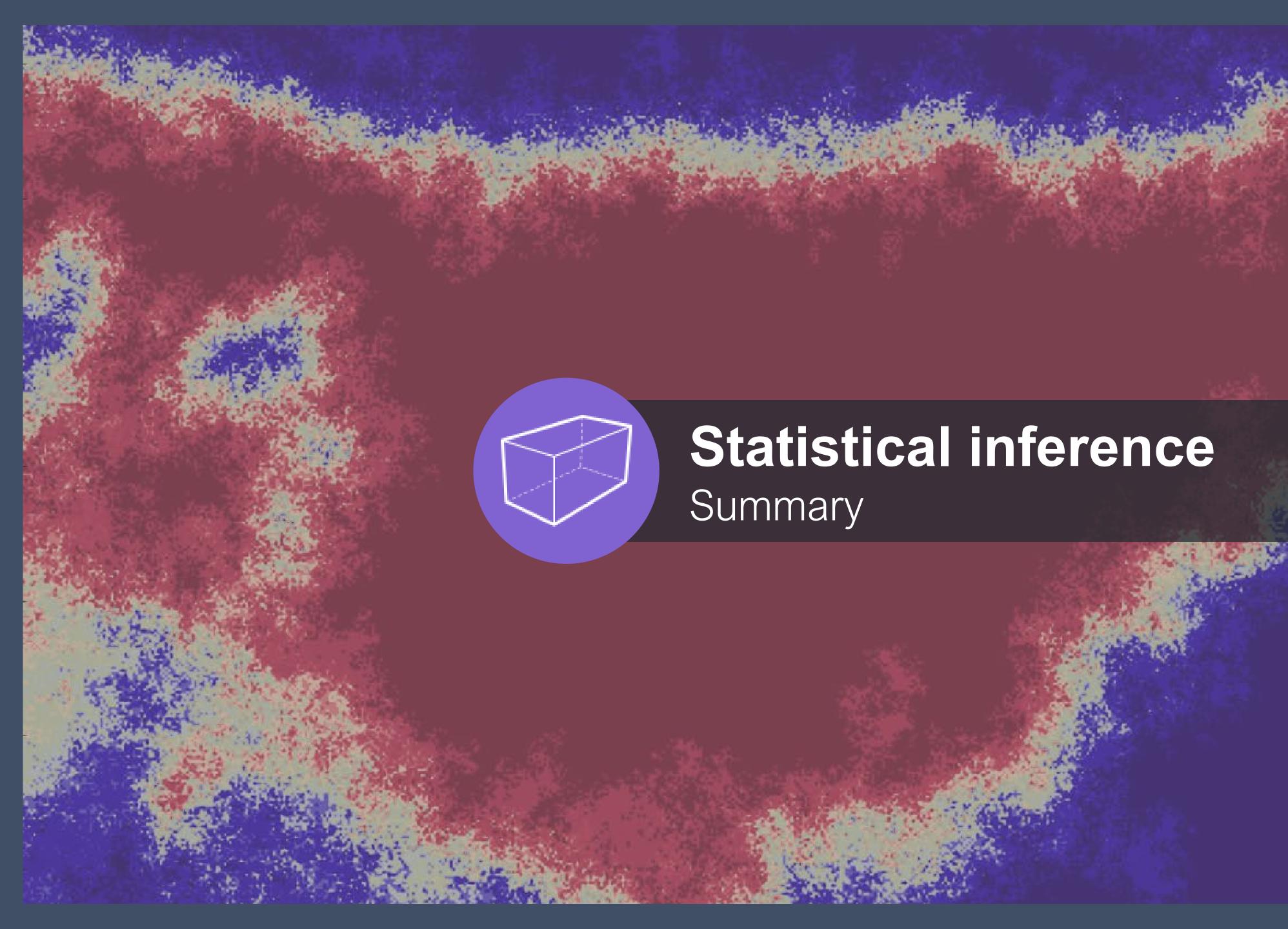


Lab 2: Inference Statistical and Geostatistical Data Analysis.

Assistant Professor: Fabián Soto F. Chair Professor: Xavier Emery



Concept summary

- Statistical Inference
- It has the objective of knowing the properties of a population through information observed on a sample level.
- Properties of an estimator
 - Optimality
 - Accuracy (unbiasedness)
 - Sufficiency •
 - Consistency

Confidence Interval

$$Prob\left(-1.96 < \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} < 1.96\right) = 0.95$$

Probability interval

$$Prob\left(\mu - 1.96\frac{\sigma}{\sqrt{n}} < \bar{X} < \mu + 1.96\frac{\sigma}{\sqrt{n}}\right) = 0.95$$

- Let X be a Gaussian variable with unknown expectation μ and known variance σ^2 .

