bers 1, ..., N are the equations of motion of our system. Since each of
these N equations is itself a vector equation, we have in general a set of 3N
simultaneous second-order differential equations to be solved. The solu-
tion will be a set of functions rx(f) specifying the motion of each particle in
the system. The solution will depend on 6N “arbitrary” constants speci-
fying the initial position and velocity of each particle. The problem of
solving the set of equations (4-1) is very difficult, except in certain special
cases, and no general methods are available for attacking the N-body
problem, even in the case where the forces between the bodies are central
forces. The two-body problem can often be solved, as we shall see, and
some general theorems are available when the internal forces satisfy certain
conditions.

If pr = myv; is the linear momentum of the kth particle, we can write
Eqgs. (4-1) in the form

B _p+F, k=1,...,N (4-2)

155
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Summing the right and left sides of these equations over all the particles,

we have
N N N
Zdl= thk > F+ > FL (4-3)
k=1 k=1 k=1

k=1

We designate by P the total linear momentum of the particles, and by F
the total external force:

N N
P= ) p= ), mv (G
k=1 k=1
N
F= ) Fi (4-5)
k=1

We now make the assumption, to be justified below, that the sum of the
internal forces acting on all the particles is zero:

N .
Z F; = 0. (4-6)

k=1
When Eqs. (4-4), (4-5), and (4-6) are substituted in Eq. (4-3), it becomes

dP
Vi F. 4-7
This is the momentum theorem for a system of particles. It states that the
time rate of change of the total linear momentum is equal to the total
external force. An immediate corollary is the conservation theorem for
linear momentum, which states that the total momentum P is constant
when no external forces act.

We now try to justify the assumption (4—6). Our first proof is based
on Newton’s third law. We assume that the force F% acting on particle %
due to all the other particles can be represented as a sum of separate forces
due to each of the other particles:

qué = Z Fg—)k; : (4"8)

Ik

where Fi_,, is the force on particle k due to particle L. According to New-
ton’s third law, the force exerted by particle I on particle k is equal and
opposite to that exerted by k on I:

Fi, = —Fi (4-9)
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Equation (4-9) expresses Newton’s third law in what we may call the weak
form; that is, it says that the forces are equal and opposite, but does not
imply that the forces act along the line joining the two particles. If we
now consider the sum in Eq. (4-6), we have

N . N ) .
D Fi= > > Fi. (4-10)

k=1 k=1 l+k

The sum on the right is over all forces acting between all pairs of particles
in the system. Since for each pair of particles k, I, two forces i, and

t_x appear in the total sum, and by Eq. (4-9) the sum of each such pair
is zero, the total sum on the right in Eq. (4-10) vanishes, and Eq. (4-6)
is proved.

Thus Newton’s third law, in the form (4-9), is sufficient to guarantee the
conservation of linear momentum for a system of particles, and it was for
this purpose that the law was introduced. The law of conservation of
momentum has, however, a more general validity than Newton’s third
law, as we shall see later. We can derive assumption (4-6) on the basis of
a somewhat weaker assumption than Newton’s third law. We do not need
to assume that the particles interact in pairs. We assume only that the
internal forces are such that they would do no net work if every particle in
the system should be displaced the same small distance ér from its position
at any particular instant. An imagined motion of all the particles in the
system is called a virtual displacement. The motion described, in which
every particle moves the same small distance ér, is called a small virtual
translation of the system. We assume, then, that in any small virtual
translation ér of the entire system, the internal forces would do no net
work. From the point of view of the general idea of conservation of energy,
this assumption amounts to little more than assuming that space is homo-
geneous. If we move the system to a slightly different position in space
without otherwise disturbing it, the internal state of the system should be
unaffected, hence in particular the distribution of various kinds of energy
within it should remain the same and no net work can have been done by
the internal forces. Let us use this idea to prove Eq. (4-6). The work
done by the force F§ in a small virtual translation ér is

Wi = Fi-or. (4-11)

The total work done by all the internal forces is

N N ]
W= Wi = a:-(Z F,:), (4-12)
k=1 k=1 )
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where we have factored out ér from the sum, since it is the same for all
particles. Assuming that §W = 0, we have

s:-(i Fk> = 0. (4-13)
k=1

Since Eq. (4-13) must hold for any ér, Eq. (4-6) follows.

We can put Eq. (4-7) in an illuminating form by introducing the con-
cept of center of mass of the system of particles. The vector R which
locates the center of mass is defined by the equation

N
MR = ) mry, (4-14)
k=1
where M is the total mass:
N
M=> m. (4-15)
k=1

The coordinates of the center of mass are given by the components of
Eq. (4-14):

1 & 13 1Y
X=M,§1 MELr, Y=Mkz=:1 MEYk, Z=M}§1mkzk' (4-16)

The total momentum defined by Eq. (4—4) is, in terms of the center of mass,

N
P = > mi; = MR, (4-17)
k=1
so that Eq. (4-7) can be written
MR =F. (4-18)

This equation has the same form as the equation of motion of a particle of
mass M acted on by a force F. We thus have the important theorem that
[when Eq. (4-6) holds] the center of mass of a system of particles moves like
a single particle, whose mass s the total mass of the system, acted on by a force
equal to the total external force acting on the system. -

4-2 Conservation of angular momentum. Let us calculate the time rate
of change of the total angular momentum of a system of N particles rela-
tive to a point @ not necessarily fixed in space. The vector angular mo-
mentum of particle k about a point §, not necessarily the origin, is to be
defined according to Eq. (3-142):

Lyg = mi(te — 1g) X (Bx — tg), (4-19)




4-2] CONSERVATION OF ANGULAR MOMENTUM 159

where rg is the position vector of the point @, and (r; — 1g) is the vector
from @ to particle k. Note that in place of the velocity &; we have
written the velocity (f; — #¢) relative to the point @ as origin, so that
Lio is the angular momentum of m; calculated as if @ were a fixed
origin. This is the most useful way to define the angular momentum about
a moving point Q. Taking the cross product of (r; — rg) with the equa-
tion of motion (4-2) for particle k, as in the derivation of Eq. (3-144), we
obtain

(e —10) x B = (1 — 1q) X Fi+ (s — 1) X Fi.  (4-20)

We now differentiate Eq. (4-19):

dLxg

i (rk — I‘Q) X = d —I— mk(rk — f‘Q) X (l‘k — I'Q) -— mk(rk — rQ) X fq.

(4-21)
The second term on the right vanishes. Therefore, by Eq. (4-20),

dLiq

~ = (T — 7o) % Fi + (s — ro) X Fi — mu(ty — 1rq) X fq.

(4-22)

The total angular momentum and total external torque about the point @
are defined as follows:

N
Lo = ) L, (4-23)
k=1
N .
Ng = D, (r — ro) X Fi. (4-24)
k=1

Summed over all particles, Eq. (4-22) becomes, if we use Eq. (4-14),

dLo

N . ‘
7 = No+ > (e — 1) X Fx — M(R — 1) X Fq. (4-25)

k=1

The last term will vanish if the acceleration of the point @ is zero or is
along the line joining @ with the center of mass. We shall restrict the
discussion to moments about a point @ satisfying this condition:

R — 1g) X £¢ = 0. (4-26)

The most important applications will be to cases where @ is at rest, or
where Q is the center of mass. If we also assume that the total internal
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torque vanishes: N
> (@ —1e) x Fi =0, (4-27)
k=1

then Eq. (4-25) becomes
dLo

-2 — No. 4-28)

This is the angular momentum theorem for a system of particles. An
immediate corollary is the conservation theorem for angular momentum,
which states that the total angular momentum of a system of particles is
constant if there is no external torque on the system.

In order to prove Eq. (4-27) from Newton’s third law, we need to assume
a stronger version of the law than that needed in the preceding section,
namely, that the force F%_,; is not only equal and opposite to F,_,k, but
that these forces act along the line joining the two particles; that is, the
two particles can only attract or repel each other. We shall assume, as
in the previous section, that F} is the sum of forces due to each of the
other particles: '

N . N .

Z(rk—rQ) XFi= ZZ(rk—rq) XF;_,]G

k=1 k=1 lsk

(rk — 1g) X Fip + (1 — 1) x FiLil.
(4-29)

In the second step, the sum of torques has been rearranged as a sum of
pairs of torques due to pairs of forces which, according to Newton’s third
law, are equal and opposite [Eq. (4-9)], so that

P

i M;

-
|

1
((tx — 1g) — (r1 — 1Q)] X Fi

il
M=

N .
> (r — 1) x Fi

k=1 k=1 l=1
N k—1 A
= Z (tx — 11) X Fi. (4-30)
k=1 l==1

The vector (ry — ;) has the direction of the line joining particle I with
particle k. If Fi, acts along this line, the cross product in Eq. (4-30)
vanishes. Hence if we assume Newton’s third law in the strong form, then
assumption (4-27) can be proved.

Alternatively, by assuming that no net work is done by the internal
forces in a small virtual rotation about any axis through the point @, we
can show that the component of total internal torque in any direction is
zero, and hence justify Eq. (4-27).
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F1g. 4-1. Motion of a simple gyroscope.

As an application of Eq. (4-28), we consider the action of a gyroscope
or top. A gyroscope is a rigid system of particles symmetrical about an
axis and rotating about that axis. The reader can convince himself that
when the gyroscope is rotating about a fixed axis, the angular momentum
vector of the gyroscope about a point @ on the axis of rotation is directed
along the axis of rotation, as in Fig. 4-1. The symmetry about the axis
guarantees that any component of the angular momentum L; of particle
k that is perpendicular to the axis will be compensated by an equal and
opposite component due to the diametrically opposite particle. Let us
choose the point @ where the gyroscope axis rests on its support. If now
a force F is applied downward on the gyroscope axis (e.g., the force of
gravity), the torque (r X F) due to F will be directed perpendicular to r
and to L, as shown in Fig. 4-1. By Eq. (4-28) the vector dL/dt is in the
same direction, as shown in the figure, and the vector L tends to precess
- around the figure in a cone under the action of the force F. Now the
statement that L is directed along the gyroscope axis is strictly true only
if the gyroscope is simply rotating about its axis. If the gyroscope axis
itself is changing its direction, then this latter motion will contribute an
additional component of angular momentum. If, however, the gyroscope
is spinning very rapidly, then the component of angular momentum along
its axis will be much greater than the component due to the motion of the
axis, and L will be very nearly parallel to the gyroscope axis. Therefore
the gyroscope axis must also precess around the vertical, remaining essen-
tially parallel to L. A careful analysis of the off-axis components of L
shows that, if the gyroscope axis is initially stationary in a certain direction
and is released, it will wobble slightly down and up as it precesses around
the vertical. This will be shown in Chapter 11. The gyroscope does not
“resist any change in its direction,” as is sometimes asserted, for the rate
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of change in its angular momentum is always equal to the applied torque,
just as the rate of change of linear momentum is always equal to the ap-
plied force. We can make the gyroscope turn in any direction we please
by applying the appropriate torque. The importance of the gyroscope as
a directional stabilizer arises from the fact that the angular momentum
vector L remains constant when no torque is applied. The changes in
direction of a well-made gyroscope are small because the applied torques
are small and L is very large, so that a small dL gives no appreciable change
in direction. Furthermore, a gyroscope only changes direction while a
torque is applied; if it shifts slightly due to occasional small frictional
torques in its mountings, it stops shifting when the torque stops. A large
nonrotating mass, if mounted like a gyroscope, would acquire only small
angular velocities due to frictional torques, but once set in motion by a
small torque, it would continue to rotate, and the change in position might
eventually become large.

4-3 Conservation of energy. In many cases, the total force acting on
any particle in a system of particles depends only on the positions of the
particles in the system:

Fp = Fi(ry, 12, ..., Iy), k=12...,N. (4-31)

The external force F¢, for example, might depend on the position r; of
particle k, and the internal force F% might depend on the positions of the
other particles relative to particle k. It may be that a potential function
V(ry, g, ..., ry) exists such that

14 14 v

sz=—-a—xk7 F"”:_a_yk’ sz=—a—;;) k=1,...,N.
4-32)
Conditions to be satisfied by the force functions Fy(ry, ..., ry) in order

for a potential V to exist can be worked out, analogous to the condition
(3-189) for a single particle. The result is rather unwieldy and of little
practical importance, and we omit this development here. If a potential
energy exists, we can derive a conservation of energy theorem as follows.
By Eq. (4-32), the equations of motion of the kth particle are

dvkz a V dvky —_ 3 V dvkg a V

TG T T xR Tdt T T ayyt ™ Tdat T oz

Multiplyivg Eqs. (4-33) by vk, Uky, V., respectively, and adding, we have
for each k:

oV dax | 3V dyx , 9V da

dt(% ””k>+ax ra +6yk Gt oz dt O k=1...,N. (434
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This is to be summed over all values of k:

d& ., N(anxk 3V dyi Bdek)
az:él(zmkvk)-l-’; o dt oy dt T om dt = 0. (4-35)

The second term in Eq. (4-35) is dV /dt:

N
d_sz(an oV du a_Vd_) (-36)

dt — £ \ox dt ' oyx di ' oz dt

and the first term is the time derivative of the total kinetic energy
N
T = Z Tmi. (4-37)
k=1
Consequently, Eq. (4-35) can be written
%(T + V) =o. (4-38)

Hence we again have a conservation of energy theorem,
T+V=E, (4-39)

where E is constant. If the internal forces are derivable from a potential-
energy function V, as in Eq. (4-32), but the external forces are not, the
energy theorem will be

N
L@+ V) =) Fw (4-40)
k=1

Suppose the internal force acting on any particle k can be regarded as
the sum of forces due to each of the other particles, where the force Fi_,,
on k due to ! depends only on the relative position (r; — r;) of particle k
with respect to particle I:

Fi = > Fii{m — 1) (4-41)
l#k '

It may be that the vector function Fi_,,(r;, — r;) is such that we can define
a potential-energy function

Via(te) = — /r e Fi_ i (tsr) - drgg, (4-42)

where
Iy = Iy — I (4—43)

This will be true if Fi_,, is a conservative force in the sense of Chapter 3,
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that is, if ‘
curl Fi_; = 0, (4-44)

where the derivatives are with respect to zxi, y1, 2. The gravitational and
electrostatic forces between pairs of particles are examples of conservative
forces. If Fi_, is conservative, so that V; can be defined, then*

_iBsz . L0V . kasz
0z ki 02r1
_.GVM .0V Vi .

= laxk—Jayk—kazk

3 A
-k =

(4-45)

If Newton’s third law (weak form) holds, then

.0V Vi

. aVH
+k 92k1

Fi,=—-F =i

E—1 Ik Frou +j g
.0V _ .0V _ GV“.
1 0 J Y k 0z

(4-46)

Thus V; will also serve as the potential-energy function for the force F._,;.
We can now define the total internal potential energy V* for the system of
particles as the sum of V; over all the pairs of particles:

N

. k=1
Vi, ..o tw) = 2, D, Via(te — 1), (4-47)
I=1

k=1

It follows from Egs. (4—41), (4-45), and (4-46), that the internal forces are

given by
; Ve LaV? av*
Fi = —i2— — —

! axk ] ayk 3zk ’

E=1...,N. (448

In particular, if the forces between pairs of particles are central forces, the
potential energy Vii(ri;) for each pair of particles depends only on the
distance rx; between them, and is given by Eq. (3—200); the internal forces
of the system are then conservative, and Eq. (4-48) holds. The energy
theorem (4-40) will be valid for such a system of particles. If the external
forces are also conservative, their potential energy can be added to V¢, and
the total energy is constant.

If there is internal friction, as is often the case, the internal frictional
forces depend on the relative velocities of the particles, and the conserva-
tion law of potential plus kinetic energy no longer holds.

* Note that V(rw) = V@, Yk, 2:1) = V(xe — 1, Yy — Y1, 2 — 21), s0 that
6V/a$k = BV/a.’L‘kz = —aV/ax,, etc.
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4~4 Critique of the conservation laws. We may divide the phenomena
to which the laws of mechanics have been applied into three major classes.
The motions of celestial bodies—stars, satellites, planets—are described
with extremely great precision by the laws of classical mechanics. It was
in this field that the theory had many of its important early successes.
The motions of the bodies in the solar system can be predicted with great
accuracy for periods of thousands of years. The theory of relativity pre-
dicts a few slight deviations from the classically predicted motion, but these
are too small to be observed except in the case of the orbit of Mercury,
where relativity and observation agree in showing a slow precession of the
axis of the elliptical orbit around the sun at an angular velocity of about
'0.01 degree per century.

The motion of terrestrial bodies of macroscopic and microscopic size
constitutes the second major division of phenomena. Motions in this class
are properly described by Newtonian mechanics, without any significant
corrections, but the laws of force are usually very complicated, and often
not precisely known, so that the beautifully precise caleulations of celestial
mechanics cannot be duplicated here.

The third class of phenomena is the motion of “atomic” particles:
molecules, atoms, electrons, nuclei, protons, neutrons, etc. Early attempts
to describe the motions of such particles were based on classical mechanics,
and many phenomena in this class can be understood and predicted on this
basis. However, the finer details of the behavior of atomic particles can
only be. properly described in terms of quantum mechanics and, for high
velocities, relativistic quantum mechanics must be introduced. We might
add a fourth class of phenomena, having to do with the intrinsic structure
of the elementary particles themselves (protons, neutrons, electrons, ete.).
Even quantum mechanics fails to describe such phenomena correctly, and
physics is now struggling to produce a new theory which will describe this
class of phenomena.

The conservation law for linear momentum holds for systems of celestial
bodies as well as for bodies of macroscopic and microscopic size. The
gravitational @nd mechanical forces acting between such bodies satisfy
Newton’s third law, at least to a high degree of precision. Linear momen-
tum is also conserved in most interactions of particles of atomic size, except
when high velocities or rapid accelerations are involved. The electrostatic
forces between electric charges at rest satisfy Newton’s third law, but when
the charges are in motion, their electric fields propagate with the velocity
of light, so that if two charges are in rapid relative motion, the forces be-
tween them may not at any instant be exactly equal and opposite. If a
fast electron moves past a stationary proton, the proton “sees” the electron
always a little behind its actual position at any instant, and the force on
the proton is determined, not by where the electron is, but by where it was
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a moment earlier. When electric charges accelerate, they may emit electro-
magnetic radiation and lose momentum in so doing. It turns out that the
law of conservation of momentum can be preserved also in such cases, but
only by associating momentum with the electromagnetic field as well as
with moving particles. Such a redefinition of momentum goes beyond the
original limits of Newtonian mechanics.

Celestial bodies and bodies of macroscopic or microscopic size are ob-
viously not really particles, since they have a structure which for many
purposes is not adequately represented by merely giving to the body three
position coordinates z, y, z. Nevertheless, the motion of such bodies, in
problems where their structure can be neglected, is correctly represented
by the law of motion of a single particle,

mf = F. (4-49)

This is often justified by regarding the macroscopic body as a system
of smaller particles satisfying Newton’s third law. For such a system,
the linear momentum theorem holds, and can be written in the form of
Eq. (4-18), which has the same form as Eq. (4-49). This is a very con-
venient way of justifying the application of Eq. (4-49) to bodies of macro-
scopic or astronomical size, provided our conscience is not troubled by the
fact that according to modern ideas it does not make sense. If the particles
of which the larger body is composed are taken as atoms and molecules,
then in the first place Newton’s third law does not invariably hold for such
particles, and in the second place we should apply quantum mechanies, not
classical mechanies, to their motion. The momentum theorem (4-18) can
be derived for bodies made up of atoms by using the laws of electrodynam-
ics and quantum mechanics, but this lies outside the scope of Newtonian
mechanics. Hence, for the present, we must take the law of motion (4-49),
as applied to macroscopic and astronomical bodies, as a fundamental
postulate in itself, whose justification is based on experimental grounds
or on the results of deeper theories. The theorems proved in Section 4-1
show that this postulate gives a consistent theory of mechanics in the
sense that if, from bodies satisfying this postulate, we construct a com-
posite body, the latter body will also satisfy the postulate.

The law of conservation of angular momentum, as formulated in Sec-
tion 4-2 for a system of particles, holds for systems of celestial bodies
(regarded as particles) and for systems of bodies of macroscopic size when-
ever effects due to rotation of the individual bodies can be neglected.
When rotations of the individual bodies enter into the motion, then a
conservation law for angular momentum still holds, provided we include
the angular momentum associated with such rotations; the bodies are then
no longer regarded as particles of the simple type considered in the pre-
ceding sections whose motions are completely deseribed simply by specify-
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ing the function r(f) for each particle. The total angular momentum of
the solar system is very nearly constant, even if the sun, planets, and
satellites are regarded as simple particles whose rotations can be neglected.
Tidal forces, however, convert some rotational angular momentum into
orbital angular momentum of the planets and satellites, and so rotational
angular momentum must be included if the law of conservation of angular
momentum is to hold precisely. Some change in angular momentum occurs
due to friction with interplanetary dust and rocks, but the effect is too
small to be observed, and could in any case be included by adding the
angular momentum of the interplanetary matter to the total.

The law of conservation of total angular momentum, including rotation,
of astronomical and terrestrial bodies can be justified by regarding each
body as a system of smaller particles whose mutual forces satisfy Newton’s
third law (strong form). The argument of Section 4-2 then gives the law
of conservation of total angular momentum, the rotational angular momen-
tum of a body appearing as ordinary orbital angular momentum (r X p) of
the particles of which it is composed. This argument is subject to the same
criticism as applied above to the case of linear momentum. If the “par-
ticles” of which a body is composed are atoms and molecules, then Newton’s
third law does not always hold, particularly in its strong form; moreover,
the laws of quantum mechanics apply to such particles; and in addition
atoms and molecules also possess rotational angular momentum which
must be taken into account. Even the elementary particles—electrons,
protons, neutrons, etc.—possess an intrinsic angular momentum which
is not associated with their orbital motion. This angular momentum is
called spin angular momentum from its analogy with the intrinsic angular
momentum of rotation of a macroscopic body, and must be included if the
total is to satisfy a conservation law. Thus we never arrive at the ideal
simple particle of Newtonian mechanics, described by its position r(¢) alone.
We are left with the choice of accepting the conservation law of angular
momentum as a basic postulate, or appealing for its justification to theories
which go beyond classical mechanics.

The gravitational forces acting between astronomical bodies are con-
servative, so that the principle of conservation of mechanical energy holds
very accurately in astronomy. In principle, there is a small loss of mechan-
ical energy in the solar system due to friction with interplanetary dust and
rocks, but the effect is too small to produce any observable effects on plane-
tary motion, even with the high precision with which astronomical events
are predicted and observed. There is also a very gradual but measurable
loss of rotational energy of planets and satellites due to tidal friction. For
terrestrial bodies of macroscopic or microscopic size, friction usually plays
an important part, and only in certain special cases where friction may be
neglected can the principle of conservation of energy in the form (4-39)
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or even (4-40) be applied. However, it was discovered by Joule that we
can associate energy with heat in such a way that the law of conservation
of energy of a system of bodies still applies to the total kinetic plus poten-
tial plus heat energy. If we regard a body as composed of atoms and mole-
cules, its heat energy turns out to be kinetic and potential energy of ran-
dom motion of its atoms and molecules. The electromagnetic forces on
moving charged particles are not conservative, and an electromagnetic
energy must be associated with the electromagnetic field in order to pre-
serve the conservation law of energy. Such extensions of the concept of
energy to include heat and electromagnetic energy are, of course, outside
the domain of mechanics. When the definition of energy is suitably ex-
tended to include not only kinetic energy, but energy associated with the
electromagnetic fields and any other force fields which may act, then a
law of conservation of energy holds quite generally, in classical, relativistic,
and quantum physics.

