

Auxiliar 12

Fuerzas centrales, órbitas y pequeñas oscilaciones

Profesor: Patricio Aceituno

Auxiliares: Javier Huenupi, Edgardo Rosas Ayudantes: Felipe Cubillos, Alvaro Flores

P1.-

Una partícula de masa m se mueve en un espacio con un potencial descrito como $V(r) = \beta r^k$, con β y k constantes. Considere que se sabe que el momentum angular en un punto es L, responda/calcule:

- 1. ¿El momentum angular es constante?, ¿por qué?
- 2. Encuentre el radio r_0 de la órbita circular
- 3. Identifique para qué valores de k esta órbita es estable
- 4. Considerando que el radio r_0 es estable, si a la masa se le pega una patadita que hace que oscile en torno a r_0 , encuentre la frecuencia de pequeñas oscilaciones ω_r

Respuesta

Debido a que el potencial solo depende de la distancia de la masa al origen, al calcular el gradiente de este, para calcular la fuerza, solo sobrevive el término en \hat{r} . Tomando coordenadas esféricas:

$$\begin{split} \vec{F} &= -\nabla V(r) = -\frac{\partial V}{\partial r} \hat{r} - \frac{1}{r} \frac{\partial V}{\partial \theta}^{0} \hat{\theta} - \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi}^{0} \hat{\phi} \\ &\Rightarrow \vec{F} = \beta k r^{k-1} \hat{r}, \end{split}$$

por lo que tenemos una fuerza central, y por ende, se conserva el momentum angular, ya que no hay fuerzas aplicándose en los ejes angulares.

Para encontrar el radio de la órbita circular usamos el potencial efectivo,

$$V_{eff}(r) = \beta r^k + \frac{L^2}{2mr^2},$$

que derivamos e igualamos a cero para encontrar los puntos críticos,

$$\frac{\partial V_{eff}}{\partial r}\Big|_{r_0} = \beta k r_0^{k-1} - \frac{L^2}{m r_0^3} = 0$$

$$\Rightarrow r_0 = \left(\frac{L^2}{\beta k m}\right)^{\frac{1}{k+2}}.$$

Auxiliar 12

Para analizar la estabilidad utilizamos la segunda derivada del potencial efectivo evaluada en r_0 con la expresión anterior,

$$\left. \frac{\partial^2 V_{eff}}{\partial r^2} \right|_{r_0} = \beta k (k-1) r_0^{k-2} + \frac{3L^2}{m r_0^4}$$
$$= \frac{1}{r_0^4} \frac{(k+2)L^2}{m},$$

donde si k > -2 (por ejemplo, el potencial gravitatorio) la segunda derivada del potencial es positiva, así que el radio r_0 es estable y si k < -2 es inestable.

Para calcular la frecuencia de pequeñas oscilaciones usamos la fórmula de un auxiliar anterior,

$$\omega_r = \sqrt{\frac{V''(r_0)}{m}},$$

reemplazando la expresión de $V''(r_0)$ calculada anteriormente,

$$\omega_r = \frac{L}{mr_0^2} \sqrt{k+2}$$

Auxiliar 12

Pauta Auxiliar 15/2 100% real

WW 123

La energia se describe cormo
$$\frac{1}{2}m\dot{r}^2 + \frac{L}{2mr^2} + V(r) = 0 \quad (1)$$

Osí que de livornos la expresión de los trayectorias, además necondamado que mr.º0 = L

1.
$$\frac{dr}{dt} = \ker \theta^{k-1} \dot{\theta} = \frac{kr}{\theta} \frac{L}{mr^2} = \frac{kL}{mr} \frac{1}{\theta}$$
, donde $\theta = \left(\frac{r}{r}\right)^{n/k} \Rightarrow \dot{r} = \frac{kL}{mr} \left(\frac{r}{r}\right)^{n/k}$

$$\frac{1}{2}m\left(\frac{kL}{mr}\right)^{2}\left(\frac{r_{o}}{r}\right)^{2/k}+\frac{L^{2}}{2mr^{2}}+V(r)=0$$

$$\langle \rangle V(r) = \frac{-L^2}{2mr^2} \left(k^2 \left(\frac{r_0}{r} \right)^{2/k} + L \right)$$

2.
$$\frac{dr}{dt} = ar_0 e^{a\theta} \dot{\theta} = ar \frac{L}{mr^2} = \frac{aL}{mr} \Rightarrow \frac{1}{2} m \left(\frac{aL}{mr}\right)^2 + \frac{L^2}{2mr^2} + V(r) = 0$$

$$\langle z \rangle V(\vec{r}) = -\frac{L^2}{2mr^2} \left(\alpha^2 + L \right)$$

3.
$$\frac{dr}{dt} = r \cdot \hat{\theta} = \frac{r \cdot L}{mr^2} \Rightarrow \frac{1}{2} m \left(\frac{r \cdot L}{mr^2} \right)^2 + \frac{L^2}{2mr^2} + V(r) = 0 \Rightarrow V(r) = -\frac{L^2}{2mr^2} \left(\left(\frac{r \cdot r}{r} \right)^2 + L \right)$$