Confidence interval

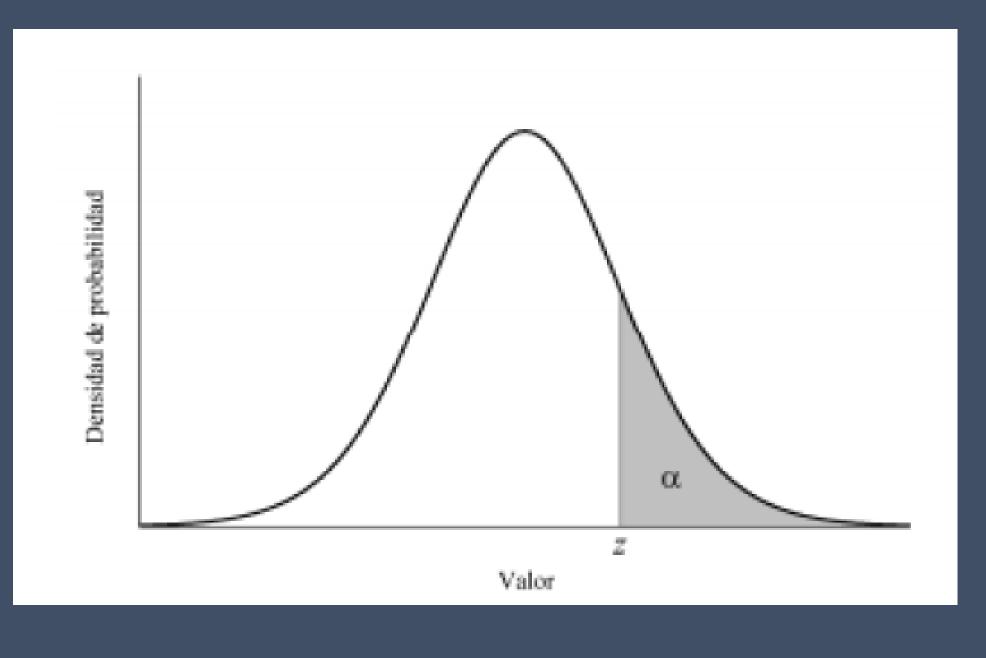
$$Prob\left(\bar{X} - 1.96\frac{\sigma}{\sqrt{n}} < \mu < \bar{X} + 1.96\frac{\sigma}{\sqrt{n}}\right) = 0$$

Standard Normal Distribution N(0,1) •

• Values with probability α of being exceeded.

α	0.25	0.2	0.15	0.1	0.05	0.025	0.01	0.005	0.0005
Z	0.675	0.84	1.03	1.28	1.64	1.96	2.32	2.57	3.27

Gaussian Distribution



Confidence Interval

$$Prob\left(\bar{X} - t_{n-1,\frac{\alpha}{2}}\frac{S}{\sqrt{n}} < \mu < \bar{X} + t_{n-1,\alpha/2}\frac{S}{\sqrt{n}}\right) = 1 - \alpha$$

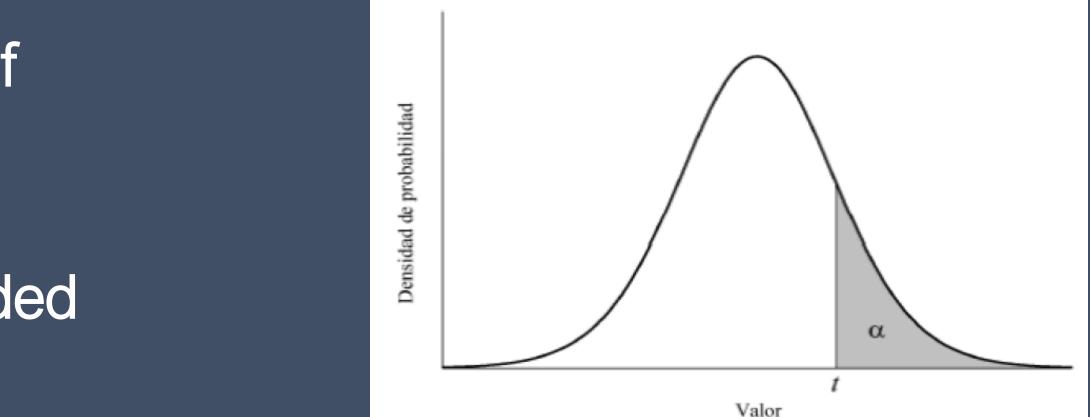
• With $t_{n-1,\alpha/2}$ value of the Student distribution with n – 1 degrees of freedom and probability α of being exceeded.