The conservation laws of energy, momentum, and angular momentum
are the cornerstones of present-day physics, being generally valid in all
physical theories. It seems at present an idle exercise to attempt to prove
them for material bodies within the framework of classical mechanics by
appealing to an outmoded picture of matter as made up of simple New-
tonian particles exerting central forces upon one another. The conserva-
tion laws are in a sense not laws at all, but postulates which we insist must
hold in any physical theory. If, for example, for moving charged particles,
we find that the total energy, defined as (T + V), is not constant, we do
not abandon the law, but change its meaning by redefining energy to in-
clude electromagnetic energy in such a way as to preserve the law. We
prefer always to look for quantities which are conserved, and agree to
apply the names “total energy,” “total momentum,” “total angular mo-
mentum” only to such quantities. The conservation of these quantities
is then not a physical fact, but a consequence of our determination to de-
fine them in this way. It is, of course, a statement of physical fact, which
may or may not be true, to assert that such definitions of energy, momen-
tum, and angular momentum can always be found. This assertion, has
so far been true; a deeper justification will be suggested at the end of
Section 9-6.

4-5 Rockets, conveyor belts, and planets. There are many problems
that can be solved by appropriate applications of the conservation laws
of linear momentum, angular momentum, and energy. In solving such
problems, it is necessary to decide which conservation laws are appropriate.
The conservation laws of linear and angular momentum or, rather, the
theorems (4-7) and (4-28) of which they are corollaries, are always appli-
cable to any physical system provided all external forces and torques are
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taken into account, and application of one or the other is appropriate
whenever the external forces or torques are known. The law of conserva-
tion of kinetic plus potential energy is applicable only when there is no
conversion of mechanical energy into other forms of energy. We cannot
use the law of conservation of energy when there is friction, for example,
unless there is a way to determine the amount of heat energy produced.

The conservation laws of energy, momentum, and angular momentum
refer always to a definite fixed system of particles. In applying the con-
servation laws, care must be taken to decide just how much is included in
the system to which they are to be applied, and to include all the energy
and momentum of this system in writing down the equations. One may
choose the system arbitrarily, including and excluding whatever particles
may be convenient, but if any forces act from outside the system on parti-
cles in the system, these must be taken into account.

A typical problem in which the law of conservation of linear momentum
is applicable is the conveyor belt problem. Material is dropped continu-
ously from a hopper onto a moving belt, and it is required to find the force
F required to keep the belt moving at constant velocity v (Fig. 4-2). Let
the rate at which mass is dropped on the belt be dm/dt. If m is the mass
of material on the belt, and M is the mass of the belt (which really does
not figure in the problem), the total momentum of the system, belt plus
material on the belt and in the hopper, is

P = (m+ M. (4-50)

We assume that the hopper is at rest; otherwise the momentum of the
hopper and its contents must be included in Eq. (4-50). The linear mo-
mentum theorem requires that

dP dm

F=E=I)W’ (4—51)

This gives the force applied to the belt. The power supplied by the force is

Fo=o° ‘Z——’;’ — —d—t(mv2) - d%[(m + M), (4-52)

This is twice the rate at which the kinetic energy is increasing, so that the

F1g. 4-2. A conveyor belt.
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conservation theorem of mechanical energy (4-40) does not apply here.
Where is the excess half of the power going?

The equation of motion of a rocket can be obtained from the law of
conservation of momentum. Let the mass of the rocket at any given in-
stant be M, and let its speed be v relative to some fixed coordinate system.
If material is shot out of the rocket motor with an exhaust velocity u rela-
tive to the rocket, the velocity of the exhaust relative to the fixed coordi-
nate system is v + u. If an external force F also acts on the rocket, then
the linear momentum theorem reads in this case:

%(Mv) — w4 u % —F. (4-53)
The first term is the time rate of change of momentum of the rocket. The
second term represents the rate at which momentum is appearing in the
rocket exhaust, where— (dM/dt) is the rate at which matter is being ex-
hausted. The conservation law applies to a definite fixed system of par-
ticles. If we fix our attention on the rocket at any moment, we must
remember that at a time d¢ later this system will comprise the rocket plus
the material exhausted from the rocket during that time, and both must
be considered in computing the change in momentum. The equation can

be rewritten:

dv _ _dM

The first term on the right is called the thrust of the rocket motor. Since
dM /dt is negative, the thrust is opposite in direction to the exhaust veloe-
ity. The force F may represent air resistance, or a gravitational force.

Let us solve this equation for the special case where there is no external
force:

dv aM
We multiply by dt/M and integrate, assuming that u is constant:
M
V— Vo= —u 1n—]‘70- (4-56)

The change of speed in any interval of time depends only on the exhaust
veloeity and on the fraction of mass exhausted during that time interval.
This result is independent of any assumption as to the rate at which mass
is exhausted.

Problems in which the law of conservation of angular momentum is use-
ful turn up frequently in astronomy. The angular momentum of the
galaxy of stars, or of the solar system, remains constant during the course
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of its development provided no material is ejected from the system. The
effect of lunar tides is gradually to slow down the rotation of the earth.
As the angular momentum of the rotating earth decreases, the angular
momentum of the moon must increase. The magnitude of the (orbital)
angular momentum of the moon is

L = mr2w, (4-57)

where m is the mass, w is the angular velocity, and r is the radius of the
orbit of the moon. We can equate the mass times the centripetal accelera-
tion to the gravitational force, to obtain the relation

2 GMm
mrw- =
r2

) (4-58)

where M is the mass of the earth. Solving this equation for w and substi-
tuting in Eq. (4-57), we obtain

L = (GMm?r)Y2, (4-59)

Therefore, as the moon’s angular momentum increases, it moves farther
away from the earth. (In attempting to determine the rate of recession
of the moon by equating the change of L to the change of the earth’s rota-
tional angular momentum, it would be necessary to determine how much
of the slowing down of the earth’s rotation by tidal friction is due to the
moon and how much to the sun. The angular momentum of the moon
plus the rotational angular momentum of the earth is not constant because
of the tidal friction due to the sun. The total angular momentum of the
earth-moon system about the sun is very nearly constant except for the
very small effect of tides raised on the sun by the earth.)

4-6 Collision problems. Many questions concerning collisions of
particles can be answered by applying the conservation laws. Since the
conservation laws are valid also in quantum mechanics,* results obtained
with their use are valid for particles of atomic and subatomic size, as well
as for macroscopic particles. In most collision problems, the colliding
particles are moving at constant velocity, free of any forece, for some time
before and after the collision, while during the collision they are under the
action of the forces which they exert on one another. If the mutual forces
during .the collision satisfy Newton’s third law, then the total linear mo-
mentum of the particles is the same before and after the collision. If
Newton’s third law holds in the strong form, the total angular momentum

*P. A. M. Dirac, The Principles of Quantum Mechanics, 3rd ed. Oxford:
Oxford University Press, 1947. (Page 115.)
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is conserved also. If the forces are conservative, kinetic energy is con-
served (since the potential energy before and after the collision is the same).
In any case, the conservation laws are always valid if we take into account
all the energy, momentum, and angular momentum, including that asso-
ciated with any radiation which may be emitted and including any energy
which is converted from kinetic energy into other forms, or vice versa.
We consider first a collision between two particles, 1 and 2, in which
the total kinetic energy and linear momentum are known to be conserved.
Such a collision is said to be elastic. If we designate by subscripts 1 and
2 the two particles, and by subseripts I and F the values of kinetic energy
and momentum before and after the collision respectively, the conservation
laws require
Pir + P2r = P1F + P2, (4-60)

Tir + Tor = T1r + Tar. (4-61)

Equation (4-61) can be rewritten in terms of the momenta and masses of
the particles:

Pir P31 — pir | DPir . (4-62)
2my ' 2mg 2my @ 2my

To specify any momentum vector p, we must specify three quantities,
which may be either its three components along any set of axes, or its mag-
nitude and direction (the latter specified perhaps by spherical angles 6, ¢).
Thus Egs. (4-60) and (4-62) represent four equations involving the ratio
of the two masses and twelve quantities required to specify the momenta
involved. If nine of these quantities are given, the equations can be solved
for the remaining four. In a typical case, we might be given the masses and
initial momenta of the two particles, and the final direction of motion of
one of the particles, say particle 1. We could then find the final momen-
tum pyr of particle 2, and the magnitude of the final momentum p;» (or
equivalently, the energy) of particle 1. In many important cases, the mass
of one of the particles is unknown, and can be computed from Egs. (4-60)
and (4-62) if enough is known about the momenta and energies before and
after the collision. Note that the initial conditions alone are not enough
to determine the outcome of the collision from Egs. (4-60) and (4-62); we
must know something about the motion after the collision. The initial
conditions alone would determine the outcome if we could solve the equa-
tions of motion of the system.

Consider a collision of a particle of mass m;, momentum p,z, with a
particle of mass my at rest. This is a common case. (There is actually no
loss of generality in this problem, since, as we pointed out in Section 1-4
and will show in Section 7-1, if mg is initially moving with a uniform veloc-
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PiF

“my

A

my P mz L)
mg P2r

Fia. 4-3. Collision of particle m1 with particle mz at rest.

ity voz, Newton’s laws are equally applicable in a coordinate system mov-
ing with uniform velocity v,z, in which m, is initially at rest.) Let m, be
“scattered” through an angle ¢;; that is, let ¢, be the angle between its
final and its initial direction of motion (Fig. 4-3). The momentum psr
must lie in the same plane as p;7 and p; r since there is no component of
momentum perpendicular to this plane before the collision, and there must
be none after. Let por make an angle ¢, with the direction of p,;. We
write out Eq. (4-60) in components along and perpendicular to p;r:

P11 = p1r co8 9y + pap cO8 Iy, (4-63)
0 = pirsind; — pyF sin I,. (4-64)
Equation (4-62) becomes, in the present case,

pir — pir — ng. (4-65)
mi mso
If two of the quantities

(P1r/P11, P2F/P11, B4, D2, M1/m3)

are known, the remaining three can be found. If the masses, the initial
momentum p; s, and the angle ¢, are known, for example, we can solve for
PiF, P2r, 92 as follows. Transposing the first term on the right to the
left side in Eqs. (4-63) and (4-64), squaring, and adding, we eliminate #5:

pir + pir — 2p1rp1r cos ¥y = pip. (4-66)

After substituting this in Eq. (4-65), we can solve for p;r:

2 1/2
1F my my 2 ms — M
= &y + ___) ¥ + ___._.___]
P11 my + mo cos U1 [(ml + mo cos 1 my + msg ’
(4-67)

and pyr can now be found from Eq. (4-66), and ¢ from Eq. (4-63).

S
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If m; > ma, the quantity under the radical is zero for ¢; = #,, where

¥, is given by )

00?9 =1— "2, 0Ly <z (4-68)
mi 2
If &, > ¥ (and ¥; < 7), then p;r/pir is either imaginary or negative,
neither of which is allowable physically, so that &,, represents the maxi-
mum angle through which m; can be scattered. If m; >> my, this angle
is very small, as we know from experience. For #; < &, there are two
values of pyr/p11, the larger corresponding to a glancing collision, the
smaller to a more nearly head-on collision; ¢, will be different for these
two cases. The case #; = 0 may represent either no collision at all
(p1r = p11) or a head-on collision. In the latter case,

PirF my — Mg

P2F 2mq
Pz mi A+ my 2T pur mi+ ma (4-69)

If m; = mo, Eqs. (4-67), (4-66), and (4-64) reduce to

%ﬁ—’ = cos ¥4, %f—f = gin &y, g = (72—" — 01) - (4-70)
&, now varies from #; = 0 for no collision to ¢; = 7/2 for a head-on
collision in which the entire momentum is transferred to particle 2. (Actu-
ally, ¢, is undefined if p;7 = 0, but ¥, —»7/2 and p1r — 0 as the colli-
sion approaches a head-on collision.) If m; < msg, all values of ¢; from 0
to w are possible, and give a positive value for p;#/pir if the plus sign is
chosen in Eq. (4-67). The minus sign cannot be chosen, since it leads to a
negative value for pyr/p1r. If 81 = 0, then pyz = pir; this is the case
when there is no collision. The case ¢; = m corresponds to a head-on
collision, for which

PiF mg — My

it miFmy LT

4-71)
M 2m2

do = 0.
P11 m; + my 2

If m, is unknown, but either p,; or T';1 can be measured or calculated, ob-
servation of the final momentum of particle 2 (whose mass is assumed
known) is sufficient to determine m;. As an example, if T1r = p};/2m,
is known, and Tsr is measured for a head-on collision, m, is given by
Eq. (4-69) or (4-71):

my _ 2T; [<2T1I )2 ]”2
=1 = —1 —1) —1} - -
me Taor = Tor (4 72)

We thus determine m; to within one of two possible values. If results for
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a collision with another particle of different mass ms, or for a different
scattering angle, are known, m, is determined uniquely. Essentially this
method was used by Chadwick to establish the existence of the neutron.*
Unknown neutral particles created in a nuclear reaction were allowed to
impinge on matter containing various nuclei of known masses. The ener-
gies of two kinds of nuclei of different masses m,, m; projected forward
by head-on collisions were measured. By writing Eq. (4-72) for both
cases, the unknown energy T';r could be eliminated, and the mass m; was
found to be practically equal to that of the proton.

We have seen that if we know the initial momenta of two colliding
particles of known masses, and the angle of scattering #; (or #»), all other
quantities involved in the collision can be calculated from the conserva-
tion laws. To predict the angles of scattering, we must know not only
the initial momenta and the initial trajectories, but also the law of force
between the particles. An example is the collision of two particles acted
on by a central inverse square law of force, to be treated in Section 4-8.
Such predictions can be made for collisions of macroscopic or astronomical
bodies under suitable assumptions as to the law of force. For atomic par-
ticles, which obey quantum mechanics, this cannot be done, although we
can predict the probabilities of observing various angles ¢, (or #3) for
given initial conditions; that is, we can predict cross sections. In all cases
where energy is conserved, the relationships between energies, momenta,
and angles of scattering developed above are valid except at particle veloc-
ities comparable with the velocity of light. In the latter case, Eqgs. (4-60),
(4-61), (4-63), and (4-64) are still valid, but the relativistic relationships
between mass, momentum, and energy must be used, instead of Eq. (4-62).
We quote without proof the relation between mass, momentum, and
energy as given by the theory of relativity:{

p? T2

om = T T ome’

(4-73)
where ¢ is the speed of light, and m is the rest mass of the particle, that is,
the mass when the particle is at rest. The relativistic relations between

kinetic energy, momentum, and velocity are

— me? 1 — 1), _
T = me (vmi/c_z) 1) (4-74)

S () A— ~75
=TS e )

* J. Chadwick, Nature, 129, 312 (1932).
t P. G. Bergmann, Introduction to the Theory of Relativity. New York: Prentice-
Hall, 1946. (Chapter 6.)
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which reduce to the classical relations (2-5) and (3-127), when v < c.
Unless v is nearly equal to ¢, the second term on the right in Eq. (4-73)
is much smaller than the first, and this equation reduces to the classical
one. With the help of Eq. (4-73), the conservation laws can be applied to
collisions involving velocities near the speed of light.

Atoms, molecules, and nuclei possess internal potential and kinetic
energy associated with the motion of their parts, and may absorb or re-
lease energy on collision. Such inelastic collisions between atomic particles
are said to be of the first kind, or endoergic, if kinetic energy of transla-
tional motion is absorbed, and of the second kind, or exoergic, if kinetic
energy is released in the process. It may also happen that in an atomic
or nuclear collision, the final particles after the collision are not the same
as the initial particles before collision. For example, a proton may collide
with a nucleus and be absorbed while a neutron is released and flies away.
There are a great many possible types of such processes. Two particles
may collide and stick together to form a single particle or, conversely, a
single particle may suddenly break up into two particles which fly apart.
Two particles may collide and form two other particles which fly apart.
Or three or more particles may be formed in the process and fly apart
after the collision. In all these cases, the law of conservation of momen-
tum holds, and the law of conservation of energy also if we take into
account the internal energy of the atoms and molecules. We consider here
a case in which a particle of mass m; collides with a particle of mass m,
at rest (Fig. 4-4). Particles of masses mz and m4 leave the scene of the
collision at angles #3 and ¢4 with respect to the original direction of
motion of m;. Let kinetic energy Q be absorbed in the process (@ > 0
for an endoergic collision; @ = 0 for an elastic collision; @ < O for an

Fig. 4-4. Collision of m; with mg at rest, resulting in the production of ms
and ma4.
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exoergic collision). Then, applying the conservation laws of energy and
momentum, we write

D1 = P3 coS ¥3 + pycos dy, (4-76)
0 = p3sin d3 — pysin dy, 4-77)
Ty=Ts+Ts+ Q. (4-78)

Since kinetic energy can be expressed in terms of momentum, if the masses
are known, we may find any three of the quantities p1, p3, P4, 93, ¥4, Q in
terms of the other three. In many cases p, is known, p; and @3 are meas-
ured, and it is desired to calculate Q. By eliminating ¢4 from Eqs. (4-76)
and (4-77), as in the previous example, we obtain

pi = pi + p3 — 2p1ps cos I5. (4-79)

This may now be substituted in Eq. (4-78) to give @ in terms of known
quantities:
2 2 2 2
_ _ _ _ Pi __ ps __ pit p3 — 2pip3cosdy
Q - Tl T3 T4 - 2m1 2’”1,3 2m4 !

(4-80)
or
_ _ _"ﬂ _ ﬂ m1m3T1T3 1/2
Q= Tl( m) Ty (1 + m) +2 <——m2 ) oS d3.
(4-81)

Every step up to the substitution for 7'y, T3, and T, is valid also for par-
ticles moving at velocities of the order of the velocity of light. At high
velocities, the relativistic relation (4-73) between T and p should be used
in the last step. Equation (4-81) is useful in obtaining Q for a nuclear
reaction in which an incident particle m; of known energy collides with a
nucleus mg, with the result that a particle mj is emitted whose energy and
direction of motion can be observed. Equation (4-81) allows us to deter-
mine @ from these known quantities, taking into account the effect of the
slight recoil of the residual nucleus m4, which is usually difficult to observe
directly.

Collisions of inert macroscopic bodies are always inelastic and endoergic,
kinetic energy being converted to heat by frictional forces during the im-
pact. Kinetic energy of translation may also be converted into kinetic
energy of rotation, and conversely. (Exchanges of rotational energy are
included in @ in the previous analysis.) Such collisions range from the
nearly elastic collisions of hard steel balls, to which the above analysis of
elastic collisions applies when rotation is not involved, to completely in-
elastic collisions in which the two bodies stick together after the collision.
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Let us consider a completely inelastic collision in which a bullet of mass
my, velocity v, strikes and sticks in an object of mass mg at rest. Let the
velocity of the two after the collision be vo. Evidently the conservation
of momentum implies that v, be in the same direction as vy, and we have:

myvy = (my + m)Va. (4-82)
The velocity after the collision is
my
— . 4-83
Va ) 5 A\'21 ( ) )

Energy is not conserved in such a collision. The amount of energy con-
verted into heat is

Q = Impi — 3(my + mo)v = fmui (—771—1—!"1%27”_2 - (4-84)
In a head-on collision of two bodies in which rotation is not involved, it
was found experimentally by Isaac Newton that the ratio of relative veloc-
ity after impact to relative velocity before impact is roughly constant for
any two given bodies. Let bodies my,mz, traveling with initial velocities
v11, vor along the z-axis, collide and rebound along the same axis with
velocities vy7, v2r. Then the experimental result is expressed by the
equation™®
vor — ViF = e(V11 — Var), (4-85)

where the constant e is called the coefficient of restitution, and has a value
between 0 and 1. If e = 1, the collision is perfectly elastic; if e = 0, it is
completely inelastic. Conservation of momentum yields, in any case,

Miv1r + Maover = M1 + Mavar. (4-86)
Equations (4-85) and (4-86) enable us to find the final velocities v, r and
vor for a head-on collision when the initial velocities are known.

4~7 The two-body problem. We consider in this section the motion of a
system of two particles acted on by internal forces satisfying Newton’s
third law (weak form), and by no external forces, or by external forces
satisfying a rather specialized condition to be introduced later. We shall
find that this problem can be separated into two single-particle problems.

* More recent experiments show that e is not really constant, but depends on
the initial velocities, on the medium in which the collision takes place, and on
the past history of the bodies. For a more complete discussion with references,
see G. Barnes, “Study of Collisions,” Am.: J. Phys. 26, 5 (January, 1958).
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The motion of the center of mass is governed by an equation (4-18) of the
same form as that for a single particle. In addition, we shall find that the
motion of either particle, with respect to the other as origin, is the same
as the motion with respect to a fixed origin, of a single particle of suitably
chosen mass acted on by the same internal force. This result will allow
application of the results of Section 3—-14 to cases where the motion of the
attracting center cannot be neglected.

Let the two particles have masses m; and m3, and let them be acted on
by external forces F§, F3, and internal forces F, F exerted by each parti-
clé on the other, and satisfying Newton’s third law:

Fj = —Fi. (4-87)

The equations of motion for the system are then
mf, = Fi + Fi, (4-88)
mot, = Fh + Fi. (4-89)

We now introduce a change of coordinates:

mry -+ mors

R=e=e———*==, 4-90

my + mg ( )

r=r; — Iy (4-91)

The inverse transformation is
rl—R+ml+m2r, (4-92)
R — ™1 -
rs =R prpm— I, (4-93)

where R is the coordinate of the center of mass, and r is the relative coor-
dinate of m; with respect to ms. (See Fig. 4-5.) Adding Egs. (4-88) and
(4-89) and using Eq. (4-87), we obtain the equation of motion for R:

(my + mg)R = F§ + FS. (4-94)

Multiplying Eq. (4-89) by m1, and subtracting from Eq. (4-88) multiplied

0
F1a. 4-5. Coordinates for the two-body problem.
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by ms, using Eq. (4-87), we obtain the equation of motion for r:

. : Fe Fe
mymeot = (m; + mo)Fi + mymg (m—i — ;’—é) (4-95)
We now assume that
F = F; s (4-96)
mi meo :

and introduce the abbreviations

M = my —|— ma, (4‘97)
mims
= —", 4
=y + ma (4-98)
F = F} 4+ Fs. (4-99)

Equations (4-94) and (4-95) then take the form of single-particle equa-
tions of motion: .
MR = F, ; (4-100)

ut = Fi. (4-101)

Equation (4-100) is the familiar equation for the motion of the center of
mass. Equation (4-101) is the equation of motion for a particle of mass u
acted on by the internal force F% that particle 2 exerts on particle 1.
Thus the motion of particle 1 as viewed from particle 2 is the same as if
particle 2 were fixed and particle 1 had a mass u (1 is called the reduced
mass). If one particle is much heavier than the other, u is slightly less
than the mass of the lighter particle. If the particles are of equal mass,
is half the mass of either. We may now apply the results of Section 3-14
to any two-body problem in which the two particles exert an inverse square
law attraction or repulsion on each other, provided the external forces are
either zero or are proportional to the masses, as required by Eq. (4-96).
Equation (4-96) is satisfied if the external forces are gravitational forces
exerted by masses whose distances from the two bodies m; and m, are
much greater than the distance r from m; to ms. Asan example, the motion
of the earth-moon system can be treated, to a good approximation, by the
method of this section, since the moon is much closer to the earth than
either is to the sun (or to the other planets). Atomic particles are acted
on by electrical forces proportional to their charges, and hence Eq. (4-96)
holds ordinarily only if the external forces are zero. There is also the less
important case where the two particles have the same ratio of charge to
mass, and are acted on by external forces due to distant charges. We may
remark here that although Eqs. (4-88) and (4-89) are not the correct equa-
tions for describing the motions of atomic particles, the introduction of the
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coordinates R, r, and the reduction of the two-body problem to two one-
body problems can be carried out in the quantum-mechanical treatment in
a way exactly analogous to the above classical treatment, under the same
assumptions about the forces.