Las ónbitas cinculares se dans en las posiciones de equilibrio, o sea, cuendo. 31/3r=0, os que derivomos

$$\frac{\partial V_{\text{eff}}}{\partial r}\Big|_{r_0} = 2\lambda^2 r_0 V_0 e^{-\lambda^2 r_0^2} - \frac{L^2}{mr_0^3} \stackrel{!}{=} 0$$

con lo que conseguirmos la ecuación que nos permitinta en contran el nadio ro de la ónbita cincular Pana encontron el máximo valor de L t.g. se siga tenien do órbitas cinculares, primero debe cumplir. (2), donde notomos que el término s. e ir. trende a O cuando r. > 0 (la exponencial le gana a r.") y tembién cuando r. > 0, por lo que debe existir un valor máximo de r. e ir., por lo tonto de L. Derivarues e igualarmos a O re e ir.

$$\Rightarrow \frac{\partial}{\partial r} (r^{1} e^{\lambda r^{2}}) = 4r^{3} e^{-\lambda^{2} r^{2}} - 2\lambda^{2} r^{5} e^{-\lambda^{2} r^{2}} = 0$$

$$\Rightarrow 2 \cdot 3^3 - \lambda^2 \cdot 5^5 = 0 \Rightarrow r^2 = \frac{\lambda}{\lambda^2} \Rightarrow r^4 = \frac{1}{\lambda^4}$$

neemplazondo en (2)

$$\Rightarrow L_{m\acute{\alpha}}^{2} = 2m \lambda^{2} \frac{u}{\lambda^{4}} V_{o} e^{-\lambda^{2} \cdot 2/\lambda^{2}} = \frac{8m V_{o} e^{-2}}{\lambda^{2}}$$
 (3)

que podermos neemplazar en la expnesión del potencial efectivo

$$V_{\text{eff}}(\vec{r}_{0}) = \frac{L^{2}_{\text{max}}}{2mr^{2}} - V_{0} e^{-\lambda^{2}r^{2}} = \frac{8mV_{0}}{e^{2}\lambda^{2}} \cdot \frac{1}{2mr^{2}} - V_{0} e^{-\lambda^{2}r^{2}} = \frac{4V_{0}}{\lambda^{2}e^{2}}$$
Usaluondo con $r_{0}^{2} \gg V_{\text{eff}}(r_{0}) = \frac{4V_{0}}{\lambda^{2}e^{2}} \cdot \frac{\lambda^{2}}{2} - \frac{U_{0}}{e^{2}} = \frac{V_{0}}{e^{2}}$

P3

Como conocermos un árgulo y dos lados calcularmos r con teonema del coseno

 $r^2 = a^2 + a^2 - 2a^2 \cos(\pi - \theta) = 2a^2(1 - \cos(\pi - \theta)) = 2a^2(1 + \cos(\theta)),$ así que la luerza, anu es central dinigida si entrope hacia C, senía

Producto de tu

imaginación

de la fuenza

Elegimos vuestros desco

Ahona, pono calcu que la fuenza que no ejence tr calcularmos inte

parlo. No, así que lo

iguales

magnitud

$$W_{A \to B} = \int_{\tilde{r}}^{\tilde{r}} F \cdot d\tilde{r} = \int_{\tilde{r}}^{\tilde{r}} \frac{-k}{2a^{2}(1+\cos\theta)} \cos\left(\frac{\theta}{2}\right) \hat{\rho} + \frac{k}{2a^{2}(1+\cos\theta)} \sin\left(\frac{\theta}{2}\right) \theta \cdot ad\theta\theta$$

$$= \int_{0}^{\pi/2} \frac{-k}{2a^{2}(1+\cos\theta)} \cos\left(\frac{\theta}{2}\right) \hat{\rho} \cdot ad\theta \hat{\rho} + \frac{k}{2a^{2}(1+\cos\theta)} \sin\left(\frac{\theta}{2}\right) \hat{\theta} \cdot ad\theta \hat{\rho}$$

$$= \frac{k}{2a} \int_{0}^{\pi/2} \frac{\sin(\theta/2)}{1+\cos\theta} d\theta = \frac{k}{2a} \frac{1}{\cos(\theta/2)} \left(\frac{1+\cos(\theta)}{a}\right) \frac{1}{a} = \frac{k}{2a} \left(\frac{1}{1/12} - 1\right) = \frac{k}{2a} \left(\frac{1}{1/12} - 1\right)$$

que es positivo, ya que la puenza es en el sentido del movimiento.