- Let X be a Gaussian variable with unknown expectation μ and unknown variance σ^2 .

- Student distribution T_n with n degrees of freedom
- Values with probability α of being exceeded

n N	0.25	0.2	0.15	0.1	0.05	0.025	0.01	0.005	0.0005
1	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	636.6
2	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	31.599
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	12.924
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	8.610
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	6.869
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.959
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	5.408
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	5.041
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.781
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.587
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.437

Student Distribution



Estimation of a proportion

• n is the size of the sample

 $\cdot ||f|n| < 50$

 $Prob\left(f-1.96\sqrt{\frac{f(1-f)}{n}} < \right)$

$$p < f + 1.96 \sqrt{\frac{f(1-f)}{n}} = 0.95$$

Estimation of a proportion

• If $n \ge 50$

$$\begin{cases} p_{min} = \frac{n}{n + U_{\alpha}^{2}} \left(f + \frac{U_{\alpha}^{2}}{2n} - U_{\alpha} \sqrt{\frac{f(1+f)}{n} + \frac{U_{\alpha}^{2}}{4n^{2}}} \right) \\ p_{max} = \frac{n}{n + U_{\alpha}^{2}} \left(f + \frac{U_{\alpha}^{2}}{2n} + U_{\alpha} \sqrt{\frac{f(1+f)}{n} + \frac{U_{\alpha}^{2}}{4n^{2}}} \right) = 0.95 \end{cases}$$

Approximation when $n \to \infty$ •

 $Prob(p_{min}$

$$p_{min} = f - U_{\alpha} \sqrt{\frac{f(1+f)}{n}}$$

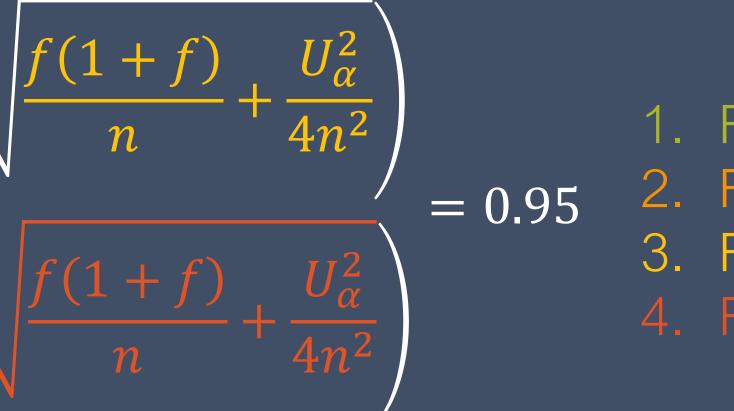
$$p_{max} = f + U_{\alpha} \sqrt{\frac{f(1+f)}{n}}$$