It is worth remarking that the kinetic energy of the two-body system
can be separated into two parts, one associated with each of the two one-
body problems into which we have separated the two-body problem. The
center-of-mass velocity and the relative velocity are, according to Egs.
(4-90)-(4-93), related to the particle velocities by

V= R = w , 4-102
my + my (4-102)
V=%F=v, — Vg, (4-103)

or
vi=V+ 7n“—1v, (4-104)
Vo=V — miz v. (4-105)

The total kinetic energy is
T = $mypi -+ dmy3
= }MV? + I’ (4-106)
The angular momentum can similarly be separated into two parts:

L = mi(r; X vy) -+ ma(ry X v3)
= M® X V) + u(x % v). (4-107)

The total linear momentum is, however, just
P = mivy -+ movy = MV. (4—108)

There is no term uv in the total linear momentum.

4-8 Center-of-mass coordinates. Rutherford scattering by a charged
particle of finite mass. By making use of the results of the preceding sec-
tion, we can solve a two-body scattering problem completely, if we know
the interaction force between the two particles, by solving the one-body
equation of motion for the coordinate r. The result, however, is not in
a very convenient form for application. The solution r(¢) describes the
motion of particle 1 with respect to particle 2 as origin. Since particle 2
itself will be moving along some orbit, this is not usually a very convenient
way of interpreting the motion. It would be better to describe the motion
of both particles by means of coordinates ry(f), ro(f) referred to some fixed
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origin. Usually one of the particles is initially at rest; we shall take it to
be particle 2, and call it the target particle. Particle 1, approaching the
target with an initial velocity vy, we shall call the incident particle. The
two particles are to be located by vectors r; and 1, relative to an origin
with respeet to which the target particle is initially at rest. We shall call
the coordinates r, rz the laboratory coordinate system.

The translation from the coordinates R, r to laboratory coordinates is
most conveniently carried out in two steps. We first introduce a cenler-of-
mass coordinate system in which the particles are located by vectors ri, rh
with respect to the center of mass as origin:

r, =r; — R,

A (4-109)
15 =1 — R,
and, conversely,
n=r+R, (4-110)
Iy — I'; + R.

The relation between the center-of-mass coordinates and the relative co-
ordinate r is obtained from Eqgs. (4-92) and (4-93):

1 mg M

Ij=—"—1=—"7°

! my + Mo my’ 111

e ™ By (4-111)
my + ma my '

The position vectors of the particles relative to the center of mass are con-
stant multiples of the relative coordinate r. The center of mass has the
advantage over particle 2, as an origin of coordinates, in that it moves
with uniform velocity in collision problems where no external forces are
assumed to act.

In the center-of-mass coordinate system the total linear momentum is
zero, and the momenta p} and p} of the two particles are always equal and
opposite. The scattering angles ¢ and 9% between the two final directions
of motion and the initial direction of motion of particle 1 are the supple-
ments of each other, as shown in Fig. 4-6.

We now determine the relation between the scattering angle © in the
equivalent one-body problem and the scattering angle ¢4 in the laboratory
coordinate system (Fig. 4-7). The velocity of the incident particle in the
center-of-mass system is related to the relative velocity in the one-body
problem, according to Eq. (4-111), by

vi= mil v. (4-112)
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my

o \or

/"2

]

mz

Fia. 4-6. Two-particle collision in F1a. 4-7. Orbits for two-body colli-
center-of-mass coordinates. sion in the laboratory system.

Since these two velocities are always parallel, the angle of scattering &
of the incident particle in the center-of-mass system is equal to the angle
of scattering © in the one-body problem. The incident particle velocities
in the center-of-mass and laboratory systems are related by [Eq. (4-110)]

vy =vi 4V, (4-113)

where the constant velocity of the center of mass can be expressed in terms
of the initial velocity in the laboratory system by Eq. (4-102):

my M
V= ————vir = - vy 1-114
mi+myg T mg M ( )

The relation expressed by Eq. (4-113) is shown in Fig. 4-8, from which
the relation between 94 = © and ¢, can be determined:

% .
virsin ©
tan ¢, = LF

=0 (4-115)
viFcos ® + V

v

viI

F1e. 4-8. Relation between velocities in laboratory and center-of-mass co-
ordinate systems.
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or, with the help of Eqs. (4-112) and (4-114),

sin @
cos © + (mywr/mavr) ’

tan ¥, = (4-116)

where v; and vp are the initial and final relative speeds, and we have
substituted v for v, 1, since initially the relative velocity is just the velocity
of the incident particle. If the collision is elastic, the initial and final speeds
are the same and Eq. (4-116) reduces to:,

sin ©

and = 5550 + (mi/ma)

(4-117)

A similar relation for ¢ can be worked out.

If the incident particle is much heavier than the target particle, then
&1 will be very small, no matter what value ® may have. This corre-
sponds to the result obtained in Section 4-6, that ¢, can never be larger
than 8., given by Eq. (4-68), if m; > my. If m; = ms, then Eq. (4-117)
1s easily solved for ¢;:
sin @ 2 sin (0©/2) cos (0/2) C)]

cos® +1 2 cos2 (©/2) = tan-z—,

9 = 39O, (4-118)

tan !’1 =

Since ® may always have any value between 0 and m without violating the
conservation laws in the center-of-mass system, the maximum value of ¢;
in this case is 7/2, in agreement with the corresponding result of Section
4-6. If the target mass mq is much larger than the incident mass m;, then
tan ¢; = tan ©; this justifies rigorously our application to this case of
Eq. (3-276) for the Rutherford cross section, deduced in Chapter 3 for
the one-body scattering problem with an inverse square law force.

According to the above developments, Eq. (3—276) applies also to the
two-body problem for any ratio m;/ms of incident mass to target mass,
but ® must be interpreted as the angle of scattering in terms of relative
coordinates, or else in terms of center-of-mass coordinates. That is, do
in Eq. (3-276) is the cross section for a scattering process in which the
relative velocity v after the collision makes an angle between ® and © 4 d®
with the initial velocity. Since it is the laboratory scattering angle ¢, that
is ordinarily measured, we must substitute for ® and d© in Eq. (3-276)
their values in terms of ¢, and d¢; as determined from Eq. (4-117). This
is most easily done in case m; = ms, when, by Eq. (4-118), the Rutherford
scattering cross section {Eq. (3-276)] becomes

' 2
do = (292} 26081 o0 i 9, s, (4-119)
2uvg/ sin” &y
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4-9 The N-body problem. It would be very satisfactory if we could
arrive at a general method of solving the problem of any number of parti-
cles moving under the foreces which they exert on one another, analogous to
the method given in Section 4-7 by which the two-body problem was re-
duced to two separate one-body problems. Unfortunately no such general
method is available for systems of more than two particles. This does not
mean that such problems cannot be solved. The extremely accurate cal-
culations of the motions of the planets represent a solution of a problem
involving the gravitational interactions of a considerable number of bodies.
However, these solutions are not general solutions of the equations of
motion, like the system of orbits we have obtained for the two-body case,
but are numerical solutions obtained by elaborate calculations for specified
initial conditions and holding over certain periods of time. Even the three-
body problem admits of no general reduction, say, to three one-body prob-
lems, or to any other manageable set of equations.

Fie. 4-9. Center-of-mass and internal coordinates of a system of particles.

However, we can partially separate the problem of the motion of a
system of particles into two problems: first, to find the motion of the center
of mass, and second, to find the internal motion of the system, that is, the
motion of its particles relative to the center of mass. Let us define the in-
ternal coordinate vector ri of the kth particle as the vector from the center
of mass to the kth particle (Fig. 4-9):

rfp=r—R k=1,...,N, (4-120)
r, = R +rf, k=1,...,N. (4-121)

In view of _the definition (4-14) of the center of mass, the internal co-
ordinates 1}, satisfy the equation

N .
E mre = 0. (4-122)
k=1
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We define the center-of-mass velocity and the internal velocities:
V = R, (4-123)
vi=1=v, — V. (4-124)

The total internal momentum of a system of particles (i.e., the momentum
® relative to the center of mass) vanishes by Eq. (4-122):
% A.

‘l':,N .
D mvi = 0. (4-125)
k=1

We first show that the total kinetic energy, momentum, and angular
momentum can each be split up into a part depending on the total mass M
and the motion of the center of mass, and an internal part depending only
on the internal coordinates and velocities. The total kinetic energy of the
system of particles is

N
T = Y dmwi. (4-126)
k=1

By substituting for v; from Eq. (4-124), and making use of Eq. (4-125),
we can split 7 into two parts:

N .
T = > 3mu(V? + 2V-vi + 0i%)

k=1

N Y% N

, 5 :

= >tV + D dmi® + D miVevi
k=1 k=1

k=1

M=

N
= MV + > tmpi® + V- D muvi
k=1

b
I

1
N .
= MV + D tmwit. ' (4-127)

The total linear mbmentum is, if we make use of Eqs. (4-124) and
(4-125),

= MV. ' (4-128)

The internal linear momentum is zero.
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The total angular momentum about the origin is, if we use Eqs. (4-121),
(4-122), (4-124), and (4-125),

N

L= E m(ty X Vi)

k=1
N o - . -
= Emk(RxV—l—rixV—i—va;’c—l—rixv}c)

’G=1

N N N )
= > mR x V) + <Z mkr,§> x V&R x (Z mkvk)
k=1 k=1

k=1

N . -
+ > mu(ri % vi)

k=1
. N . -
=M®R x V) + > m(ti X ). (4-129)
k=1

Notice that the internal angular momentum depends only on the internal
coordinates and velocities and is independent of the origin about which L
is being computed (and from which the vector R is drawn).
The position of particle k with respect to particle I is specified by the
vector . .
I, — r; = 15 — Ij. (4-130)

The relative positions of the particles with respect to each other depend
only on the internal coordinates r%, and likewise the relative velocities, so
that the internal forces F% will be expected to depend only on the internal
“coordinates i, and possibly on the internal velocities. If there is a poten-
tial energy associated with the internal forces, it likewise will depend only
on the internal coordinates.

Although the forces, energy, momentum, and angular momentum can
each be split into two parts, a part associated with the motion of the center
of mass and an internal part depending only on the internal coordinates and
velocities, it must not be supposed that the internal motion and the center-
of-mass motion are two completely separate problems. The motion of the
center of mass, as governed by Eq. (4-18), is a separate one-body problem
when the external force F is given. However, in most cases F will depend
to some extent on the internal motion of the system. The internal equa-
tions of motion contain the external forces except in special cases and,
furthermore, they also depend on the motion of the center of mass. If we
substitute Eqs. (4-121) in Egs. (4-1), and rearrange, we have

mits = Fi + F, — mR. (4-131)
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There are many cases, however, in which a group of particles forms a
system which seems to have some identity of its own independent of other
particles and systems of particles. An atomic nucleus, made up of neutrons
and protons, is an example, as is an atom, made up of nucleus and electrons,
or a molecule, composed of nuclei and electrons, or the collection of particles
which make up a baseball. In all such cases, it turns out that the internal
forces are much stronger than the external ones, and the acceleration R is
small, so that the internal equations of motion (4-131) depend essentially
only on the internal forces, and their solutions represent internal motions
which are nearly independent of the external forces and of the motion of
the system as a whole. The system viewed externally then behaves like
a single particle with coordinate vector R, mass M, acted on by the
(external) force F, but a particle which has, in addition to its “orbital”
energy, momentum, and angular momentum associated with the motion
of its center of mass, an intrinsic or internal energy and angular momentum
associated with its internal motion. The orbital and intrinsic parts of the
energy, momentum, and angular momentum can be identified in Egs.
(4-127), (4-128), and (4-129). The internal angular momentum is usually
called spin and is independent of the position or velocity of the center of
mass relative to the origin about which the total angular momentum is to
be computed. So long as the external forces are small, this approximate
representation of the system as a single particle is valid. Whenever the
external forces are strong enough to affect appreciably the internal motion,
the separation into problems of internal and of orbital motions breaks
down and the system begins to lose its individuality. Some of the central
problems at the frontiers of present-day physical theories are concerned
with bridging the gap between a loose collection of particles and a system
with sufficient individuality to be treated as a single particle.

4-10 Two coupled harmonic oscillators. A very commonly occurring
type of mechanical system is one in which several harmonic oscillators
interact with one another. As a typical example of such a system, con-
sider the mechanical system shown in Fig. 4-10, consisting of two masses
m,, my fastened to fixed supports by springs whose elastic constants are
k1, k2, and connected by a third spring of elastic constant k3. We suppose
the masses are free to move only along the z-axis; they may, for example,
slide along a rail. If spring k3 were not present, the two masses would

Fi1a. 4-10. A simple model of two coupled harmonic oscillators.
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vibrate independently in simple harmonic motion with angular frequencies
(neglecting damping)
wly = 1';—11, wdo = % (4-132)
We wish to investigate the effect of coupling these two oscillators to-
gether by means of the spring k3. We describe the positions of the two
masses by specifying the distances x; and x5 that the springs &; and k,
have been stretched from their equilibrium positions. We assume for
simplicity that when springs k; and k; are relaxed (x; = x5, = 0), spring
k3 is also relaxed. The amount by which spring k3 is compressed is then
(x1 + z3). The equations of motion for the masses my, my (neglecting
friction) are
mify = —kyxy — ka(z1 + x3), (4-133)

Moy = —koxy — ka(ry -+ x2). (4-134)

We rewrite these in the form

‘myEy 4 kizy 4+ kaze = 0, (4-135)
moky + kbxs + k3z1 = 0, (4-136)
where
Ky = ki + ks, (4-137)
kS = ko + ks. (4-138)

We have two second-order linear differential equations to solve simul-
taneously. If the third terms were not present, the equations would be
independent of one another, and we would have independent harmonic
vibrations of z; and z; at frequencies

w19 = %;Ill ’ (4—139)
k3
Waop — —'"_'/_2 . (4—140)

These are the frequencies with which each mass would vibrate if the other
were held fixed. Thus the first effect of the coupling spring is simply to
change the frequency of independent vibration of each mass, due to the
fact that each mass is now held in position by two springs instead of one.
The third terms in Egs. (4-135) and (4-136) give rise to a coupling between
the motions of the two masses, so that they no longer move independently.
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We may solve Egs. (4-135), (4-136) by an extension of the method of
Section 2-8 applicable to any set of simultaneous linear differential equa-
tions with constant coefficients. We assume that

2y = Cie®, (4-141)
zy = Cae®’, (4-142)

where C;, Cy are constants. Note that the same time dependence is as-
sumed for both z; and z», in order that the factor e?’ will cancel out when
we substitute in Eqgs. (4-135) and (4-136):

(m1p® + K)C1 + ksC2 = 0, (4-143)
(m2p® + k2)Cz + ksCy = O. (4-144)
We now have two algebraic equations in the three unknown quantities

C1,Cs, p. We note that either Eq. (4- 143) or (4-144) can be solved for
the ratio Cy/Cy:

Co_ _mp’+ki ks (4-145)

¢ ks map® + kb
The two values of C'3/C; must be equal, and we have an equation for p:
map? + R _ ks

ks mep® + K

which may be rearranged as a quadratic equation in p? called the secular
equation:

mamap? + (maky + mikh)p® + (Kiky — k) = 0,  (4-147)

(4-146)

whose solutions are

2 _ 1 kl 10’1) l:l ﬂ 10_12—)2 _ kllk/2 k% ]1/2
p= 2 my e T ms +1z my + me mimsy + mims
1 1 k2 1/2
= =3 (@lo + wdo) = [Z (wio — wdo)® + m—lsrzz—] . (4-148)

" It is not hard to show that the quantity in brackets is less than the square
of the first term, so that we have two negative solutions for p2. If we
assume that wyo > wao, the solutions for p? are

p? = —w} = —(wlo + 3aw?),

? = —wj = —(wdo — A7),

(4-149)
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where
2 (2 20) 4t 12
Aw® = w19 — W20 1 —I— P S —— — 11, (4—150)
(w%o - wgo)2> ]
with the abbreviation
2 k3

K= ———) (4-151)
\/mlmz

where « is the coupling constant. If wyg = wzg, Eq. (4-150) reduces to
Aw? = 2«2. (4-152)
The four solutions for p are
P = Fiws, +iw;. (4-153)
If p? = —w?, Eq. (4-145) can be written

Aw?

C m m
CT? = %3—1 (i — wlo) = o2 ;;; , (4-154)
and if p2 = —w?, it can be written
Ci, m Aw m
Gomg oy - - s

By substituting from Eq. (4-153) in Eqgs. (4-141), (4-142), we get four
solutions of Eqgs. (4-135) and (4-136) provided the ratio C3/C, is chosen
according to Eq. (4-154) or (4-155). Each of these solutions involves one
arbitrary constant (C; or C3). Since the equations (4-135), (4-136) are
linear, the sum of these four solutions will also be a solution, and is in fact
the general solution, for it will contain four arbitrary constants (say
Cl’ {, 027 Cé)

2
iwyt y  —iwyt -Aw 2 mgt ’ —1w2t
2, = Che Cle — 57 4 ,— — ." C
1 1 + 1 o2 my 2K2

(4-156)
Lo = C wlt ml C/ —lw]_t + C etht + C’ —‘lwzl
2 2I<2 V 2K2
(4-157)
In order to make x; and x5 real, we choose
Ci = $4:e™, O} = 34y, (4-158)

Cz = 34:6™, Ch = 3457, (4-159)
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so that
Ty = Al Ccos (wlt + 01) —_ 2K2 ." A2 Ccos (wzt + 02), (4—160)

o

T2 = 52

17::—1 A cos (wit + 0;) -+ A cos (wyt —l— 6;). (4-161)
2

This is the general solution, involving the four arbitrary constants
Ay, A, 0;, 8,. We see that the motion of each coordinate is a super-
position of two harmonic vibrations at frequencies w; and w,;. The os-
cillation frequencies are the same for both coordinates, but the relative
amplitudes are different, and are given by Egs. (4-154) and (4-155).

If A, or A, is zero, only one frequency of oscillation appears. The re-
sulting motion is called a normal mode of vibration. The normal mode of
highest frequency is given by

z; = Ay cos (wit + 6,), (4-162)
Ty — 2K2 .\‘ Al Ccos (O)lt + 01), (4—163)
w? = wd + %Aw2. (4-164)

The frequency of oscillation is higher than w;o. By referring to Fig. 4-10,
we see that in this mode of oscillation the two masses m; and my are osecil-
lating out of phase; that is, their displacements are in opposite directions.
The mode of oscillation of lower frequency is given by

z = 2x2 A [ A2 cos (waot + 85), (4-165)
Tog = A2 COoSs (w2t —l— 02), (4—166)
wi = w3 — 3w’ (4-167)

In this mode, the two masses oscillate in phase at a frequency lower
than wsg. The most general motion of the system is given by Egs. (4-160),
(4-161), and is a superposition of the two normal modes of vibration.

The effect of coupling is thus to cause both masses to participate in the
oscillation at each frequency, and to raise the highest frequency and lower
the lowest frequency of oscillation. Even when both frequencies are
initially equal, the coupling results in two frequencies of vibration, one
higher and one lower than the frequency without coupling. When the
coupling is very weak, i.e., when

K2 K Hwlo — wio), (4-168)
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then Eq. (4-150) becomes’
2 . 2t
Aw® = 2_5— ° (4-169)
wig — W20
For the highest frequency mode of vibration, the ratio of the amplitude of
vibration of mass mg to that of mass m, is then

Z2 __ A_“’z\/E ek [m (4-170)

X 2k2 \\mo wfo _ wgo mo
Thus, unless my << m;, the mass m, oscillates at much smaller amplitude
than m,. Similarly, it can be shown that for the low-frequency mode of
vibration, m; oscillates at much smaller amplitude than my. If two oscil-
lators of different frequency are weakly coupled together, there are two
normal modes of vibration of the system. In one mode, the oscillator of
higher frequency oscillates at a frequency slightly higher than without
coupling, and the other oscillates weakly out of phase at the same fre-
quency. In the other mode, the oscillator of lowest frequency oscillates at
a frequency slightly lower than without coupling, and the other oscillates
weakly and in phase at the same frequency. At or near resonance, when
the two natural frequencies w;¢ and wsq are equal, the condition for weak
coupling [Eq. (4-168)] is not satisfied even when the coupling constant is
very small. Aw? is then given by Eq. (4-152), and we find for the two nor-.
mal modes of vibration:

T2 = 3 2, (4-171)
Ty meo
w? = wly £ &% (4-172)

The two oscillators oscillate in or out of phase with an amplitude ratio
depending only on their mass ratio, and with a frequency higher or lower
than the uncoupled frequency by an amount depending on the coupling
constant.

An interesting special case is the case of two identical oscillators
(my = mg, ky = kg) coupled together. The general solution (4-160),
(4-161) is, in this case,

2y = A, cos (w3t + 6;) — Az cos (wst + 85), (4-173)
To = Al cos (wlt + 01) + A2 Ccos (w2t + 02), (4—174)

where w; and w; are given by Eq. (4-172). If A, = 0, we have the high-
frequency normal mode of vibration, and if A; = 0, we have the low-fre-
quency normal mode. Let us suppose that initially m, is at rest in its
equilibrium position, while m; is displaced a distance A from equilibrium
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and released at ¢ = 0. The choice of constants which fits these initial
conditions is

f, = 6; = 0,
4-175
A= —As = 34, (4-175)
so that Eqgs. (4-173), (4-174) become
21 = %A (coswit + cos wat), (4-176)
Zs =‘—1§A (cos wit — cos wal), 4-177)
which can be rewritten in the form
z; = A cos (‘31——2——‘02 t) cos (9’—1—;—“’2 t) ’ (4-178)
rg = —A sin (‘21—2——‘02 t) sin (ﬂ%—ﬂ t) . (4-179)

If the coupling is small, w; and w; are nearly equal, and z; and z; oscillate
rapidly at the angular frequency (w; + wz2)/2 = w; = wy, with an am-
plitude which varies sinusoidally at angular frequency (w; — wg)/2. The
motion of each oscillator is a superposition of its two normal-mode motions,
which leads to beats, the beat frequency being the difference between the
two normal-mode frequencies. This is illustrated in Fig. 4-11, where os-
cillograms of the motion of z, are shown: (a) when the high-frequency
normal mode alone is excited, (b) when the low-frequency normal mode
is excited, and (c¢) when oscillator m, alone is initially displaced. In Fig.
4-12, oscillograms of z; and z, as given by Egs. (4-178), (4-179) are
shown. It can be seen that the oscillators periodically exchange their
energy, due to the coupling between them. Figure 4-13 shows the same
motion when the springs k; and %k, are not exactly equal. In this case,
oscillator m, does not give up all its energy to m, during the beats. Figure
4~14 shows that the effect of increasing the coupling is to increase the beat
frequency w; — ws [Eq. (4-172)].

If a frictional force acts on each oscillator, the equations of motion
(4-135) and (4-136) become

mlﬁil + bl.’l'il —I— Ic'lxl + kaxz == 0, (4—180)

mofs + bats + koxe + kzxy = 0, (4-181)
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Fia. 4-11. Motion of coupled har- F1a. 4-12. Motion of two identical
monic oscillators. (a) High-frequency coupled oscillators.
normal mode. (b) Low-frequency nor-
mal mode. {(c) m; initially displaced.

