FI2001-4 Mecánica. Profesor: Marcel Clerc.

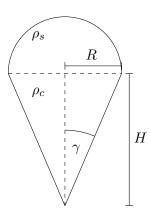
Auxiliares: Roberto Gajardo, Lucciano Letelier.

Auxiliar 7: Centro de masa.

14 de Abril del 2022

P1. Filtro separador:

Se tiene un filtro especial que separa sustancias en una mezcla contenida en un cilindro de radio R y altura H. Este filtro funciona de tal forma que las sustancias menos densas escapan antes que las más densas, lo cual se modela a través de las siguientes expresiones para la densidad y la altura en función del tiempo:


$$\rho(z) = \rho_0 \left(1 - \left(\frac{z}{H} \right)^2 \right) \quad ; \quad z(t) = H \left(1 - \frac{t}{T} \right)$$

Estas expresiones son válidas asumiendo que el cilindro parte lleno de mezcla, y demora un tiempo T en vaciarse completamente.

- a) Encuentre el centro de masa $\vec{R}_{\rm cm}$ de la mezcla en función del tiempo.
- b) Encuentre la velocidad $\vec{V}_{\rm cm}$. Grafique y comente.

P2. Centro de masa de un cono de helado:

Considere un cono de helado simple, el cual puede modelarse como un cono de densidad de masa uniforme ρ_c , ángulo γ y altura H, al cual se le adhiere una semiesfera de densidad de masa ρ_s y radio R, tal como se muestra en la siguiente figura:

Encuentre el centro de masa del cono de helado.