Estimation of a proportion

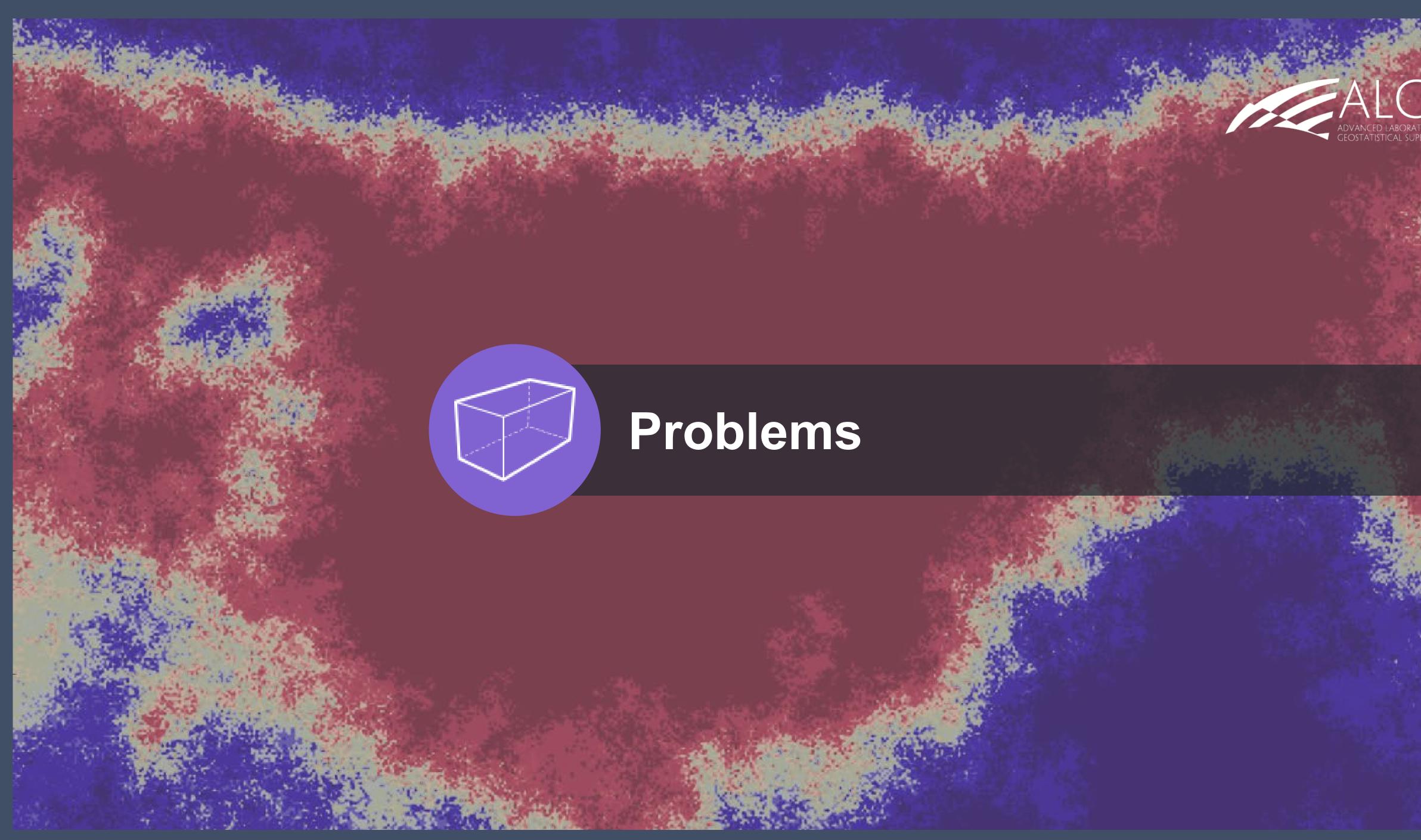
• If $n \ge 50$

$$\begin{cases} p_{min} = \frac{n}{n + U_{\alpha}^2} \left(f + \frac{U_{\alpha}^2}{2n} - U_{\alpha} \right) \\ p_{max} = \frac{n}{n + U_{\alpha}^2} \left(f + \frac{U_{\alpha}^2}{2n} + U_{\alpha} \right) \end{cases}$$

 $Prob(p_{min}$



1. Factor 1 2. Factor 2 3. Factor 3



Problem 1:

One has 9 core samples with total copper grade assays (in %): -0.63 0.70 0.47 0.39 0.12 0.21 0.55 0.52 1.38 Determine a confidence interval for the average copper grade of the population from which the samples were taken. Assume that the grade variance of the population is equal to 0.15.

Problem 1:

One has 9 core samples with total copper grade assays (in %): 0.52 0.63 0.70 0.47 0.39 0.12 0.21 0.55 1.38
Determine a confidence interval for the average copper grade of the population from which the samples were taken. Assume that the grade variance of the population is equal to 0.15.

Problem 2:

- The same previous exercise variance is unknown.

The same previous exercise, but in this case assuming that the grade

Problem 1:

One has 9 core samples with total copper grade assays (in %): -0.63 0.70 0.47 0.39 0.12 0.21 0.55 1.38 0.52 Determine a confidence interval for the average copper grade of _ the population from which the samples were taken. Assume that the grade variance of the population is equal to 0.15.

Problem 2:

____ variance is unknown.

Problem 3:

- observed draw points, 13 had some failure.
- failing?

The same previous exercise, but in this case assuming that the grade

- One has 1000 draw points in a block cave mine. From 50 - ¿How many draw points (in total) in the entire mine could be