Fi6. 4-13. Motion of two nonidenti- Fig. 4-14. Motion of two coupled
cal coupled oscillators. oscillators. (a) Weak coupling. (b)
Strong coupling.
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where by and by are the respective friction coefficients. The substitution
(4-141), (4-142) leads to a fourth-degree secular equation for p:

mimap* + (maby + mib2)p® + (moky + mikh + bibs)p?
+ (bikh + bokh)p + (Kik: — k3) = 0. (4-182)

This equation cannot be solved so easily as Eq. (4-147). The four roots
for p are, in general, complex, and have the form (if b; and b, are not too
large)

p = —71 * iwy,

P = —%Y9 X 1:(02. (4—183)

That the roots have this form with v; and 7, positive can be shown (though
not easily) algebraically from a study of the coefficients in Eq. (4-182).
Physically, it is evident that the roots have the form (4-183), since this will
lead to damped vibrations, the expected result of friction. If b; and b, are
large enough, one or both of the pairs of complex roots may become a pair
of real negative roots, the corresponding normal mode or modes being
overdamped. A practical solution of Eq. (4-182) can, in general, be ob-
tained only by numerical methods when numerical values for the constants
are given, although an approximate algebraic solution can be found when
the damping is very small.

The problem of the motion of a system of two coupled harmonic oscil-
lators subject to a harmonically oscillating force applied to either mass can
be solved by methods similar to those which apply to a single harmonic
oscillator. A steady-state solution can be found in which both oscillators
oscillate at the frequency of the applied force with definite amplitudes and
phases, depending on their masses, the spring constants, the damping, and
the amplitude and phase of the applied force. The system is in resonance
with the applied force when its frequency corresponds to either of the two
normal modes of vibration, and the masses then vibrate at large amplitudes
limited only by the damping. The general solution consists of the steady-
state solution plus the general solution of the unforced problem. A super-
position principle can be proved according to which, if a number of forces
act on either or both masses, the solution is the sum of the solutions with
each force acting separately. This theorem can be used to treat the prob-
lem of arbitrary forces acting on the two masses.

Other types of coupling between the oscillators are possible in addition
to coupling by means of a spring as in the example above. The oscillators
may be coupled by frictional forces. A simple example would be the case
where one mass slides over the other, as in Fig. 4-15. We assume that the
foree of friction is proportional to the relative velocity of the two masses.
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g

Fia. 4-15. Frictional coupling. Fig. 4-16. Coupling through a mass.

The equations of motion of m; and m, are then

mi%1 = —kixy — b(E; + %), (4-184)

maoky = —kaxo — b(ds + &), (4-185)
or

my%; + b&y + kyxy + by = O, (4-186)

”nz.’ifz + b:bz —I— k2x2 + b.’i?l = 0. (4—187)

The coupling is expressed in Egs. (4-186), (4-187) by a term in the equation
of motion of each oscillator depending on the velocity of the other. The
oscillators may also be coupled by a mass, as in Fig. 4-16. It is left to the
reader to set up the equations of motion. (See Problem 26 at the end of
this chapter.)

Two oscillators may be coupled in such a way that the force acting on
one depends on the position, velocity, or acceleration of the other, or on
any combination of these. In general, all three types of coupling occur to
some extent; a spring, for example, has always some mass, and is subject
to-some internal friction. Thus the most general pair of equations for two
coupled harmonic oscillators is of the form

mEy + bty + kazy + meEp 4 bz 4 koo = 0, (4-188)
moEs + baky + koo -+ meEy + beky + kexy = 0. (4-189)

These equations can be solved by the method described above, with similar
results. Two normal modes of vibration appear, if the frictional forces
are not too great.

Equations of the form (4-188), (4-189), or the simpler special cases con-
sidered in the preceding discussions, arise not only in the theory of coupled
mechanical oscillators, but also in the theory of coupled electrical cireuits.
Applying Kirchhoff’s second law to the two meshes of the circuit shown in
Fig. 4-17, with mesh currents 74, 72 around the two meshes as shown, we
obtain

@+ Lot + @+ Bty + (3 + &) a1+ Lia o+ Bia - 2aa = 0,
(4-190)
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Fie. 4-17. Coupled oscillating circuits.
and
. . 1 1 " , 1
(L + Lg)ds + (R + R2)ds + <5 + (72)@ + L, + Rqy +(—J'QI = 0,

(4-191)

where ¢; and g5 are the charges built up on C'; and C; by the mesh currents
71 and 5. These equations have the same form as Eqs. (4-188), (4~189),
and can be solved by similar methods. In electrical circuits, the damping
is often fairly large, and finding the solution becomes a formidable task.

The discussion of this section can be extended to the case of any number
of coupled mechanical or electrical harmonic oscillators, with analogous
results. The algebraic details become almost prohibitive, however, unless
we make use of more advanced mathematical techniques. We therefore
postpone further discussion of this problem to Chapter 12.

All mechanical and electrical vibration problems reduce in the limiting
case of small amplitudes of vibration to problems involving one or several
coupled harmonic oscillators. Problems involving vibrations of strings,
membranes, elastic solids, and electrical and acoustical vibrations in trans-
mission lines, pipes, or cavities, can be reduced to problems of coupled
oscillators, and exhibit similar normal modes of vibration. The treatment
of the behavior of an atom or molecule according to quantum mechanics
results in a mathematical problem identical with the problem of coupled
harmonie oscillators, in which the energy levels play the role of oscillators,
and external perturbing influences play the role of the coupling mechanism.
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PRrOBLEMS

1. Formulate and prove a conservation law for the angular momentum about
the origin of a system of particles confined to a plane.

2. Water is poured into a barrel at the rate of 120 1b per minute from a height
of 16 ft. The barrel weighs 25 1b, and rests on a scale. Find the scale reading
after the water has been pouring into the barrel for one minute.

3. A scoop of mass my is attached to an arm of length I and negligible weight.
The arm is pivoted so that the scoop is free to swing in a vertical arc of radius L.
At a distance I directly below the pivot is a pile of sand. The scoop is lifted until
the arm is at a 45° angle with the vertical, and released. It swings down and
scoops up a mass mz of sand. To what angle with the vertical does the arm of the
scoop rise after picking up the sand? This problem is to be solved by considering
carefully which conservation laws are applicable to each part of the swing of the
scoop. Friction is to be neglected, except that required to keep the sand in the
scoop.

4. (a) A spherical satellite of mass m, radius a, moves with speed v through
a tenuous atmosphere of density p. Find the frictional force on it, assuming
that the speed of the air molecules can be neglected in comparison with v,
and that each molecule which is struck becomes embedded in the skin of the
satellite. (b) If the orbit is a circle 400 km above the earth (radius 6360 km),
where p = 10711 kgm/m~—3, and if a = 1 m, m = 100 kgm, find the change
in altitude and the change in period of revolution in one week.

5. A two-stage rocket is to be built capable of accelerating a 100-kgm payload
to a velocity of 6000 m/sec in free flight. (In a two-stage rocket, the first stage
is detached after exhausting its fuel, before the second stage is fired.) Assume
that the fuel used can reach an exhaust velocity of 1500 m/sec, and that struc-
tural requirements imply that an empty rocket (without fuel or payload) will
weigh 10 7% as much as the fuel it can carry. Find the optimum choice of masses
for the two stages so that the total take-off weight is a minimum. Show that it
is impossible to build a single-stage rocket which will do the job.

6. A rocket is to be fired vertically upward. The initial mass is Mo, the exhaust
velocity —u is constant, and the rate of exhaust —(dM/dt) = A is constant.
After a total mass A M is exhausted, the rocket engine runs out of fuel. Neglect-
ing air resistance and assuming that the acceleration g of gravity is constant,
set up and solve the equation of motion, and show that if Mo, u, and AM are
fixed, then the larger the rate of exhaust 4, that is, the faster it uses up its fuel,
the greater the maximum altitude reached by the rocket.

7. A uniform spherical planet of radius a revolves about the sun in a circular
orbit of radius ro, and rotates about its axis with angular velocity wo, normal
to the plane of the orbit. Due to tides raised on the planet, its angular velocity
of rotation is decreasing. Find a formula expressing the orbit radius r as a func-
tion of angular velocity w of rotation at any later or earlier time. [You will
need formulas (5-9) and (5-91) from Chapter 5.] Apply your formula to the
earth, neglecting the effect of the moon, and estimate how much farther the
earth will be from the sun when the day has become equal to the present year.
If the effect of the moon were taken into account, would the distance be greater
or less?
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*g, A mass m of gas and debris surrounds a star of mass M. The radius of the
star is negligible in comparison with the distances to the particles of gas and
debris. The material surrounding the star has initially a total angular momentum
L, and a total kinetic and potential energy E. Assume that m << M, so that
the gravitational fields due to the mass m are negligible in comparison with that
of the star. Due to internal friction, the surrounding material continually loses
mechanical energy. Show that there is & maximum energy AE which can be lost
in this way, and that when this energy has been lost, the material must all lie
on a circular ring around the star (but not necessarily uniformly distributed).
Find AE and the radius of the ring. (You will need to use the method of La-
grange multipliers.)

9. A particle of mass mj, energy Tir collides elastically with a particle of mass
mg, at rest. If the mass mz leaves the collision at an angle d2 with the original
direction of motion of mi, find the energy T2r delivered to particle ma. Show
that T2r is a maximum for a head-on collision, and that in this case the energy
lost by the incident particle in the collision is

4mimse

P G

Tar.

10. A cloud-chamber picture shows the track of an incident particle which
makes a collision and is scattered through an angle #;. The track of the target
particle makes an angle d2 with the direction of the incident particle. Assuming
that the collision was elastic and that the target particle was initially at rest, find
the ratio mi/m2 of the two masses. (Assume small velocities so that the classical
expressions for energy and momentum may be used.)

11. Show that an elastic collision corresponds to a coefficient of restitution
e = 1, that is, show that for a head-on elastic collision between two particles,
Eq. (4-85) holds withe = 1,

12. Calculate the energy loss @ for a head-on collision between a particle of
mass m1, velocity v; with a particle of mass mg at rest, if the coefficient of restitu-
tion is e.

13. A particle of mass m;, momentum pjs collides elastically with a particle
of mass mg, momentum por going in the opposite direction. If m; leaves the colli-
sion at an angle ¢; with its original course, find its final momentum.

14. Find the relativistic corrections to Eq. (4-81) when the incident particle
my and the emitted particle m3 move with speeds near the speed of light. Assume
that the recoil particle m4 is moving slowly enough so that the classical relation
between energy and momentum can be used for it.

15. A particle of mass m1, momentum p; collides with a particle of mass ms at
rest. A reaction occurs from which two particles of masses m3 and m4 result,
which leave the collision at angles #3 and ¢4 with the original path of m;. Find
the energy @ absorbed in the reaction in terms of the masses, the angles, and pj.

16. A nuclear reaction whose @ is known occurs in a photographic plate in
which the tracks of the incident particle m; and the two product particles mg
and mq¢ can be seen. Find the energy of the incident particle in terms of my,
ms, ms4, @, and the measured angles #3 and ¥4 between the incident track and
the two final tracks. What happens if @ = 07
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17. The Compton scattering of x-rays can be interpreted as the result of elastic
collisions between x-ray photons and free electrons. According to quantum
theory, a photon of wavelength A has a kinetic energy he/X, and a linear momen-
tum of magnitude h/\, where & is Planck’s constant and ¢ is the speed of light.
In the Compton effect, an incident beam of x-rays of known wavelength Ar in a
known direction is scattered in passing through matter, and the scattered radia-
tion at an angle 91 to the incident beam is found to have a longer wavelength Mg,
which is a function of the angle #1. Assuming an elastic collision between an inci-
dent photon and an electron of mass m at rest, set up the equations expressing
conservation of energy and momentum. Use the relativistic expressions for the
energy and momentum of the electron. Show that the change in x-ray wave-
length is

A — M = —h— (1 — cos 1),
me

and that the ejected electron appears at an angle given by

sin J4 .
[1 4+ (A/Arme)](1 — cos ¢1)

tan 42 =

18. Work out a correction to Eq. (3-267) which takes into account the motion
of the central mass M under the influence of the revolving mass m. A pair of stars
revolve about each other, so close together that they appear in the telescope as a
single star. It is determined from spectroscopic observations that the two stars
are of equal mass and that each revolves in a circle with speed v and period =
under the gravitational attraction of the other. Find the mass m of each star by
using your formula.

19. Show that if the incident particle is much heavier than the target particle
(m1 >> mg), the Rutherford scattering cross section do [Eq. (3-276)] in laboratory
coordinates is approximately

( q192 >2 4? :
do = 27 sin ¢ d¥y
2mag/ 11 — @ — VDHVEHE — YPeHYE

if Y1 < 1, where ¥ = mi/ma. Otherwise, do = 0.

20. Find an expression analogous to Eq. (4-116) for the angle of recoil of the
target particle (J2 in Fig. 4-7) in terms of the scattering angle @ in the equivalent
one-body problem. Show that, for an elastic collision,

d2 = 3(x — ).

21. Assume that mz >> mj, and that 8 = ¢; }+ §, in Eq. (4-117). Find a
formula for § in terms of #;. Show that the first-order correction to the Ruther-
ford scattering cross section [Eq. (3-276)], due to the finite mass of mg, vanishes.

22, Set up the equations of motion for Fig. 4-10, assuming that the relaxed
_length of each spring is [, and that the distance between the walls is 3( 4 a), so
that the springs are stretched, even in the equilibrium position. Show that the
equations can be put in the same form as Egs. (4-135) and (4-136).
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93. For the normal mode of vibration given by Eqs. (4-162) and (4-163), find
the force exerted on m; through the coupling spring, and show that the motion
of z1 satisfies the equation for a simple harmonie oscillator subject to this driving
force. ‘

24. The system of coupled oscillators shown in Fig. 4-10 is subject to an ap-
plied force

F = Fgcos wl,

applied to mass mi. Set up the equations of motion and find the steady-state
solution. Sketch the amplitude and phase of the oscillations of each oscillator as
functions of w.

25. Find the two normal modes of vibration for a pair of identical damped
coupled harmonic oscillators [Egs. (4-180), (4-181)]. Thatis, m1 = me, by = bz,
k1 = ko. [Hint: If k3 = 0, you can certainly find the solution. You will find this
point helpful in factoring the secular equation.]

26. Set up the equations of motion for the system shown in Fig. 4-16. The
relaxed lengths of the two springs are 1, lz. Separate the problem into two
problems, one involving the motion of the center of mass, and the other involving
the “internal motion” described by the two coordinates z1, z2. Find the normal
modes of vibration.




CHAPTER 5
RIGID BODIES. ROTATION ABOUT AN AXIS. STATICS

5~1 The dynamical problem of the motion of a rigid body. In order to
apply the theorems of the preceding chapter to the motion of a rigid body,
we regard a rigid body as a system of many particles whose positions rela-
tive to one another remain fixed. We may define a rigid body as a system
of particles whose mutual distances are all constant. The forces which
hold the particles at fixed distances from one another are internal forces,
and may be imagined as exerted by rigid weightless rods connected be-
tween all pairs of particles. Forces like this which maintain certain fixed
relations between the particles of a system are called forces of constraint.
Such forces of constraint can always be regarded as satisfying Newton’s
third law (strong form), since the constraints could be maintained by rigid
rods fastened to the particles by frictionless universal joints. We may
therefore apply the theorems of conservation of linear and angular momen-
tum to the motion of a rigid body. For a perfectly rigid body, the theorem
of conservation of mechanical energy holds also, since we can show by
Newton’s third law that the forces of constraint do no work in a rigid mo-
tion of the system of particles. The work done by the force exerted by a
moving rod on a particle at one end is equal and opposite to the work done
by the force exerted by the rod on a particle at the other end, since both
particles have the same component of velocity in the direction of the rod

(Fig. 5-1):
Fo1°vi + Fi,2:vo = Fo,1ovy — Fo 10V (5-1)

= Fa,1:(v1 — vy)

= 0.

We shall base our derivation of the equations of motion of a rigid body
on these conservation laws. No actual solid body is ever perfectly rigid,
so that our theory of the motion of rigid bodies will be an idealized ap-
proximation to the motion of actual bodies. However, in most applica-
tions the deviation of actual solid bodies from true rigidity is not sig-
nificant. In a like spirit is our assumption that the ideal rigid body can
be imagined as made up of ideal point particles held at fixed distances
from one another.

A solid body of ordinary size is composed of such a large number of
atoms and molecules that for most purposes it is more convenient to repre-

203
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V1

g

Fo1

F1e. 5-1. Forces exerted by two particles connected by a rigid rod.

sent its structure by specifying the average density p of mass per unit
volume at each point in the body. The density is defined by .

dM

where dM is the total mass in a volume dV which is to be chosen large
enough to contain a large number of atoms, yet small enough so that the
properties of the material are practically uniform within the volume dV.
Only when a dV satisfying these two requirements can be chosen in the
neighborhood of a point in the body can the density p be properly defined
at that point. Sums over all the particles, such as oceur in the expressions
for total mass, total momentum, etc., can be replaced by integrals over the
volume of the body. For example, the total mass is

M=Zi:m,-=[j/pdv. (5-3)

(body)

Further examples will appear in the following sections.

In order to describe the position of a rigid body in space, six coordinates
are needed. We may, for example, specify the coordinates (xy, ¥y, z1) of
some point P, in the body. Any other point P, of the body a distance r
from P, will then lie somewhere on a sphere of radius r with center at
(21, Y1, 21). We can locate P, on this sphere with two coordinates, for
example, the spherical coordinate angles 65, ¢» with respect to a set of
axes through the point (24, y1, 21). Any third point P; a distance ¢ > 0
from the line through P; and Py must now lie on a circle of radius a about
this line. We can locate P3 on this circle with one coordinate. We thus
require a total of six coordinates to locate the three points Py, Ps, P3 of




5-1] THE DYNAMICAL PROBLEM OF THE MOTION OF A RIGID BopY 205

the body, and when three noncollinear points are fixed, the locations of
all points of a rigid body are fixed. There are many possible ways of choos-
ing six coordinates by which the position of a body in space can be specified.
Usually three of the six coordinates are used as above to locate some point
in the body. The remaining three coordinates determine the orientation
of the body about this point.

If a body is not connected to any supports, so that it is free to move in
any manner, it is convenient to choose the center of mass as the point to
be located by three coordinates (X, Y, Z), or by the vector R. The motion
of the center of mass R is then determined by the linear momentum theo-
rem, which can be expressed in the form (4-18):

MR = F, (5-4)

where M is the total mass and F is the total external force. The equation
for the rotational motion about the center of mass is given by the angular
momentum theorem (4-28):

dL
v N, (5-5)
where L is the angular momentum and N is the torque about the point R.
If the force F is independent of the orientation of the body in space, as in
the case of a body moving in a uniform gravitational field, the motion of
the center of mass is independent of the rotational motion, and Eq. (5-4)
is a separate equation which can be solved by the methods of Chapter 3.
If the torque N is independent of the position R of the center of mass, or
if R(¢) is already known, so that N can be calculated as a function of time
and of the orientation of the body, then the rotational motion about the
center of mass may be determined from Eq. (5-5). In the more general
case, when F and N each depend on both position and orientation, Egs.
(5-4) and (5-5) must be solved simultaneously as six coupled equations
in some suitable set of coordinates; this case we shall not attempt to treat,
although after the reader has studied Chapter 11, he will be able to set up
for himself the six equations which must be solved.

If the body is constrained by external supports to rotate about a fixed
point O, then moments and torques are to be computed about that point.
We have to solve Eq. (5-5) for the rotation about the point O. In this case
Eq. (5-4) serves only to determine the constraining force required to
maintain the point O at rest.

The difficulty in applying Eq. (6-5) lies in the choice of three coordinates
to describe the orientation-of the body in space. The first thought that
comes to mind is to choose a zero position for the body, and to specify
any other orientation by specifying the angles of rotation ¢, ¢, ¢., about
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three perpendicular axes, required to bring the body to this orientation.
However, a little experimenting with a solid body will convince anyone
that no suitable coordinates of this sort exist. Consider, for example,
the position specified by ¢, = 90°, ¢, = 90°, ¢, = 0. If a body is first
rotated 90° about the r-axis, and then 90° about the y-axis, the final posi-
tion will be found to be different from that resulting from a 90° rotation
about the y-axis followed by a 90° rotation about the z-axis. It turns out
that no simple symmetric set of coordinates can be found to describe the
orientation of a body, analogous to the coordinates z, y, z which locate the
position of a point in space. We therefore postpone to Chapter 11 the
treatment of the rather difficult problem of the rotation of a body around
a point. We shall discuss here only the simple problem of rotation about
a fixed axis. *

5-2 Rotation about an axis. It requires only one coordinate to specify
the orientation of a body which is free to rotate only about a fixed axis.
Let the fixed axis be taken as the z-axis, and let a line OA in the body,
through the axis and lying in (or parallel to) the xy-plane, be chosen. We
fix the position of the body by specifying the angle 8 between the line 0 A
fixed in the body and the z-axis. Choosing cylindrical coordinates to
locate each particle in the body, we now compute the total angular momen-
tum about the z-axis. (See Fig. 5-2.) We shall write r; instead of p; to
represent the distance of particle m; from the z-axis, in order to avoid con-
fusion with the density p:

L= maip. (5-6)

Let B; be the angle between the direction of the line OA in the body and
the direction of the radius from the z-axis to the particle m;. Then, for a

F1a. 5-2. Coordinates of a particle in a rigid body.
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rigid body, B; is constant, and

Y — 0 + Bi, (5_7)
@i = 0. (5-8)
Substituting in Eq. (5-6), we have
L= Z maré
= (Z m{r?) 6
= I,4, 5-9)
where
I, =2 mai (5-10)

The quantity I, is a constant for a given body rotating about a given axis,
and is called the moment of inertia about that axis. We may also express
I, as an integral over the body:

I, = f f [ prdv. (5-11)

(body)

It is sometimes convenient to introduce the radius of gyration k. defined by
the equation

Mk2 =1, (5-12)

that is, k, is a radius such that if all the mass of the body were situated a
distance k. from the axis, its moment of inertia would be I,.
Using Eq. (5-9), we may write the component of Eq. (5-5) along the
axis of rotation in the form
dL

E = Izé = Nz, (5—13)

where N, is the total external torque about the axis. Equation (5-13) is
the equation of motion for rotation of a rigid body about a fixed axis. It
has the same form as Eq. (2-1) for the motion of a particle along a straight
line. The problem of rotation of a body about a fixed axis is therefore
equivalent to the problem treated in Chapter 2. All methods and results
of Chapter 2 can be extended directly to the present problem according to
the following scheme of analogy:



.
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Rectilinear motion Rotation about a fixed axis
position: x angular position: 6
velocity: v =% angular velocity: w=46
acceleration: a=1% angular acceleration: o =
force: F torque: N,
mass: m moment of inertia: I,
potential energy: potential energy:

V@ =~ [ F@ds ve) = — " N.(6) d6

F@ =~ 4 N.o) = — 2¥
kinetic energy: T = imz? kinetic energy: T = }I.6°
linear momentum: p = md angular momentum: L = I,

The only mathematical difference between the two problems is that the
moment of inertia I, depends upon the location of the axis in the body,
while the mass of a body does not depend on its position or on its motion.
This does not affect the treatment of rotation about a single fixed axis.
The rotational potential and kinetic energies defined by the equations,

ve) =— [ " N.(0) db, (5-14)
N.= -, (5-15)
T = %I,6% (5-16)

are not merely analogous to the corresponding quantities defined by Eqgs.
(2—-41), (2-47), and (2-5) for linear motion. They are, in fact, equal to the
potential and kinetic energies, defined in Chapters 2 and 4, of the system
of particles making up the rigid body. The potential energy defined by
Eq. (5-14), for example, is the work done against the forces whose torque
is N, when the body is rotated through the angle 8 — 6,. The kinetic
energy defined by Eq. (5-16) is just the sum of the ordinary kinetic energies
of motion of the particles making up the body. The proof of these state-
ments is left as an exercise.

5-3 The simple pendulum. As an example of the treatment of rota-
tional motion, we consider the motion of a simple pendulum, consisting of
a mass m suspended from a fixed point O by a string or weightless rigid rod
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m

mg

F1a. 5-3. The simple pendulum.

of length I. If a string supports the mass m, we must suppose that it
remains taut, so that the distance ! from m to O remains constant; other-
wise we cannot treat the system as a rigid one. We consider only motions
of the pendulum in one vertical plane, in order to be able to apply the
simple theory of motion about a single fixed axis through 0. We then
have (Fig. 5-3)

I, = mi?, (5-17)

N, = —mglsin 0, (5-18)

where the z-axis is an axis through O perpendicular to the plane in which
the pendulum is swinging. The torque is taken as negative, since it acts
in such a direction as to decrease the angle . Substituting in the equation
of motion (5-13), we find

= — :‘ll sin 6. (5-19)

This equation is not easy to solve. If, however, we consider only small
oscillations of the pendulum (say 6 << 7/2), then sin § = 6, and we can
write

b+ -‘ll o = 0. (5-20)

This is of the same form as Eq. (2-84) for the harmonic oscillator. Its
“golution is

6 = kcos (wt + B), (5-21)
where

w= (%)1’ 2 (5-22)

and k and 8 are arbitrary constants which determine the amplitude and
phase of the oscillation. Notice that the frequency of oscillation is
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independent of the amplitude, provided the amplitude is small enough so
that Eq. (5-20) is a good approximation. This is the basis for the use
of a pendulum to regulate the speed of a clock.

We can treat the problem of motion at large amplitudes by means of
the energy integral. The potential energy associated with the torque
given by Eq. (5-18) is

]
V) = — A —mgl sin 6 d6
= —mgl cos 0, (5-23)

where we have taken 0, = m/2 for convenience. We could have written
down V(6) right away as the gravitational potential energy of a mass m,
referred to the horizontal plane through O as the level of zero potential
energy. The energy integral is

1mi®6®> — mglcos § = E. (5-24)

We could prove that F is constant from the equation of motion (5-13),
but we need not, since the analogy described in the preceding section
guarantees that all theorems for one-dimensional linear motion will hold in
their analogous forms for rotational motion about an axis. The potential
energy V(6) is plotted in Fig. 5-4. We see that for —mgl < E < mgl, the
motion is an oscillating one, becoming simple harmonic motion for E
slightly greater than —mgl. For E > mgl, the motion is nonoscillatory;
6 steadily increases or steadily decreases, with 8 oscillating between a maxi-
mum and minimum value. Physically, when E > mgl, the pendulum has
enough energy to swing around in a complete circle. (In this case, of
course, the mass must be held by a rigid rod instead of a string, unless § is
very large.) This motion is still a periodic one, the pendulum making
one complete revolution each time @ increases or decreases by 27. In

14

+mgl
[}
! ! 0 /:\ } /!
T 27 3r

—mgl >

F1e. 5-4. Potential energy for simple pendulum.
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either case, the attempt to solve Eq. (5-24) for 6 leads to the equation

L]
de . 29)1/2
«/oo (E/mgl + cos 6)1/2 — (T 2 (5-25)

The integral on the left must be evaluated in terms of elliptic functions.
The period of the motion can be obtained by integrating between appro-
priate limits. When the motion is oscillatory (E < mgl), the maximum
value k of @ is given, according to Eq. (5-24), by .

= —mgl cos k. (5-26)

Equation (5-25) becomes, in this case,

’ df (2g>1/2
6 (cOS @ — cosKk)1/iZ  \ 1. ) (5-27)

which can also be written

’ do g\/2
'/90 [sin? (x/2) — sinZ (6/2)['/2 2 (j) £ (5-28)

The angle # oscillates between the limits k. We now introduce a new
variable ¢ which runs from 0 to 27 for one cycle of oscillation of 6:
__sing/2 1. 6

= snk/2” a2’ (5-29)

sin ¢
where

a = sins (5-30)

5"

With these substitutions, Eq. (5-28) can be written

[ 4
de 7\
4/; (1= aZsinZ p)1/Z (7) 2 (5-31)

where we have taken 6, = 0, for convenience. The integral is now in a
standard form for elliptic integrals. When a is small, the integrand can be
expanded in a power series in a?:

[ g 1/2
/ 14 3a’sino +---1de = (7) i (5-32)
0
This can be integrated term by term:
1/2
¢+ 3a%Qp — sin20) + .- = (%) L. (6-33)
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The period of the motion is obtained by setting ¢ = 27:

R

Thus as the amplitude of oscillation becomes large, the period becomes
slightly longer than for small oscillations, a prediction which is readily
verified experimentally by setting up two pendulums of equal length and
setting them to swinging at unequal amplitudes. Equation (5-33) can be
solved approximately for ¢ by successive approximations, and the result
substituted in Eq. (5-29), which can be solved for 8 by successive approxi-
mations. The result, to a second approximation, is

K3

3
-~ L * 7 - / a
6 = (K + 192> sin w't + 7o Sin 3w't, (5-35)

,_om_ g)”z( _ ) ;
w_r_<l -1+ (5-36)

If we neglect terms in 2 and «3, this solution agrees with Eq. (5-21). At
larger amplitudes in second approximation, the frequency is slightly lower
than at small amplitudes, and the motion of 8 contains a small third har-
monic term.

where

5-4 The compound pendulum. A rigid body suspended and free to
swing about an axis is called a compound pendulum. We assume that the
axis does not pass through the center of mass, and we specify the position
of the body by the angle 8 between a vertical line and a perpendicular line
drawn from a point O on the axis, through the center of mass @ (Fig. 5-5).
In order to compute the total torque exerted by gravity, we anticipate a

Fig. 5-5. The compound pendulum.
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theorem, to be proved later, that the total torque is the same as if the
total gravitational force were applied at the center of mass G. We then
have, using Egs. (5-12) and (5-13),

MkE3§ = —Mgh sin 6, (5-37)

where & is the distance OG. This equation is the same as Eq. (5-19) for a
simple pendulum of length [, if we take
. @
l= h (5-38)
The point O’ a distance ! from O along the line through the center of
mass G is called the center of oscillation. If all the mass M were at (O,
the motion of the pendulum would be the same as its actual motion, for
any given initial conditions. If the distance O’G is b/, we have

l=h+F, ' (5-39)
hW = k} — K (5—40)

It will be shown in the next section that the moment of inertia about
any axis equals the moment of inertia about a parallel axis through the
center of mass G plus Mh2, where & is the distance from the axis to G.
Let kg be the radius of gyration about ¢. We then have

k% = k& - h, (541)
so that Eq. (5~40) becomes
hh = k. (5-42)

Since this equation is symmetrical in % and &', we conclude that if the
body were suspended about a parallel axis through 0’, the center of oscilla-
tion would be at O. The acceleration g of gravity can be measured very
accurately by measuring the period of small oscillations of a pendulum and
using Eq. (5-22). If a compound pendulum is used, the radius of gyration
must be known, or the period measured about two axes, preferably O, 0’,
so that the radius of gyration can be eliminated from the equations.

Consider a rigid body suspended from an axis about which it is free to
move. Let it be struck a blow at a point 0’ a distance ! from the axis,
the direction of the blow being perpendicular to the line OO’ from the
axis to 0’. Place O’ so that the line OO’ passes through the center of mass
G, and let A, &’ be the distances OG, O'G (Fig. 5-6). The impulse delivered
at the point O’ by the force F’ during the blow is

J = [ F dt. (5-43)
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Fie. 5-6. Rigid body pivoted at O and struck a blow at O'.

At the instant the blow is struck, a force ¥ will, in general, have to be
exerted on the body at the point O on the axis in order to keep O fixed.
The impulse delivered to the body at O is

J = / Fdt. (5-44)

An equal and opposite impulse —.J is delivered by the body to the support
at 0. The momentum theorem for the component P of linear momentum
of the body in the direction of F is:

% — g—t(Mhé) —F+ P, (5-45)

where 4 is the angular velocity of the body about 0. From this we have,
for the momentum just after the blow,

Mho = J + J, (5-46)

assuming that the body is initially at rest. The conservation theorem of
angular momentum about O is:

% - %(Mk%o’) — L. (5-47)
Integrating, we have, for the angular momentum just after the blow,

Mk3é = J'l. (5-48)
We eliminate § between Eqgs. (5-46) and (5-48):

hl = k} (1 + Ji) (5-49)




5-5] COMPUTATION OF CENTERS OF MASS AND MOMENTS OF INERTIA 215

We now ask for the condition that no impulsive force be exerted on the
axis at O at the instant of the blow, i.e., J = 0:

Bl = k3. (5-50)

This equation is identical with Eq. (5-38) and may also be expressed in
the symmetrical form [Eq. (5-42)]

kK = k. ~ (5-51)

The point O’ at which a blow must be struck in order that no impulse be
felt at the point O is called the center of percussion relative to 0. We see
that the center of percussion is the same as the center of oscillation relative
to O, and that O is the center of percussion relative to 0’. If the body is
unsupported, and is struck at 0, its initial motion will be a rotation about
O. For example, a batter tries to hit a baseball at the center of percussion
relative to his hands. If the ball hits very far from the center of percus-
sion, the blow is transmitted to his hands by the bat.

5-5 Computation of centers of mass and moments of inertia. We have
given in Section 4-1 the following definition of center of mass for a system
of particles:

1
R = H z; m.r;. (5—52)
For a solid body, the sum may be expressed as an integral:
1
R=3 // [ prdV, (5-53)
or, in component form,
1
= H///px v, (5-54)
1
Y =37 / [ oy dV, (5-55)
1
= 3 f / pzdV. (5-56)

The integrals can be extended either over the volume of the body, or over
all space, since p = 0 outside the body. These equations define a point G
of the body whose coordinates are (X, Y, Z). We should first prove that
the point @ thus defined is independent of the choice of coordinate system.
Since Eq. (5-52) or (5-53) is in vector form, and makes no reference to
any particular set of axes, the definition of G certainly does not depend on
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F1a. 5-7. Location of center of mass relative to two different origins.

any particular choice of directions for the axes. We should prove, how-
ever, that G is independent also of the choice of origin. Consider a system
of particles, and let any particle m; be located by vectors r; and r; with
respect to any two origins 0 and O’. If a is the vector from O to O’, the
relation between r; and r; is (Fig. 5-7)

r; =r;+a (5-57)

The centers of mass @, G’ with respect to O, O’ are located by the vectors
R and R/, where R’ is defined by

1
R = 3 Z mii. (5-58)
Using Eq. (5-57), we can rewrite Eq. (5-58):

R = %Zmi(r; — a)

=R — a. (5-59)

Thus R and R’ are vectors locating the same point with respect to O and 0’
so that G and G’ are the same point.

General theorems like the one above can be proved either for a system of
particles or for a body described by a density p. Whichever point of view
is adopted in any proof, a parallel proof can always be given from the
other point of view.

Much of the labor involved in the calculation of the position of the
center of mass from Eqgs. (5-54), (5-55), (6-56) can often be avoided by
the use of certain laborsaving theorems, including the theorem proved
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above which allows us a free choice of coordinate axes and origin. We
have first the following theorem regarding symmetrical bodies:

THEOREM. If a body is symmetrical with respect to a plane, its
center of mass lies in that plane. (5-60)

When we say a body is symmetrical with respect to a plane, we mean that
for every particle on one side of the plane there is a particle of equal mass
located at its mirror image in the plane. For a continuously distributed
mass, we mean that the density at any point equals the density at its
mirror image in the plane. Choose the origin in the plane of symmetry,
and let the plane of symmetry be the zy-plane. Then in computing Z from
Eq. (5-56) [or (5-52)], for each volume element (or particle) at a point
(z, y, 2) above the zy-plane, there is, by symmetry, a volume element of
equal mass at the point (z, y, —2) below the zy-plane, and the contribu-
tions of these two elements to the integral in Eq. (5-56) will cancel. Hence
Z = 0, and the center of mass lies in the zy-plane. This proves Theorem
(5-60). The theorem has a number of obvious corollaries:

If a body is symmetrical in two planes, its center of mass lies on
their line of intersection. (5-61)

If a body s symmetrical about an axis, its center of mass lies on
that axis. (5-62)

If a body is symmetrical in three planes with one common point,
that point is its center of mass. (5-63)

If a body has spherical symmetry about a point (.e., if the density
depends only on the distance from that point), that point s its
center of mass. (5-64)

These theorems enable us to locate the center of mass immediately in some
cases, and to reduce the problem to a computation of only one or two
coordinates of the center of mass in other cases. One should be on the
lookout for symmetries, and use them to simplify the problem. Other
cases not included in these theorems will occur (e.g., the parallelepiped),
where it will be evident that certain integrals will be equal or will cancel,
and the center of mass can be located without computing them.

Another theorem which often simplifies the location of the center of
mass is that if a body is composed of two or more parts whose centers of
mass are known, then the center of mass of the composite body can be
computed by regarding its component parts as single particles located at
their respective centers of mass. Let a body, or system of particles, be
composed of n parts of masses My, . .., M,. Let any part My be composed
of N, particles of masses my;, . . . , MmN, located at the points rzy, . . . , Tkn,.
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Then the center of mass of the part M is located at the point
LSt
= = MEilel,
M =~

and

N
= Z mrgi.

=1

The center of mass of the entire body is located at the point

z:;'

MLkl

i M,,

EI

where
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By Eq. (6-65), Eq. (5-67) becomes
1 n
= 77 M kRk)
and by Eq. (5-66), Eq. (5-68) becomes

M= M

[cHAP. 5

(5-65)

(5-66)

(5-67)

(5-68)

(5-69)

(5-70)

Equations (5-69) and (5-70) are the mathematical statement of the theo-
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As an example, let us consider a uniform rectangular block with a eylin-
drical hole drilled out, as shown in Fig. 5-8. By the symmetry about the
two vertical planes bisecting the block parallel to its sides, we conclude
that the center of mass lies along the vertical line AB through the centers
of the top and bottom faces. Let the center of mass of the block lie a
distance Z below A, and let the density of the block be p. If the hole were
not cut out, the mass of the block would be 6 ecm X 4 em X 10cm X p,
and its center of mass would be at the midpoint of 4B, 5 cm from A. The
mass of the material drilled out is 7 cm? X 6 em X p, and its center of
mass, before it was removed, was on AB, 2cm below A. Hence the
theorem (5-69) above allows us to write

(6em X 4cm X 10em X p) X 5em = (rem? X 6em X p) X 2cem
4+ 6cm X (4cm X 10em — wem?) X p X Z.
The solution for Z is

7 6X4XI0X5 —7TX6X2
- 6X (4X 10 —m)

cm

As a second example, we locate the center of mass of a hemisphere of
radius a. By symmetry, if the density is uniform, the center of mass lies
on the axis of symmetry, which we take as the z-axis. We have then to

(e) @

F1a. 5-9. Methods of integrating over a hemisphere.
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compute only the integral in Eq. (5-56). The integral can be set up in
rectangular, cylindrical, or spherical coordinates (Fig. 5-9):

2_,2)1/2

1 a (@ (a2—22—y2)1/2
Rectangular: Z = i /z o ,/,, e /x 2 pz dx dy da.

2y1/2

a 2r (a?—z
Cylindrical: Z = % / / / pzr dr do dz.
2=0 =0 J r=0

a w2 2x
Spherical: Z = 1 ] / f (pr cos 6)r? sin 6 dr d6 de.
M r=0 J0=0 =0

Any one of these expressions can be used to evaluate Z for any density
distribution. If p is uniform, we can also build up the hemisphere out of
rings or disks and save one or two integrations. For example, building up
the hemisphere out of disks perpendicular to the z-axis (this is equivalent
" to carrying out the integration over r and ¢ in cylindrical coordinates), we
can write

_ 1 ‘ 2 2
Z—M/z=0zp7r(a 2%) dz

1 4
= (o) (%) = 10 67

where the integrand is zp times the volume of a disk of thickness dz, radius
(a2 — 22)V2,

When the density p is uniform, the center of mass of a body depends
only on its geometrical shape, and is given by

- %f[’frdV. (5-72)

The point G whose coordinate R is given by Eq. (5-72) is called the cen-
troid of the volume V. If we replace the volume V by an area A or curve C
in space, we obtain formulas for the centroid of an area or of a curve:

R — —‘}1- [4 [raa, (5-73)
R — % [ xds, (5-74)

where s is the length of the curve C. The following two theorems, due to
Pappus, relate the centroid of an area or curve to the volume or area swept
out by it when it is rotated about an axis:
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Fia. 5-10. Pappus’ first theorem. I'ta. 5-11. Sphere formed by rota-
ting a semicircle,

TreorEM 1. If a plane curve rolates aboul an axis in ils own
plane which does not inlersect it, the area of the surface of revolu-
tion which it generates 1s equal to the length of the curve multiplied
by the length of the path of its centroid. (5-75)

TraEOREM 2. If a plane area rotates about an axis in its own plane
which does not intersect it, the volume generated is equal to the area
times the length of the path of its centroid. (5-76)

The proof of Theorem 1 is very simple, with the notation indicated in
Fig. 5-10:
— = = 2
A fc omy ds = 2m fcyds Vs, (5-77)

where Y is the y-coordinate of the centroid of the curve C, and s is its
length. The proof of Theorem 2 is similar and is left to the reader. These
theorems may be used to determine areas and volumes of figures sym-
metrical about an axis when the centroids of the generating curves or
areas are known, and conversely. We locate, for example, the position of
the center of mass of a uniform semicircular disk of radius a, using Pappus’
second theorem. If the disk is rotated about its diameter, the volume of
the sphere generated, by Pappus’ theorem (Fig. 5-11), is

2
4ma® = ("'%) @ry),
from which we obtain
4a

The moment of inertia / of a body about an axis is defined by Eq. (5-10):
I=>) mai (5-79)
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Fig. 5-12. Location of point P with respect to points O and G.

or I= [ / pr? dv, (5-80)

where r is the distance from each point or particle of the body to the given
axis. We first prove several laborsaving theorems regarding moments
of inertia:

PARALLEL AX1s THEOREM. The moment of inertia of a body
about any given axis is the moment of inertia about a parallel axis
through the center of mass, plus the moment of inertia about the
gwen axis if all the mass of the body were located at the center of
mass. (5-81)

To prove this theorem, let Ip be the moment of inertia about a z-axis
through the point O, and let I be the moment of inertia about a parallel
axis through the center of mass G. Let r and r’ be the vectors to any
point P in the body, from O and @, respectively, and let R be the vector
from O to G. The components of these vectors will be designated by
(x,9,2), (,¥,7), and (X, Y, Z). Then, since (Fig. 5-12)
r=1r +R,
we see that
x2_|_y2 — (x/ —|—X)2-|- (y/+ Y)2
=22+ y?4+ X2 4 Y2+ 2X2' + 2YY,

so that the moment of inertia I is
Ip = [[ @ +y?pdV
= f//(x’z +yDpdV 4+ (X2 + Y?) [[/p av + 2X /]fx'p av
+2Y //[y'p av. (5-82)
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The first integral is I, and the integral in the second term is the total
mass M of the body. The integrals in the last two terms are the same as
the integrals occurring in Eqs. (5-54) and (5-55), and define the z- and
y-coordinates of the center of mass relative to G. Since G is the center of
mass, these integrals are zero, and we have

Io = Ig+ M(X? 4 Y?). ; (5-83)

This is the mathematical statement of the Parallel Axis Theorem. If we
know the moment of inertia about any axis, and can locate the center of
mass, we can use this theorem to determine the moment of inertia about
any other parallel axis.

The moment of inertia of a composite body about any axis may be
found by adding the moments of inertia of its parts about the same axis, a
statement which is obvious from the definition of moment of inertia. This
fact can be put to use in the same way as the analogous result for the
center of mass of a composite body.

A body whose mass is concentrated in a single plane is called a plane
lamina. We have the following theorem for a plane lamina:

PeRrPENDICULAR Ax1s THEOREM. The sum of the moments of
inertia of a plane lamina about any two perpendicular axes in the
plane of the lamina s equal to the moment of inertia about an axis
through their point of intersection perpendicular to the lamina. (5-84)

The proof of this theorem is very simple. Consider any particle of mass m
in the zy-plane. Its moments of inertia about the z- and y-axes are

I, = my?, I,= mx® (5-85)
Adding these, we have the moment of inertia of m about the z-axis:
I+ I,=m@®*+y®) = I.. (5-86)

Since the moment of inertia of any lamina in the zy-plane is the sum of
the moments of inertia of the particles of which it is composed, we have
theorem (5-84).

We illustrate these theorems by finding the moments of inertia of a
uniform circular ring of radius a, mass M, lying in the zy-plane (Fig. 5-13).
The moment of inertia about a z-axis perpendicular to the plane of the ring
through its center is easily computed:

I, = Ma?. (5-87)
The moments I, and I, are evidently equal, and we have, therefore, by

theorem (5-84),
I, = %I, = }Mad>. (5-88)
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4

z A

Fi1g. 5-13. A ring of radius a. F1g. 5-14. Finding the moment of
inertia of a disk.

Fic. 5-15. Finding the moment of inertia of a solid sphere.

The moment of inertia about an axis A tangent to the ring is, by the Parallel

Axis Theorem,
I4 = I,+ Ma® = §Ma®. (5-89)

The moment of inertia of a solid body can be set up in whatever coordi-
nate system may be convenient for the problem at hand. If the body is
uniform and of simple shape, its moment of inertia can be computed by
considering it as built up out of rods, rings, disks, etc. For example, the
moment of inertia of a circular disk about an axis perpendicular to it
through its center can be found by regarding the disk as made up of rings
(Fig. 5-14) and using Eq. (5-87):

matp

a
I, = / r2p2mr dr = = iMa2. (5-90)
0

The moment of inertia of a solid sphere can be calculated from Eq. (5-90)
by regarding the sphere as made up of disks (Fig. 5-15):

0 5 .9 5
I= / 2509 (oma? sin? 6) d(a cos ) = 8’;‘;“ — 2Ma®. (5-91)
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A body with a piece cut out can be treated by setting its moment of
inertia equal to the moment of inertia of the original body minus the
moment of inertia of the piece cut out, all moments being taken, of course,
about the same axis.

5-6 Statics of rigid bodies. The equations of motion of a rigid body
are Egs. (5+4) and (6-5):

MR = ) F;, (5-92)
dL e
EQ = Z Né. (5-93)

Equation (5-92) determines the motion of the center of mass, located by
the vector R, in terms of the sum of all external forces acting on the body.
Equation (5-93) determines the rotational motion about a point O, which
may be the center of mass or a point fixed in space, in terms of the total
external torque about the point 0. Thus if the total external force acting
on a rigid body and the total external torque about a suitable point are
given, its motion is determined. This would not be true if the body were
not rigid, since then it would be deformed by the external forces in a man-
ner depending on the particular points at which they are applied. Since
we are concerned only with external forces throughout this section, we
may omit the superseript e. It is only necessary to give the total torque
about any one point O, since the torque about any other point O’ can then
be found from the following formula:

Z N = Z Nio + (ro — ro’) X E F, (5-94)

where 19, 1o, are vectors drawn to the points O, O’ from any convenient
origin. That is, the total torque about O’ is the total torque about O plus
the torque about O’ if the total force were acting at 0. The proof of
Eq. (6-94) is very simple. Let r; be the vector from the origin to the point
at which F; acts. Then

ZNiO’ =Z(l'z'—ro’) X F;
=Z(l‘i—ro+ro—ro’) X F;
=Z(l'i—l'o) XFi-i-Z(l’o—l'o') X F;

= Z Nio + (ro — ro") X ZF;
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F16. 5-16. The torque is independent of where along its line of action a force acts.

If, in particular, a rigid body is at rest, the left members of Eqgs. (5-92)
and (5-93) are zero, and we have

z F; = 0, (5-95)
Z N;=0. (5-96)

These are the conditions to be satisfied by the external forces and torques
in order for a rigid body to be in equilibrium. They are not sufficient to
guarantee that the body is at rest, for it might still be in uniform transla-
tional and rotational motion, but if the body is initially at rest, it will
remain at rest when these conditions are satisfied. It is sufficient for the
total torque in Eq. (5-96) to be zero about any point, since then, by
Eq. (5-94), it will be zero also about every other point if Eq. (5-95) holds.

In computing the torque due to a force F, it is necessary to know not
only the vector F (magnitude and direction), but also the point P of
the body at which the force acts. But if we draw a line through P in
the direction of F, then if F acts at any other point P’ of this line, its
torque will be the same, since, from the definition of the cross product,
it can be seen (Fig. 5-16) that

trp X F=rp X F. (5-97)

(The areas of the parallelograms involved are equal.) The line through P
in the direction of F is called the line of action of the force. It is often
convenient in computing torques to remember that the force may be con-
sidered to act anywhere along its line of action. A distinction is some-
times made in this connection between “free” and “sliding” vectors, the
force being a “sliding” vector. The terminology is likely to prove confus-
ing, however, since as far as the motion of the center of mass is concerned
[Eq. (5-92)], the force is a “free” vector, i.e., may act anywhere, whereas
in computing torques, the force is a “sliding” vector, and for a nonrigid
body, each force must be localized at the point where it acts. It is better
to define vector, as we defined it in Section 3-1, as a quantity having
magnitude and direction, without reference to any particular location in
space. Then, in the case of force, we need for some purposes to specify not
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Fie. 5-17. A single force C whose torque is the sum of the torques of A and B.

only the force vector F itself, but in addition the point or line on which
the force acts.

A theorem due to Varignon states that if C = A + B, then the moment
of C about any point equals the sum of the moments of A and B, provided
A, B, and C act at the same point. The theorem is an immediate conse-
quence of the vector identity given by Eq. (3-27):

rXC=rxA-+rxB, if C=A+B. (5-98)

This theorem allows us to compute the torque due to a force by adding
- the torques due to its components. Combining Varignon’s theorem with
the result of the preceding paragraph, we may reduce the torque due to
two forces A, B acting in a plane, as shown in Fig. 5-17, to the torque
due to the single force C, since both A and B may be considered to act at
the intersection of their lines of action, and Eq. (5-98) then allows us to
add them. We could now add C similarly to any third force acting in the
plane. This process can be continued so long as the lines of action of the
forces being added are not parallel, and is related to a more general theorem
regarding forces in a plane to be proved below.

Since, for a rigid body, the motion is determined by the total force and
total torque, we shall call two systems of forces acting on a rigid body
equivalent if they give the same total force, and the same total torque
about every point. In view of Eq. (5-94), two systems of forces are then
equivalent if they give the same total force, and the same total torque
about any single point. It is of interest to know, for any system of forces,
what is the simplest system of forces equivalent to it.

If a system of forces F; acting at points r; is equivalent to a single force F
acting at a point r, then the force F acting at r is said to be the resultant of
the system of forces F;. If F is the resultant of the system of forces F;,
then we must have

F=)_F, (5-99)

(r—10) x F= 37 (r; —10) X Fy, (5-100)
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where 1o is any point about which moments are taken. By Eq. (5-94), if
Eq. (5-99) holds, and Eq. (5-100) holds for any point ro, it holds for every
point ro. The force —F acting at r is called the equilibrant of the system;
if the equilibrant is added to the system of forces, the conditions for equi-
librium are satisfied.

An example of a system of forces having a resultant is the system of
gravitational forces acting on a body near the surface of the earth. We
shall show that the resultant in this case acts at the center of mass. Let
the acceleration of gravity be g. Then the force acting on a particle m; is

F,‘ = m;g. (5—101)

The total force is
F = Z mg = Mg, (5-102)

where M is the total mass. The total torque about any point O is, with O

as origin,
> Niop = ) (r: X m.g)
5

2

= E (mix; X g)

- (5re)ee

= MR X g
= R x Mg, (5-103)

where R is the vector from O to the center of mass. Thus the total torque
is given by the force Mg acting at the center of mass. Because of this
result, the center of mass is also called the center of gravity. We shall see
in the next chapter that, in general, this result holds only in a uniform
gravitational field, i.e., when g is the same at all points of the body. If
the system of forces acting on a rigid body has a resultant, the forces may
be replaced by this resultant in determining the motion of the body.
A system of forces whose sum is zero is called a couple:

S F; = o. (5-104)

A couple evidently has no resultant, except in the trivial case where the
total torque is zero also, in which case the resultant force is zero. By
Eqgs. (5-94) and (5-104), a couple exerts the same total torque about every

point:
Z NiO’ B Z NiO- (5—105)
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Fig. 5-18. A simple couple.

Thus a couple is characterized by a single vector, the total torque, and
all couples with the same total torque are equivalent. The simplest sys-
tem equivalent to any given couple, if we exclude the trivial case where
the total torque is zero, is a pair of equal and opposite forces F, —F, acting
at points P, P’ separated by a vector r (Fig. 5-18) such that

D> Nyo=r1xF (5-106)

Equation (5-106) states that the moment of the given couple about O
-equals the moment of the couple (F, —F) about P’; the two systems
are therefore equivalent, since the point about which the moment of a
couple is computed is immaterial. The force F and the points P and P’
are by no means uniquely determined. Since only the cross product r x F
is determined by Eq. (5-106), we can choose P arbitrarily; we can choose
the vector F arbitrarily except that it must lie in the plane perpendicular to
the total torque; and we can then choose r as any vector lying in the same
plane and determining with F a parallelogram whose area is the magnitude
of the total torque.

The problem of finding the simplest system equivalent to any given sys-
tem of forces is solved by the following theorems:

TrEOREM 1. Every system of forces is equivalent to a single force
through an arbitrary point, plus a couple (either or both of which
may be zero). (5-107)

To prove this, we show how to find the equivalent single force and couple.
Let the arbitrary point P be chosen, let the sum of all the forces in the sys-
tem be F, and let their total torque about the point P be N. Then, if we
let the single force F act at P, and add a couple whose torque is N, we have
a system equivalent to the original system. Since the couple can be com-
posed of two forces, one of which may be allowed to act at an arbitrary
point, we may let one force of the couple act at the point P, and add it to
F to get a single force acting at P plus the other force of the couple. This
proves

TueoreM II. Any system of forces can be reduced to an equiva-
lent system which contains at most two forces. (5-108)
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The following theorem can be proved in two ways:

TreoreM III. A single nonzero force and a couple in the same
plane (i.e., such that the torque vector of the couple is perpendicular
to the single force) have a resultant and, conversely, a single force
1s equivalent to an equal force through any arbitrary point, plus a
couple. (5-109)

Since a couple with torque N is equivalent to a pair of equal and opposite
forces, F, —F, where F may be chosen arbitrarily in the plane perpendicular
to N, we may always choose F equal to the single force mentioned in the
theorem. Furthermore, we may choose the point of action of F arbitrarily.
Given a single nonzero force F acting at P, and a couple, we form a couple
(F, —F) equivalent to the given couple, and let —F act at P; F and —F
then cancel at P, and the remaining force F of the couple is the single re-
sultant. The converse can be proved by a similar argument.

The other method of proof is as follows. Let the given force F act at a
point P, and let the total torque of the couple be N. Then the torque of
the system about the point P is N. We take any vector r, in the plane
perpendicular to N, which forms with F a parallelogram of area N, and
let P’ be the point displaced from P by the vector r. If the single force F
acts at P’, the torque about P will then be N, and hence this single force is
equivalent to the original force F acting at P plus the couple. We can
combine Theorems I and III to obtain

TrEOREM IV. Every system of forces 1s equivalent to a single
Sorce plus a couple whose torque is parallel to the single force.
(Or, alternatively, every system of forces is equivalent to a couple
plus a single force perpendicular to the plane of the couple.) (5-110)

To prove this, we use Theorem I to reduce any system to a single force
plus a couple, and use Theorem III to eliminate any component of the
couple torque perpendicular to the single force. The point of application
of the single force mentioned in Theorem IV is no longer arbitrary, as its
line of action will be fixed when we apply Theorem III. Either the single
force or the couple may vanish in special cases. For a system of forces in
a plane, all torques about any point in the plane are perpendicular to the
plane. Hence Theorem IV reduces to

THEOREM V. Any system of forces in a plane has a resultant,
unless it is a couple. (5-111)

In practice, the reduction of a complicated system of forces to a simpler
system is a problem whose simplest solution is usually obtained by an
ingenious application of the various theorems and techniques mentioned
in this section. One method which always works, and which is often the
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simplest if the system of forces is very complicated, is to follow the pro-
cedure suggested by the proofs of the above theorems. Find the total
force F by vector addition, and the total torque N about some conven-
iently chosen point P. Then F acting at P, plus a couple of torque N,
together form a system equivalent to the original system. If F is zero, the
original system reduces to a couple. If N is perpendicular to F, the system
has a resultant, which can be found by either of the methods indicated in
the proof of Theorem III. If N is not perpendicular to F, and neither is
zero, then the system has no resultant, and can be reduced to a system of
two forces, as in the derivation of Theorem II, or to a single force and a
couple whose torque is parallel to it, as in Theorem IV. It is a matter of
taste, or of convenience for the purpose at hand, which of these latter re-
ductions is regarded as the simplest. In fact, for determining the motion
of a body, the most convenient reduction is certainly just the reduction
given by Theorem I, with the arbitrary point taken as the center of mass.

5-7 Statics of structures. The determination of the forces acting at
various points in a solid structure is a problem of utmost importance in
all phases of mechanical engineering. There are two principal reasons for
wanting to know these forces. First, the engineer must be sure that the
materials and construction are such as will withstand the forces which will
be acting, without breaking or crushing, and usually without suffering
permanent deformation. Second, since no construction materials are
really rigid, but deform elastically and sometimes plastically when subject
to forces, it is necessary to calculate the amount of this deformation, and
to take it into account, if it is significant, in designing the structure. When
deformation or breaking of a structure is under consideration, the struc-
ture obviously cannot be regarded as a rigid body, and we are interested
in the actual system of forces acting on and in the structure. Theorems
regarding equivalent systems of forces are not of direct interest in such
problems, but are often useful as tools in analyzing parts of the structure
which may, to a sufficient approximation, be regarded as rigid, or in sug-
gesting possible equivalent redistributions of forces which would subject
the structure to less objectionable stresses while maintaining it in equi-
librium.

If a structure is at rest, Egs. (5-95) and (5-96) are applicable either to
the structure as a whole, or to any part of it. It must be kept in mind that
the forces and torques which are to be included in the sums are those
which are external to and acting on whichever part of the structure is under
consideration. If the structure is moving, the more general equations
(5-92) and (5-93) are applicable. Either pair of vector equations repre-
sents, in general, six component equations, or three if all forces lie in a
single plane. (Why three?) It may be that the structure is so constructed
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Fia. 5-19. The flagpole problem.

that when certain of the external forces and -their points of application are
given, all the internal forces and torques acting on each part of the struc-
ture can be determined by appropriate applications of Egs. (5-95) and
(5-96) (in the case of a structure at rest). Such a structure is said to be
statically determinate. An elementary example is shown in Fig. 5-19, which
shows a horizontal flagpole AB hinged at point A to a wall and supported
by a cable BC. A force W acts on the pole as shown. When the force W
and the dimensions of the structure are given, it is a simple matter to
apply Eqgs. (5-95) and (5-96) to the pole and to calculate the force F; ex-
erted by the cable and the force Fy acting through the hinge. Many ex-
amples of statically determinate structures are given in any elementary
physics textbook.

Suppose now that the hinge at A in Fig. 5-19 were replaced by a welded
joint, so that the flagpole would support the load even without the cable
BC, provided the joint at A does not break. Then, given only the weight
W, it is evidently impossible to determine the force F, exerted by the
cable; F; may have any value from zero to a rather large value, depending
on how tightly the cable is drawn up and on how much stress is applied
to the joint at A. Such a structure is said to be statically indeterminate.
A statically indeterminate structure is one in which the forces acting on
its parts are not completely determined by the external forces, but depend
also on the distribution of stresses within the structure. To find the
internal forces in an indeterminate structure, we would need to know the
elastic characteristics of its parts and the precise way in which these parts
are distorted. Such problems are usually far more difficult than problems
involving determinate structures. Many methods of calculating internal
forces in mechanical structures have been developed for application to en-
gineering problems, and some of these are useful in a wide variety of
physical problems.

5-8 Stress and strain. If an imaginary surface cuts through any part
of a solid structure (a rod, string, cable, or beam), then, in general, the
material on one side of this surface will be exerting a force on the material
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Fic. 5-20. Stresses in a beam. (a) Compression. (b) Tension. (c) Shear.

on the other side, and conversely, according to Newton’s third law. These
internal forces which act across any surface within the solid are called
stresses. The siress is defined as the force per unit area acting across any
given surface in the material. If the material on each side of any surface
pushes on the material on the other side with a force perpendicular to the
surface, the stress is called a compression. If the stress is a pull perpen-
dicular to the surface, it is called a fension. If the force exerted across the
surface is parallel to the surface, it is called a shearing stress. Figure 5-20
illustrates these stresses in the case of a beam. The vector labeled Fi_,
represents the force exerted by the left half of the beam on the right half,
and the equal and opposite force F,_,; is exerted on the material on the
left by the material on the right. A stress at an angle to a surface can be
resolved into a shear component and a tension or compression component.
In the most general case, the stress may act in any direction relative to
the surface, and may depend on the orientation of the surface. The de-
scription of the state of stress of a solid material in the most general
case is rather complicated, and is best accomplished by using the mathe-
matical techniques of tensor algebra to be developed in Chapter 10. We
shall consider here only cases in which either the stress is a pure com-
pression, independent of the orientation of the surface, or in which only
one surface is of interest at any point, so that only a single stress vec-
tor is needed to specify the force per unit area across that surface.

If we consider a small volume AV of any shape in a stressed material,
the material within this volume will be acted on by stress forces exerted
across the surface by the material surrounding it. If the material is not
perfectly rigid, it will be deformed so that the material in the volume AV
may have a different shape and size from that which it would have if there
were no stress. This deformation of a stressed material is called strain.
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The nature and amount of strain depend on the nature and magnitude of
the stresses and on the nature of the material. A suitable definition of
strain, stating how it is to be measured, will have to be made for each kind
of strain. A tension, for example, produces an extension of the material,
and the strain would be defined as the fractional increase in length.

If a wire of length ! and cross-sectional area A is stretched to length
1 + Al by a force F, the definitions of stress and strain are

stress = F/A, (5-112)
strain. = Al/l. (5-113)

1t is found experimentally that when the strain is not too large, the stress
is proportional to the strain for solid materials. This is Hooke’s law, and
it is true for all kinds of stress and the corresponding strains. It is also
plausible on theoretical grounds for the reasons suggested in the preliminary
discussion in Section 2-7. The ratio of stress to strain is therefore constant
for any given material if the strain is not too large. In the case of exten-
sion of a material in one direction due to tension, this ratio is called Young’s
modulus, and is

__stress __Fl .

T strain = A Al

(5-114)

If a substance is subjected to a pressure increment Ap, the resulting
deformation will be a change in volume, and the strain will be defined by

strain = éVZ (5-115)

The ratio of stress to strain in this case is called the bulk modulus B:

_ stress _ ApV
© strain AV’

(5-116)

where the negative sign is introduced in order to make B positive.

In the case of a shearing stress, the stress is again defined by Eq. (5-112),
where F is the force acting across and parallel to the area A. The result-
ing shearing strain consists in a motion of A parallel to itself through a
distance Al, relative to a plane parallel to A at a distance Az from A (Fig.
5-21). The shearing strain is then defined by

. Al
strain = i tan 6, (5-117)

where @ is the angle through which a line perpendicular to A is turned as
a result of the shearing strain. The ratio of stress to strain in this case is
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Fia. 5-21. Shearing strain.

called the shear modulus n:

stress _  F
strain = A tan 6

(5-118)

An extensive study of methods of solving problems in statics is outside
the scope of this text. We shall restrict ourselves in the next three sec-
tions to the study of three special types of problems which illustrate the
analysis of a physical system, to determine the forces which act upon its
parts and to determine the effect of these forces in deforming the system.

5~9 Equilibrium of flexible strings and cables. An ideal flexible string
is one which will support no compression or shearing stress, nor any bending
moment, so that the force exerted across any point in the string can only
be a tension directed along the tangent to the string at that point. Chains
and cables used in many structures can be regarded for most purposes as
ideal flexible strings.

Let us first take a very simple problem in which a string of negligible
weight is suspended between two points Py and P,, and a force F; acts at a
point P; on the string (Fig. 522). Let 7, be the tension in the segment
PyP;, and 7, the tension in the segment P;P,. Let Iy and I; be the lengths
of these segments of the string, and let Iy, be the distance between Py and
P,. The angles «, B between the two segments of string and the line PyP5
are determined by the cosine law:

Bo+83 -1
201102

2 2 12
cosq=t2tlo—h B = y  (5-119)
2lolo2
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Fic. 5-22. A flexible string held at three points.

so that the position of the point P, is independent of the force F;, provided
the string does not stretch. Since the bit of string at the point P, is in
equilibrium, the vector sum of the three forces F,, 7o, and 7 acting on
the string at P, must vanish, so that these forces form a closed triangle,
as indicated in Fig. 5-22. The tensions are then determined in terms of
the angle between the force F, and the direction of the line PoP3, by the
sine law:
sin (B + 7) sin (Y — a)
7o = "1gn (at B’ 1= Mgy (a+ B (5-120)

Now suppose that the string stretches according to Hooke’s law, so that
lo = lo(1 + kro), b= U+ kry), (5-121)

where 1), I, are the unstretched lengths, and k is a constant [1/k would be
Young’s modulus, Eq. (5-114), multiplied by the cross-sectional area of
the string]. The unknown quantities 7o, 71, lo, and Iy can be eliminated
from Egs. (5-119) by substitution from Eqs. (5-120) and (5-121). We
then have two rather complicated equations to be solved for the angles
« and 8. The solution must be carried out by numerical methods when
numerical values of 1§, 1, k, lyo, F;, and 7 are given. When « and 8 are
found, 7o, 71, lo, and I; can be found from Egs. (5-120) and (5-121). One
way of solving these equations by successive approximations is to assume
first that the string does not stretch, so that [, = I3, I; = 17, and to calcu-
late o and 8 from Eqgs. (5-119), and 7, 71 from Egs. (5-120). Using these
values of 7o, 71, we then calculate ly, I; from Eqgs. (5-121). The new
values of 1y, [; can be used in Egs. (5-119) to get better values for «, 8 from
which better values of 7, 71 can be calculated. These can be used to get
still better values for Iy, I; from Egs. (5-121), and so on. As this process
is repeated, the successive calculated values of «, 8, 79, 71, lo, {1 Will con-
verge toward the true values. If the string stretches only very little, the
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Fie. 5-23. A flexible string hanging under its own weight.

first few repetitions will be sufficient to give very close values. The method
suggested here is an example of a very general class of methods of solution
of physical problems by successive approximations. It is an example of
what are called relazation methods of solving statics problems.

We next consider a string acted on by forces distributed continuously
along the length of the string. A point on the string will be specified by
its distance s from one end, measured along the string. Let f(s) be the
force per unit length at the point s, that is, the force on a small segment of
length ds is f ds. Then the total force acting on the length of string be-
tween the end s = 0 and the point s is zero if the string is in equilibrium:

Fo - /0 fds - 7(s) = 0, (5-122)

where F, is the supporting force at the end s = 0, and 7(s) is a vector
whose magnitude is the tension at the point s, oriented in the direction of
increasing s. By differentiating Eq. (5-122) with respect to s, we obtain
a differential equation for 7(s):

dr
7= —f (5-123)
The simplest and most important application of Eq. (5-123) is to the
case of a string having a weight w per unit length. If the string is acted
on by no other forces except at the ends, it will hang in a vertical plane,
which we take to be the zy-plane, with the z-axis horizontal and the y-axis
vertical. Let 8 be the angle between the string and the z-axis (Fig. 5-23).
Then the horizontal and vertical components of Eq. (5-123) become:

gdg (7sin 6) = w, (5-124)

dis (rcos6) = 0. (5-125)
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Equation (5-125) implies that ;
Tcos = C. (5-126)

The horizontal component of tension is constant, as it should be since the

external forces on the string are all vertical, except at the ends. By divid-

ing Eq. (5-124) by C, and using Eq. (5-126), we eliminate the tension:
dtanf w

s —C (5-127)

If we represent the string by specifying the function y(x), we have the

relations
dy

‘ tan 8 = I y, (5-128)
= [(d)® 4+ @' = de(1 + D', (5-129)
so that Eq. (5-127) becomes

ay’ _ %" (1L + y3)V2, (5-130)

This can be integrated, if w is constant:
/ (TJ% - / 2 i, (5-131)
sinh™!y/ = = + a, (5-132)

where « is a constant. We solve for y':
v =2 = sinh (% + o) (5-133)

This can be integrated again, and we obtain
C wx
y = B+ cosh (F + a) : (5-134)

The curve represented by Eq. (5-134) is called a catenary, and is the form in
which a uniform string will hang if acted on by no force other than its own
weight, except at the ends. The constants C, 8, and « are to be chosen so
that y has the proper value at the endpoints, and so that the total length
of the string has the proper value. The total length is

l= fds = /:l (1‘_}_ Y22 gy — /:z

0

[s1 nh (Wﬂ + a) — sinh (“’”0 a)] (5-135)

cosh (%E + a) dx




5-10] EQUILIBRIUM OF SOLID BEAMS 239

5-10 Equilibrium of solid beams. A horizontal beam subject to vertical
forces is one of the simplest examples of a structure subject to shearing
forces and bending moments. To simplify the problem, we shall consider
only the case when the beam is under no compression or tension, and we
shall assume that the beam is so constructed and the forces so applied that
the beam bends in only one vertical plane, without any torsion (twisting)
about the axis of the beam. We find first the stresses within the beam
from a knowledge of the external forces, and then determine the distortion
of the beam due to these stresses.

Points along the beam will be located by a coordinate x measured hori-
zontally from the left end of the beam (Fig. 5-24). Let vertical forces
Fy, ..., F, act at the distances z;, ..., z, from the left end. A force
will be taken as positive if it is directed upward. Let AA’ be a plane
perpendicular to the beam at any distance xz from the end. According
to Theorem I (5-107), of Section 5-6, the system of forces exerted across
the plane AA’ by the material on the right against that on the left is
equivalent to a single force S through any point in the plane, and a couple
of torque N. (Note that in applying Theorem I, we are treating the
plane A A’ as a rigid body, that is, we are assuming that the cross-sectional
plane A A’ is not distorted by the forces acting on it.) In the case we are
considering there is no compression or tension and all forces are vertical, so
that S is directed vertically. We shall define the shearing force S as the
vertical force acting across A A’ from right to left; S will be taken as positive
when this force is directed upward, negative when it is downward.* By
Newton’s third law, the force acting across A A’ from left to right is —S.
Since we are assuming no torsion about the axis of the beam (z-axis), and
since all the forces are vertical, the torque N will be directed horizontally
and perpendicular to the beam. We shall define the bending moment N

)
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Fi1g. 5-24. Forces acting on a beam.

|
]

* This sign convention for § is in agreement with sign conventions throughout
this book, where the upward direction is taken as posmve Sign conventions for
shearing force and bending moment are not uniform in physics and engineering
texts, and one must be careful in reading the literature to note what sign con-
vention is adopted by each author.
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as the torque exerted from right to left across A A’ about a horizontal axis
in the plane AA’; N will be taken as positive when it tends to rotate the
plane A A’ in a counterclockwise direction. Since S is vertical, the torque
will be the same about any horizontal axis in the plane 44’

The shearing force S and bending moment N can be determined by
applying the conditions of equilibrium [Eqgs. (5-95) and (5-96)] to the
part of the beam to the left of the plane AA’. The total force and total
torque about a horizontal axis in the plane AA’ are, if we neglect the
weight of the beam,

D F:+8=0, (5-136)
xi<z

—No— > (z —z)Fs + N =0, (5-137)
zi<z

where the sums are taken over all forces acting to the left of A4’ and N,
is the bending moment, if any, exerted by the left end of the beam against
its support. The torque N will appear only if the beam is clamped or
otherwise fastened at its left end. The force exerted by any clamp or
other support at the end is to be included among the forces F;. If the
beam has a weight w per unit length, this should be included in the
equilibrium equations:

ZFi—/:wdx—[—S=O, (5-138)

zi<x

—No— 3, (z — z)Fs + /: @ — 2)wd’ + N = 0. (5-139)

i<z

The shearing force and bending moment at a distance z from the end are
therefore

z;<z

N=No+ 3 @—z)Fi— [ “@— Hwdd!.  (5-141)

zi<x

If there is any additional force distributed continuously along the beam,
this can be included in w as an additional weight per unit length. If the
beam is free at its ends, the shearing force and bending moment must be
zero at the ends. If we set 8 = N = 0 at the right end of the beam,
equations (5-140) and (5-141) may be solved for two of the forces acting
on the beam when the others are known. If the beam is fastened or clamped
at either end, S and N may have any values there. Equations (5-140)
and (5-141) determine S and N everywhere along the beam when all
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(a)

()

Fia. 5-25. Distortion of a beam by shearing and bending. (a) Undistorted
beam. (b) Beam in shear. (¢) Beam bent and in shear.

the forces are known, including the force and torque exerted through
the clamp, if any, on the left end. The shearing forece and bending mo-
ment may be plotted as functions of x whose slopes at any point are
obtained by differentiating Eqs. (5-140) and (5-141):

‘jl;j = w, (5-142)
% = 3 Fi— fo ‘wdy' = —8. (5-143)

zi<z

The shearing force increases by —F; from left to right across a point z;
where a force F; acts.

Let us now consider the distortion produced by the shearing forces and
bending moments in a beam of uniform cross section throughout its
length. In Fig. 5-25(a) is shown an undistorted horizontal beam through
which are drawn a horizontal line 00’ and a vertical plane AA’. In Fig.
5-25(b) the beam is under a shearing strain, the effect of which is to slide
the various vertical planes relative to one another so that the line OO’
makes an angle 6 with the normal to the plane AA’. According to Eq.
(5-118), the angle 0 is given in terms of the shearing force S and the shear
modulus n by:

==, (5-144)



L

242 RIGID BODIES. ROTATION ABOUT AN AXIS. STATICS fcHaP. 5

neutral

[ \™

Fia. 5-26. Strains in a bent beam.

where A is the cross-sectional area, and we have made the approximation
tan 8 = ¢, since § will be very small. In Fig. 5-25(c), we show the further
effect of bending the beam. The plane AA’ now makes an angle ¢ with
the vertical. It is assumed that the cross-sectional surface A A’ remains
plane and retains its shape when the beam is under stress, although this
may not be strictly true near the points where forces are applied. In order
to determine ¢, we consider two planes A A’ and BB’ initially vertical and
a small distance [ apart. When the beam is bent, A A’ and BB’ will make
angles ¢ and ¢ + Ap with the vertical (Fig. 5-26). Due to the bending,
the fibers on the outside of the curved beam will be stretched and those on
the inside will be compressed. Somewhere within the beam will be a neu-
tral layer of unstretched fibers, and we shall agree to draw the line 00’ so
that it lies in this neutral layer. A line between A A’ and BB’ parallel to
00’ and a distance z above OO0’ will be compressed to a length I — Al,
where (see Fig. 5-26)

Al = z Agp. (5-145)

The compressive force dF exerted across an element of area dA a distance 2
above the neutral layer OO’ will be given by Eq. (5-114) in terms of Young’s
modulus:

L - (5~146)

or, if we let I = ds, an infinitesimal element of length along the line 00’

aF de

This equation is important in the design of beams, as it determines the
stress of compression or tension at any distance z from the neutral layer.
The total compressive force through the cross-sectional area A of the beam
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will be ,
F—[[ar = YZ—‘:f/sz. (5-148)
A A

Since we are assuming no net tension or compression of the beam, F = 0,
and

[[zd4 = 0. (5-149)
A

This implies that the neutral layer contains the centroid of the area A of
the beam, and we may require that OO’ be drawn through the centroid of
the cross-sectional area of the beam. The bending moment exerted by
the forces dF is

= Yk24 3%, ‘ (5-150)
where

P = % [ [ aa, (5-151)
A

and k is the radius of gyration of the cross-sectional area of the beam about
a horizontal axis through its centroid. The differential equation for ¢ is
therefore
de N _
7 = ViA (5-152)
Let the upward deflection of the beam from a horizontal z-axis be y(x),
measured to the line 00’ (Fig. 5-25). Then y(z) is to be determined by
solving the equation

% — tan (8 + o), (5-153)

when 6 and ¢ have been determined from Eqgs. (5-144) and (5-152). If
we assume that both 9 and ¢ are very small angles, Eqgs. (5-152) and
(5-153) become

doe _ N _ . _
&= Yied’ (5-154)
W_ gt (5-155)

dx
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When there are no concentrated forces F; along the beam, we may differ-
entiate Eq. (5-155) and make use of Egs. (5-154), (5-144), (5-142), and
(5-143) to obtain

d% w N

a2 = nd T VieA’ (5-156)
4 2

dy 1 dw _ _w | (5-157)

dzt nA dx? YkzA

If bending can be neglected, as in a short, thick beam, Eq. (5-156) with
N = 0 becomes a second-order differential equation to be solved for y(z).
For a longer beam, Eq. (5-157) must be used. These equations can also
be used when concentrated loads F'; are present, by solving them for each
segment of the beam between the points where the forces F; are applied,
and fitting the solutions together properly at these points. The solutions
on either side of a point x; where a force F; is applied must be chosen so
that y, ¢, N are continuous across z;, while S, dN/dzx, dy/dx, d®y/dxz®
increase across the point z; by an amount determined by Eqgs. (5-140),
(5-143), (5-155), and (5-156). The solution of Eq. (5-156) will contain
two arbitrary constants, and that of Eq. (6-157), four, which are to be
determined by the conditions at the ends of the beam or segment of beam.
As an example, we consider a uniform beam of weight W, length L,
clamped in a horizontal position (i.e., so that ¢ = 0)* at its left end
(z = 0), and with a force F; = — W' exerted on its right end (x = L).

In this case, Eq. (5-157) becomes
d'y L4

&t = T YRAL’ (5-158)

The solution is

W 4
y= — m + #C32® + 3C32® + Cix + Co.  (5-159)
To determine the constants Cy, C'y, C3, C3, we have at the left end of the
beam:

y = Co =0, (5-160)
&y .8 WH+W
a=Ci=0=—=—-2"T-, (5-161)

where we have used Egs. (5-155) and (5-144). We need two more con-
ditions, which may be determined in a variety of ways. The easiest way

* The condition ¢ = 0 means that the plane 4 A’ is vertical; that is, the beam
would be horizontal if there were no shearing strain.
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in this case is to apply Eq. (5-156) and its derivative at the left end of the
beam:

' W'L + 3WL

@t = C2 T AL T w4 (5-162)
dy ., 1 dN _ S W+ W
@ == VA dz =~ VA~ vR4 @ O169)

where we have used Eq. (5-143). The deflection of the beam at any point
z is then

L3 I:sz( 2z 1 x2> W’x2< 1 x)]
y=—"vralaz\! "3z 62/ T2;z\! "31
L | Wz 1z W'z
oy T(l ‘§z>+T]' (5-164)
The deflection at x = L is
L? W AW L W

The first term in each equation is the deflection due to bending, and the
second is that due to shear. The first term is proportional to L3, and in-
versely proportional to k2. The second term is proportional to L and in-
dependent of k. Hence bending is more important for long, thin beams,
and shear is more important for short, thick beams. Our analysis here is
probably not very accurate for short, thick beams, since, as pointed out
above, some of our assumptions are not valid near points of support or
points where loads are applied (where “near” means relative to the cross-
sectional dimensions of the beam).

5-11 Equilibrium of fluids. A fluid is defined as a substance which will
support no shearing stress when in equilibrium. Liquids and gases fit this
definition, and even very viscous substances like pitch, or tar, or the mate-
rial in the interior of the earth, will eventually come to an equilibrium in
which shearing stresses are absent, if they are left undisturbed for a suffi-
ciently long time. The stress F/A across any small area 4 in a fluid in
equilibrium must be normal to 4, and in practically all cases it will be a
compression rather than a tension.

We first prove that the stress F/A near any point in the fluid is inde-
pendent of the orientation of the surface A. Let any two directions be
given, and construct a small triangular prism with two equal faces A, =
A, perpendicular to the two given directions. The third face A3 is to form
with A; and A, a cross section having the shape of an isosceles triangle
(Fig. 5-27). Let Fy, Fy, F3 be the stress forces perpendicular to the faces
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Fic. 5-27. Forces on a triangular prism in a fluid.

Ay, Ay, Az, If the fluid in the prism is in equilibrium,
F, 4+ F;+F3 = 0. (5-166)

The forces on the end faces of the prism need not be included here, since
they are perpendicular to Fy, F, and F3, and must therefore separately
add to zero. It follows from Eq. (5-166), and from the way the prism has
been constructed, that F;, Fy, and F3 must form an isosceles triangle
(Fig. 5-27), and therefore that

F, = F,. (5-167)

Since the directions of F; and F; are any two directions in the fluid, and
since 4; = A,, the stress F/A is the same in all directions. The stress in
a fluid is called the pressure p:

Fy Fay

p= 4, ~ 4, (5-168)
Now suppose that in addition to the pressure the fluid is subject to an
external force f per unit volume of fluid, that is, any small volume dV in
the fluid is acted on by a force f dV. Such a force is called a body force;
f is the body force density. The most common example is the gravita-

tional force, for which
f = pg, (5-169)

where g is the acceleration of gravity, and p is the density. In general,
the body force density may differ in magnitude and direction at different
points in the fluid. In the usual case, when the body force is given by
Eq. (5-169), g will be constant and f will be constant in direction; if p is
constant, f will also be constant in magnitude. Let us consider two nearby
points Py, P; in the fluid, separated by a vector dr. We construct a cylinder
of length dr and cross-sectional area dA, whose end faces contain the points
Pj and P,. Then the total component of force in the direction of dr acting
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on the fluid in the eylinder, since the fluid is in equilibrium, will be
fdtdA + p1dA — psdd = 0,

where p; and p, are the pressures at P; and P,. The difference in pressure
between two points a distance dr apart is therefore

dp = ps — py = f-dr. (5-170)

The total difference in pressure between two points in the fluid located by
vectors r; and ry will be

I [r'” f-dr, (5-171)
1

where the line integral on the right is to be taken along some path lying
entirely within the fluid from r; to r;. Given the pressure p; at r;, Eq.
(5-171) allows us to compute the pressure at any other point ro which can
be joined to r; by a path lying within the fluid. The difference in pressure
between any two points depends only on the body force. Hence any
change in pressure at any point in a fluid in equilibrium must be accom-
panied by an equal change at all other points if the body force does not
change. This is Pascal’s law.
According to the geometrical definition (3-107) of the gradient, Eq.
(5-170) implies that
f = vp. (5-172)

The pressure gradient in a fluid in equilibrium must be equal to the body
force density. This result shows that the net force per unit volume due to
pressure is —Vp. The pressure p is a sort of potential energy per unit
volume in the sense that its negative gradient represents a force per unit
volume due to pressure. However, the integral of p dV over a volume
does not represent a potential energy except in very special cases. Equa-
tion (5-172) implies that the surfaces of constant pressure in the fluid are
everywhere perpendicular to the body force. According to Eqs. (3-187)
and (5-172), the force density f must satisfy the equation

vxf=0. (5-173)

This is therefore a necessary condition on the body foree in order for equi-
librium to be possible. It is also a sufficient condition for the possibility
of equilibrium. This follows from the discussion in Section 3-12, for if
Eq. (5-173) holds, then it is permissible to define a function p(r) by the
equation

p@) = p1 + / " f.dr, (5-174)
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where p; is the pressure at some fixed point 1, and the integral may be
evaluated along any path from r; to r within the fluid. If the pressure in
the fluid at every point r has the value p(r) given by (5-174), then Eq.
(5-172) will hold, and the body force f per unit volume will everywhere
be balanced by the pressure force — Vp per unit volume. Equation (5-174)
therefore defines an equilibrium pressure distribution for any body force
satisfying Eq. (5-173).

The problem of finding the pressure within a fluid in equilibrium, if the
body force density £(r) is given, is evidently mathematically identical with
the problem discussed in Section 3-12 of finding the potential energy for a
given force function F(r). We first check that V X f is zero everywhere
within the fluid, in order to be sure that an equilibrium is possible. We
then take a point ry at which the pressure is known, and use Eq. (5-174) to
find the pressure at any other point, taking the integral along any conven-

ient path.
The total body force acting on a volume V of the fluid is
Fy = / [ ] £4V. (5-175)
v
The total force due to the pressure on the surface A of V is
F, = — f / np dA, (5-176)
A

where n is the outward normal unit vector at any point on the surface.
These two must be equal and opposite, since the fluid is in equilibrium:

Fp = ——Fb, (5“177)

Equation (5-176) gives the total force due to pressure on the surface of the
volume ¥, whether or not V is occupied by fluid. Hence we conclude from
Eq. (5-177) that a body immersed in a fluid in equilibrium is acted on by
a force F, due to pressure, equal and opposite to the body force F; which
would be exerted on the volume V if it were occupied by fluid in equi-
librium. This is Archimedes’ principle. Combining Egs. (5-172), (56-175),
(5-176), and (5-177), we have

/ [ np dA = / [ f vpdV. (5-178)
A 1 4

This equation resembles Gauss’ divergence theorem [Eq. (3-115)], except
that the integrands are np and Vp instead of n-A and V-A. Gauss’ the-
orem can, in fact, be proved in a very useful general form which allows us to
replace the factor n in a surface integral by V¥ in the corresponding volume
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integral without any restrictions on the form of the integrand except that
it must be so written that the differentiation symbol V operates on the
entire integrand.* Given this result, we could start with Egs. (5-175),
(5-176), and (5-177), and deduce Eq. (5-172):

F;, + F, =//[fdv —/jnpdA
14 A
= ff/(f — vp)dV = 0. (5-179)
1 4

Since this must hold for any volume V, Eq. (5-172) follows.

So far we have been considering only the pressure, i.e., the stress, in a
fluid. The strain produced by the pressure within a fluid is a change in
volume per unit mass of the fluid or, equivalently, a change in density.
If Hooke’s law is satisfied, the change dV in a volume V produced by a
small change dp in pressure can be calculated from Eq. (5-116), if the
bulk modulus B is known:

av._ _dp,

% B (5-180)
If the mass of fluid in the volume V is M, then the density is
u .

p=" (5-181)

and the change dp in density corresponding to an infinitesimal change dV
in volume is given by

do _ _ dV _
=T (5-182)

so that the change in density produced by a small pressure change dp is

do _dp _
—;——B (5-183)

After a finite change in pressure from pg to p, the density will be

¥4
d
p = po €exp ( / 7,?-)- (5-184)
Po

In any case, the density of a fluid is determined by its equation of state in

* For the proof of this theorem, see Phillips, Vector Analysis. New York:
John Wiley and Sons, 1933. (Chapter III, Section 34.)
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terms of the pressure and temperature. The equation of state for a per-
fect gas is
pV = RT, ‘ (5-185)

where T is the absolute temperature, V is the volume per mole, and R is
the universal gas constant:

R = 8.314 X 107 erg-deg—! C-mole™1, (5-186)

By substitution from Eq. (5-181), we obtain the density in terms of pres-
sure and temperature:
o=22, (5-187)
where M is the molecular weight.
Let us apply these results to the most common case, in which the body
force is the gravitational force on a fluid in a uniform vertical gravitational
field [Eqg. (5-169)]. If we apply Eq. (5-173) to this case, we have

Vv xf=Vx(pg) =0. (5-188)

Since g is constant, the differentiation implied by the V symbol operates
only on p, and we can move the scalar p from one factor of the cross product
to the other to obtain:

(Vo) x g =0, (5-189)

that is, the density gradient must be parallel to the gravitational field.
The density must be constant on any horizontal plane within the fluid.
Equation (5-189) may also be derived from Eq. (5-188) by writing
out explicitly the components of the vectors Vv x (pg) and (Vp) X g, and
verifying that they are the same.* According to Eq. (5-172), the pres-
sure is also constant in any horizontal plane within the fluid. Pressure
and density are therefore functions only of the vertical height z within the
fluid. From Egs. (5-172) and (5-169) we obtain a differential equation
for pressure as a function of z:

dp _
9 = P9 (5-190)
If the fluid is incompressible, and p is uniform, the solution is
P = Po — PYz, (5-191)

* Equation (5-189) holds also in a nonuniform gravitational field, since
V X g = 0, by Eq. (6-21).
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where pg is the pressure at z = 0. If the fluid is a perfect gas, either p or p
may be eliminated from Eq. (5-190) by means of Eq. (5-187). If we
eliminate the density, we have

dp _ My _
As an example, if we assume that the atmosphere is uniform in temperature
and composition, we can solve Eq. (5-192) for the atmospheric pressure

as a function of altitude:

M
P = Po exp (— o z)- (5-193)

ProBLEMS

1. (a) Prove that the total kinetic energy of the system of particles making up
a rigid body, as defined by Eq. (4-37), is correctly given by Eq. (5-16) when the
body rotates about a fixed axis. (b) Prove that the potential energy given by
Eq. (5-14) is the total work done against the external forces when the body is
rotated from 6, to 6, if N, is the sum of the torques about the axis of rotation due
to the external forces.

2. Prove, starting with the equation of motion (5-13) for rotation, that if N,
is a function of 6 alone, then T - V is constant.

3. A wheel of mass M, radius of gyration k, spins smoothly on a fixed horizontal
axle of radius a which passes through a hole of slightly larger radius at the hub of
the wheel. The coefficient of friction between the bearing surfaces is u. If the
wheel is initially spinning with angular velocity wo, find the time and the number
of turns that it takes to stop.

4. The balance wheel of a watch consists of a ring of mass M, radius a, with
spokes of negligible mass. The hairspring exerts a restoring torque N, = —k#8.
Find the motion if the balance wheel is rotated through an angle 6o and released.

5. An airplane propeller of moment of inertia I is subject to a driving torque

N = No(1 + a cos wot),
and to a frictional torque due to air resistance

Ny = —b6.

Find its steady-state motion.

6. A motor armature weighing 2 kgm has a radius of gyration of 5 cm. Its
no-load speed is 1500 rpm. It is wound so that its torque is independent of its
speed. At full load, it draws a current of 2 amperes at 110 volts. Assume that
the electrical efficiency is 809, and that the friction is proportional to the square
of the angular velocity. Find the time required for it to come up to a speed of
1200 rpm after being switched on without load.

7. Derive Eqs. (5-35) and (5-36).



252 RIGID BODIES. ROTATION ABOUT AN AXIS. STATICS [craP. 5

8. Assume that a simple pendulum suffers a frictional torque —mb16 due to
friction at the point of support, and a frictional force —b2v on the bob due to
air resistance, where v is the velocity of the bob. The bob has a mass m, and is
suspended by a string of length I. Find the time required for the amplitude to
damp to 1/e of its initial (small) value. How should m, I be chosen if it is desired
that the pendulum swing as long as possible? How should m, I be chosen if it
is desired that the pendulum swing through as many cycles as possible?

9. A compound pendulum is arranged to swing about either of two parallel
axes through two points 0, 0’ located on a line through the center of mass. The
distances h, A’ from O, O’ to the center of mass, and the periods 7, 7' of small
amplitude vibrations about the axes through O and O’ are measured. O and O’
are arranged so that each is approximately the center of oscillation relative to
the other. If 7 = 7, find a formula for ¢ in terms of measured quantities. If
7 = r(1 4+ &), where 6§ < 1, find a correction to be added to your previous
formula so that it will be correct to terms of order 6.

10. A baseball bat held horizontally at rest is struck at a point O’ by a ball
which delivers a horizontal impulse J’ perpendicular to the bat: Let the bat be
initially parallel to the z-axis, and let the basbeall be traveling in the negative
direction parallel to the y-axis. The center of mass G of the bat is initially at the
origin, and the point O’ is at a distance »’ from G. Assuming that the bat is let
go just as the ball strikes it, and neglecting the effect of gravity, calculate and
sketch the motion x(¢), y(t) of the center of mass, and also of the center of per-
cussion, during the first few moments after the blow, say until the bat has
rotated a quarter turn. Comment on the difference between the initial motion
of the center of mass and that of the center of percussion.

11. A circular disk of radius a lies in the zy-plane with its center at the origin.
The half of the disk above the z-axis has a density ¢ per unit area, and the half
below the z-axis has a density 2¢. Find the center of mass @, and the moments of
inertia about the z-, y-, and z-axes, and about parallel axes through G. Make as
much use of laborsaving theorems as possible.

12. (a) Work out a formula for the moments of inertia of a cone of mass m,
height &, and generating angle e, about its axis of symmetry, and about an axis

Fi16. 5-28. Frustum of a cone.
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Fia. 5-29. How much thread can be wound on this spool?

through the apex perpendicular to the axis of symmetry. Find the center of mass
of the cone. (b) Use these results to determine the center of mass of the frustum
of a cone, shown in Fig. 5-28, and to calculate the moments of inertia about hori-
zontal axes through each base and through the center of mass. The mass of the
frustum is M.

13. How many yards of thread 0.03 inch in diameter can be wound on the
spool shown in Fig. 5-29?

14. Given that the volume of a cone is one-third the area of the base times the
height, locate by Pappus’ theorem the centroid of a right triangle whose legs are
of lengths a and b.

15. Prove that Pappus’ second theorem holds even if the axis of revolution
intersects the surface, provided that we take as volume the difference in the
volumes generated by the two parts into which the surface is divided by the axis.
What is the corresponding generalization of the first theorem?

16. Find the center of mass of a wire bent into a semicircle of radius a. Find
the three radii of gyration about z-, y-, and z-axes through the center of mass,
where z is perpendicular to the plane of the semicircle and z bisects the semicircle.
Use your ingenuity to reduce the number of calculations required to a minimum.

17. (a) Find a formula for the radius of gyration of a uniform rod of length !
about an axis through one end making an angle o with the rod. (b) Using this
result, find the moment of inertia of an equilateral triangular pyramid, con-
structed out of six uniform rods, about an axis through its centroid and one of
its vertices.

18. Find the radii of gyration of a plane lamina in the shape of an ellipse of
semimajor axis a, eccentricity e, about its major and minor axes, and about a
third axis through one focus perpendicular to the plane. ‘

19. Forces 1 kgm-wt, 2 kgm-wt, 3 kgm-wt, and 4 kgm-wt act in sequence
clockwise along the four sides of a square 0.5 X 0.5 m2. The forces are directed
in a clockwise sense around the square. Find the equilibrant.

20. An iceboat has a flat sail in the shape of a right triangle with a vertical
leg of length a along the mast and a horizontal leg of length b along the boom.
The force on the sail acts at its centroid and is given by F = k[n - (w — v)In,
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Fic. 5-30. A system of forces acting on a cube.

where n is a unit vector normal to the sail, w is the wind velocity, v is the velocity
of the boat, and & is a constant. The sail makes an angle a with the center line
of the boat. The angle a may have any value up to that for which F becomes
zero. The center line of the boat makes an angle 8 with the direction (—w)
from which the wind is blowing. The runners are parallel to the center line.
The coefficient of friction along the runners is u, and there is a force N per-
pendicular to the runners sufficient to insure that v is parallel to the runners and
constant in direction. Find » as a function of a, 8, w and the mass m of the
boat. Find N and the point at which it acts. What value of a makes v a maxi-
mum if p is very small?

21. (a) Reduce the system of forces acting on the cube shown in Fig. 5-30 to
an equivalent single force acting at the center of the cube, plus a couple com-
posed of two forces acting at two adjacent corners. (b) Reduce this system to
a system of two forces, and state where these forces act. (¢) Reduce this system
to a single force plus a torque parallel to it.

22. (a) A cable is connected in a straight line between two fixed points. By
exerting a sidewise force W at the center of the cable, a considerably greater
force = can be applied to the support points at each end of the cable. Find a
formula for 7 in terms of W, and the area A and Young’s modulus Y of the
cable, assuming that the angle through which the cable is pulled is small. (b)
Show that this assumption is well satisfied if W = 1001b, A = 3in2, and
Y = 60,000 lIb-in—2. Find 7.

23. A cable is to be especially designed to hang vertically and to support a
load W at a distance ! below the point of support. The cable is to be made of a
‘material having a Young’s modulus ¥ and a weight w per unit volume. Inas-
much as the length I of the cable is to be fairly great, it is desired to keep the
weight of the cable to a minimum by making the cross-sectional area A(z) of the
cable, at a height z above the lower end, just great enough to support the load
beneath it. The cable material can safely support a load just great enough to
stretch it 19%. Determine the function A(2) when the cable is supporting the
given load.
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Fig. 5-31. A suspension bridge.

24. A cable 20 ft long is suspended between two points A and B, 15 ft apart.
The line 4B makes an angle of 30° with the horizontal (B higher). A weight of
2000 1b is hung from a point C 8 ft from the end of the cable at A. (a) Find the
position of point C, and the tensions in the cable, if the cable does not stretch.
(b) If the cable is 4 inch in diameter and has a Young’s modulus of 5 X 105 1b-
in—2, find the position of point C' and the tensions, taking cable stretch into
account. Carry out two successive approximations, and estimate the accuracy
of your result.

25. (a) A cable of length I, weight w per unit length, is suspended from the
points x = -ta on the z-axis. The y-axis is vertical. By requiring that y = 0 at
z = c=ka, and that the total length of cable be I, show that @ = 0in Eq. (5-134), -
and set up equations to be solved for 8 and C. (b) Show that the same results
can be obtained for a and C by requiring that the cable be symmetrical about the
y-axis, and that the forces at its ends balance the weight of the cable.

26. A bridge of weight w per unit length is to be hung from cables of negligible
weight, as shown in Fig. 5-31. It is desired to determine the shape of the suspen-
sion cables so that the vertical cables, which are equally spaced, will support
equal weights. Assume that the vertical cables are so closely spaced that we can
regard the weight w per unit length as continuously distributed along the
suspension cable. The problem then differs from that treated in the text, where
the string had a weight w per unit length s along the string, in that here there
is a weight w per unit horizontal distance x. Set up a differential equation for
the shape y(z) of the suspension cable, and solve for y(z) if the ends are at
the points y = 0, x = 4D, and if the maximum tension in the cable is to
be 7o. v

27. A cable of length I, weight w per unit length, is suspended from points
Z = ==a on the z-axis. The y-axisis vertical. A weight W is hung from the mid-
point of the cable. Set up the equations from which 8, «, and C are to be de-
termined.

28. A seesaw is made of a plank of wood of rectangular cross section 2 X 12 in?
and 10 ft long, weighing 60 1b. Young’s modulus is 1.5 X 108 Ib-in—2. The
plank is balanced across a narrow support at its center. Two children weighing
100 Ib each sit one foot from the ends. Find the shape of the plank when it is
balanced in a stationary horizontal position. Neglect shear.

29, An empty pipe of inner radius a, outer radius b, is made of material with
Young’s modulus Y, shear modulus #n, density p. A horizontal section of length
L is clamped at both ends. Find the deflection at the center. Find the increase
in deflection when the pipe is filled with a fluid of density po.
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30. An I-beam has upper and lower flanges of width @, connected by a center
web of height b. The web and flanges are of the same thickness ¢, assumed negligi-
ble with respect to @ and b, and are made of a material with Young’s modulus Y,
shear modulus n. The beam has a weight W, length L, and rests on supports at
each end. A load W’ rests on the midpoint of the beam. Find the deflection of
the beam at its midpoint. Separate the deflection into terms due to shear and
to bending, and into terms due to the beam weight W and the load W’.

31. If the bulk modulus of water is B, and the atmospheric pressure at the sur-
face of the ocean is po, find the pressure as a function of depth in the ocean, taking
into account the compressibility of the water. Assume that B is constant. Look
up B for water, and estimate the error that would be made at a depth of 5 miles
if the compressibility were neglected.

32. Find the atmospheric pressure as a function of altitude on the assumption
that the temperature decreases with altitude, the decrease being proportional to
the altitude.




CHAPTER 6
GRAVITATION

6~1 Centers of gravity for extended bodies. You will recall that we
formulated the law of gravitation in Section 1-5. Any two particles of
masses m; and m,, a distance r apart, attract each other with a force
whose magnitude is given by Eq. (1-11):

Gmym
F = Gmums, (6-1)
where
G = 6.67 X 10~% dyne-cm?-gm—2, (6-2)

as determined by measurements of the forces between large lead spheres,
carried out by means of a delicate torsion balance. Equation (6-1) can
be written in a vector form which gives both the direction and magnitude
of the attractive forces. Let r; and ry be the position vectors of the two
particles. Then the gravitational force on my due to m; is

Gm1m2

Tty — 1o? (r1 — 13). ' (6-3)

F1—)2 =
The vector (r; — r,) gives the force the correct direction, and its magni-
tude is divided out by the extra factor |[r; — ry| in the denominator.

The law of gravitation as formulated in Eq. (6-3) is applicable only to
particles or to bodies whose dimensions are negligible compared with the
distance between them; otherwise the distance |r; — rj| is not precisely
defined, nor is it immediately clear at what points and in what directions
the forces act. For extended bodies, we must imagine each body divided
into pieces or elements, small compared with the distances between the
bodies, and compute the forces on each of the elements of one body due
to each of the elements of the other bodies.

Consider now an extended body of mass M and a particle of mass m
at a point P (Fig. 6-1). If the body of mass M is divided into small pieces
of masses m;, each piece is attracted toward m by a force which we shall
call F;. Now the system of forces F; can be resolved according to Theorem
I of Section 5-6 (5-107) into a single force through an arbitrary point,
plus a couple. Let this single force be F:

F = Z F,, (6-4)

257
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Fic. 6-1. Gravitational attraction between a particle and an extended body.

and let the arbitrary point be taken as the point P. Since none of the
forces F; exerts any torque about P, the total torque about P is zero, and
the couple vanishes. The system of forces therefore has a resultant F
acting along a line through the mass m. The force acting on m is —F,
since Newton’s third law applies to each of the forces F; in Eq. (6-4).
We locate on this line of action of F a point ¢ a distance r from P such
that

GmM

¥ = &2

(6-5)

Then the system of gravitational forces between the body M and the par-
ticle m is equivalent to the single resultant forces F on M and —F on m
which would act if all the mass of the body M were concentrated at G.
The point @ is called the center of gravity of the body M relative to the
point P; @ is not, in general, at the center of mass of body 37, nor even
on the line joining P with the center of mass. The parts of the body close
to P are attracted more strongly than those farther away, whereas in
finding the center of mass, all parts of the body are treated alike. Further-
more, the position of the point ¢ will depend on the position of P. When
P is far away compared with the dimensions of the body, the acceleration
of gravity due to m will be nearly constant over the body and, in this
case, we showed in Section 5-6 that G will coincide with the center of
mass. Also, in the case of a uniform sphere or a spherically symmetrical
distribution of mass, we shall show in the next section that the center of
gravity always lies at the center of the sphere. The relative character of
the concept of center of gravity makes it of little use except in the case of
a sphere or of a body in a uniform gravitational field.

For two extended bodies, no unique centers of gravity can in general
be defined, even relative to each other, except in special cases, as when the
bodies are far apart, or when one of them is a sphere. The system of
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gravitational forces on either body due to the other may or may not have
a resultant; if it does, the two resultants are equal and opposite and act
along the same line. However, even in this case, we cannot define defi-
nite centers of gravity Gy, G2 for the two bodies relative to each other, '
since Eq. (6-5) specifies only the distance G;Gs.

The general problem of determining the gravitational forces between
bodies is usually best treated by means of the concepts of the field theory
of gravitation discussed in the next section.

6~2 Gravitational field and gravitational potential. The gravitational
force F,, acting on a particle of mass m at a point r, due to other particles
m; at points r;, is the vector sum of the forces due to each of the other

particles acting separately:
. mm,-G’(ri — l') .
F, = Z B (6-6)

1
If, instead of point masses m;, we have mass continuously distributed in
space with a density p(r), the force on a point mass m at r is

m_[/mmr—mwuw 7

7 —1°

The integral may be taken over the region containing the mass whose
attraction we are computing, or over all space if we let p = 0 outside
this region. Now the force F,, is proportional to the mass m, and we
define the gravitational field intensity (or simply gravitational field) g(r),
at any point r in space, due to any distribution of mass, as the force per
unit mass which would be exerted on any small mass m at that point:

g = 2, ©-9)

where F,, is the force that would be exerted on a point mass m at the
point r. We can write formulas for g(r) for point masses or continuously
distributed mass:

g — S WD, (6-9)
g(r) = [ / / G000 ay, (6-10)

The field g(r) has the dimensions of acceleration, and is in fact the
acceleration experienced by a particle at the point r, on which no forces
act other than the gravitational force.
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The calculation of the gravitational field g(r) from Eq. (6-9) or (6-10)
is difficult except in a few simple cases, partly because the sum and in-

_ tegral call for the addition of a number of vectors. Since the gravitational

forces between pairs of particles are central forces, they are conservative,
as we showed in Section 3-12, and a potential energy can be defined for
a particle of mass m subject to gravitational forces. For two particles m
and m;, the potential energy is given by Egs. (3-229) and (3-230):

——Gmm;

FR— (6-11)

me,- =
The potential energy of a particle of mass m at point r due to a system of

particles m; is then
—Gmm;

V() = Z T=ril (6-12)

We define the gravitational potential G(r) at point r as the negative of the
potential energy per unit mass of a particle at point r: [This choice of
sign in G(r) is conventional in gravitational theory.]

V(r) |

pon (6-13)

g0 = —

For a system of particles,

5 = E r r,l (6-14)

If p(r) represents a continuous distribution of mass, its gravitational poten-

tial is
5(r) = / [ / ) av. (6-15)

Because it is a scalar point function, the potential G(r) is easier to work
with for many purposes than is the field g(r). In view of the relation
(3-185) between force and potential energy, g may easily be calculated,
when G is known, from the relation

g = Vg (6-16)

The inverse relation is
g(r) = f g-dr. (6-17)

The definition of G(r), like that of potential energy V(r), involves an arbi-
trary additive constant or, equivalently, an arbitrary point r, at which
G = 0. Usually 1, is taken at an infinite distance from all masses, as in
Eqgs. (6-14) and (6-15).
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Fia. 6-2. Method of computing potential of a spherical shell.

The concepts of gravitational field and gravitational potential are
mathematically identical to those of electric field intensity and electro-
static potential in electrostatics, except that the negative sign in Eq. (6-13)
is conventional in gravitational theory, and except that all masses are
positive and all gravitational forces are attractive, so that the force law
has the opposite sign from that in electrostatics. The subject of potential
theory is an extensive one, and we can give here only a very brief introduc-
tory treatment.

As an example of the use of the concept of potential, we calculate the
potential due to a thin homogeneous spherical shell of matter of mass M,
density ¢ per unit area, and radius a:

M = 41a0. (6-18)

The potential at a point P is computed by integrating over a set of ring
elements as in Fig. 6-2. The potential of a ring of radius a sin 6, width
a dé, all of whose mass is at the same distance r from P, will be

. G¢(21ra sin 8)a do ,
r

dg
and the total potential at P of the spherical shell is

g(P) = /; Go(2ma sin 8)a do

r
_ MG / N sin 6 df
2 Jo (% + a® — 2arg cos 6)/?
MG
= M[("o +a) — [ro — all. (6-19)
We have two cases, according to whether P is outside or inside the shell:
6P)=2% r2a s =% n<a @



262 GRAVITATION [cHAP. 6

Thus outside the shell the potential is the same as for a point mass M at
the center of the shell. The gravitational field outside a spherical shell is
then the same as if all the mass of the shell were at its center. The same
statement then holds for the gravitational field outside any spherically
symmetrical distribution of mass, since the total field is the sum of the
fields due to the shells of which it is composed. This proves the statement
made in the previous section; a spherically symmetrical distribution of
mass attracts (and therefore is attracted by) any other mass outside it as
if all its mass were at its center. Inside a spherical shell, the potential is
constant, and it follows from Eq. (6-16) that the gravitational field is
there zero. Hence a point inside a spherically symmetric distribution of
mass at a distance r from the center is attracted as if the mass inside the
sphere of radius r were at the center; the mass outside this sphere exerts
no net force. These results would be somewhat more difficult to prove by
computing the gravitational forces directly, as the reader can readily
verify. Indeed, it took Newton twenty years! The calculation of the
force of attraction on the moon by the earth described in the last section
of Chapter 1 was made by Newton twenty years before he published his
law of gravitation. It is likely that he waited until he could prove an
assumption implicit in that calculation, namely, that the earth attracts any
body outside it as if all the mass of the earth were concentrated at its center.

6-3 Gravitational field equations. It is of interest to find differential
equations satisfied by the functions g(r) and G(r). From Eq. (6-16) it
follows that

vVxg=0. (6-21)

When written out in any coordinate system, this vector equation becomes
a set of three partial differential equations connecting the components of
the gravitational field. In rectangular coordinates,

99: _ 99y _ ¢ 99 __ 99z _ 9y _ 9= _ (6-22)

dy 9z 9z ar ~ oz dy

These equations alone do not determine the gravitational field, for they
are satisfied by every gravitational field. To determine the gravitational
field, we need an equation connecting g with the distribution of matter.
Let us study the gravitational field g due to a point mass m. Consider
any volume V containing the mass m, and let n be the unit vector normal
at each point to the surface S that bounds V (Fig. 6-3). Let us compute

the surface integral
I=/ / n-gds. (6-23)

s
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Fia. 6-3. A mass m enclosed in a volume V.

The physical or geometric meaning of this integral can be seen if we in-
troduce the concept of lines of force, drawn everywhere in the direction
of g, and in such a manner that the number of lines per square centimeter
at any point is equal to the gravitational field intensity. Then I is the
number of lines passing out through the surface S, and is called the fluz
of g through S. The element of solid angle dQ subtended at the position
of m by an element of surface dS is defined as the area swept out on a
sphere of unit radius by a radius from m which sweeps over the surface
element dS. This area is
dS cos 6

de = °=23 (6-24)

From Fig. 6-3, we have the relation

. chosﬂ_

- (6-25)

n'g -
When use is made of these two relations, the integral I [Eq. (6-23)] be-
comes
T f [ —mG d2 = —4rmG. (6-26)
S

The integral I is independent of the position of m within the surface S.
This result is analogous to the corresponding result in electrostatics that
there are 4w lines of force coming from every unit charge. Since the
gravitational field of a number of masses is the sum of their individual
fields, we have, for a surface S surrounding a set of masses m;:

I=[[ngds=— 3 smma. (6-27)
8 i

For a continuous distribution of mass within S, this equation becomes

H’n-gds = — f[f-herdV. (6-28)
8 ¥
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We now apply Gauss’ divergence theorem [Eq. (3-1 15)] to the left side of
this equation:
ffn-gdS = H[v-g av. (6-29)
] 4

Subtracting Eq. (6-28) from Eq. (6-29), we arrive at the result

[ / / (V-g + 4nGp) dV = 0. (6-30)
\ 4

Now Eq. (6-30) must hold for any volume V, and this can only be true if
the integrand vanishes:
v.g = —4nwGp. (6-31)

This equation in cartesian coordinates has the form

9. | 99y | 99: _ _
9z 2y +5, = 4rGo(x, y, 2). (6-32)
When p(z, ¥, 2) is given, the set of equations (6-22) and (6-32) can be
shown to determine the gravitational field (g2, gy, 92) uniquely, if we add
the boundary condition that g — 0 as [r| — oo. Substituting from Eq.
(6-16), we get an equation satisfied by the potential:

vig = —4wGp, ‘ (6-33)
or
a’g 9% , a’g

This single equation determines §(z, y, 2) uniquely if we add the condition
that ¢ — 0 as |1} — oo. This result we quote from potential theory with-
out proof. The solution of Eq. (6-33) is, in fact, Eq. (6-15). It is often
easier to solve the partial differential equation (6-34) directly than to com-
pute the integral in Eq. (6-15). Equations (6-33), (6-16), and (6-8) to-
gether constitute a complete summary of Newton’s theory of gravitation,
as likewise do Egs. (6-31), (6-21), and (6-8); that is, all the results of the
theory can be derived from either of these sets of equations.

Equation (6-33) is called Poisson’s equation. Equations of this form
turn up frequently in physical theories. For example, the electrostatic
potential satisfies an equation of the same form, where p is the electric
charge density. If p = 0, Eq. (6-33) takes the form

vig = 0. (6-35)

This is called Laplace’s equation. An extensive mathematical theory of
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Eqs. (6-33) and (6-35) has been developed.* A discussion of potential
theory is, however, outside the scope of this text.

ProBLEMS

1. (a) Given Newton’s laws of motion, and Kepler’s first two laws of planetary
motion (Section 3-15), show that the force acting on a planet is directed toward
the sun and is inversely proportional to the square of the distance from the sun.
(b) Use Kepler’s third law to show that the forces on the planets are propor-
tional to their masses. (c) If this suggests to you a universal law of attraction
between any two masses, use Newton’s third law to show that the force must be
proportional to both masses.

2. (a) Find the gravitational field and gravitational potential at any point z
on the symmetry axis of a uniform solid hemisphere of radius a, mass M. The
center of the hemisphere is at z = 0. (b) Locate the center of gravity of the
hemisphere relative to a point outside it on the z-axis, and show that as
2z — o, the center of gravity approaches the center of mass.

3. Assuming that the earth is a sphere of uniform density, with radius a,
mass M, calculate the gravitational field intensity and the gravitational potential
at all points inside and outside the earth, taking G = 0 at an infinite distance.

4. Assuming that the interior of the earth can be treated as an incompressible
fluid in equilibrium, (a) ecalculate the pressure within the earth as a function of
distance from the center. (b) Using appropriate values for the earth’s mass and
radius, calculate the pressure in tons per square inch at the center.

5. Show that if the sun were surrounded by a spherical cloud of dust of uniform
density p, the gravitational field within the dust cloud would be

MG 4w r
g = —(WJF?PG’);’

where M is the mass of the sun, and r is a vector from the sun to any point in the
dust cloud.

6. Assume that the density of a star is a function only of the radius r measured
from the center of the star, and is given by t

__ Ma®
P = w2 a2)2’

where M is the mass of the star, and a is a constant which determines the size of
the star. Find the gravitational field intensity and the gravitational potential as
functions of r.

* 0. D. Kellogg, Foundations of Potential Theory. Berlin: J. Springer, 1929,

t The expression for p is chosen to make the problem easy to solve, not because
it has more than a remote resemblance to the density variations within any actual
star.
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7. Set up the equations to be solved for the pressure as a function of radius
in a spherically symmetric mass M of gas, assuming that the gas obeys the perfect
gas laws and that the temperature is known as a function of radius.

8. (a) Assume that ordinary cold matter collapses, under a pressure greater
than a certain critical pressure po, to a state of very high density p1. A planet of
mass M is constructed of matter of mean density po in its normal state. Assuming
uniform density and conditions of fluid equilibrium, at what mass Mo and radius
ro will the pressure at the center reach the critical value po? (b) If M > Mo, the
planet will have a very dense core of density p; surrounded by a crust of density
po. Calculate the resulting pressure distribution within the planet in terms of the
radius 71 of the core and the radius r2 of the planet. Show that if M is somewhat
larger than Mo, then the radius 2 of the planet is less than ro. (The planet Jupiter
is said to have a mass very nearly equal to the critical mass Mo, so that if it were
heavier it might be smaller.)

9. Find the pressure and temperature as functions of radius for the star of
Problem 6 if the star is composed of a perfect gas of atomic weight A.

10. Find the density and gravitational field intensity as a function of radius
inside a small spherically symmetric planet, to order (1/ B2?), assuming that the
bulk modulus B is constant. The mass is M and the radius is a. [Hint: Calculate
g¢(r) assuming uniform density; then find the resulting pressure p(r), and the
density p(r) to order (1/B). Recalculate g(r) using the new p(r), and proceed
by successive approximations to terms of order (1/ B2)]

11. Consider a spherical mountain of radius a, mass M, floating in equilibrium
in the earth, and whose density is half that of the earth. Assume that a is much
less than the earth’s radius, so that the earth’s surface can be regarded as flat in
the neighborhood of the mountain. If the mountain were not present, the gravi-
tational field intensity near the earth’s surface would be go. (a) Find the differ-
ence between go and the actual value of g at the top of the mountain. (b) If the
top of the mountain is eroded flat, level with the surrounding surface of the earth,
and if this occurs in a short time compared with the time required for the moun-
tain to float in equilibrium again, find the difference between go and the actual
value of g at the earth’s surface at the center of the eroded mountain.

12. (a) Find the gravitational potential and the field intensity due to a thin
rod of length ! and mass M at a point a distance r from the center of the rod in a
direction making an angle 0 with the rod. Assume