Caso r<3

Caso r<3 comparativo

Caso r>3 comparativo (caótico)

Clase Matriz de Leslie

Conejos de Fibonacci

El máximo es el primer valor propio y su vector asociado sera:

$x_n= A_1 \lambda_1^n + A_2 \lambda_2^n$

$1=x_0=A_1 + A_2 $

$1=x_1=A_1 \lambda_1 + A_2 \lambda_2 $

Reemplazando $1=A_1 \lambda _1 + (1-A_1) \lambda_2=\lambda_2+A_1\sqrt{5}=\dfrac{1-\sqrt{5}}{2}+A_1\sqrt{5} $,

por lo que $A_1=\dfrac{1+\sqrt{5}}{2\sqrt{5}}$ y $A_2=\dfrac{\sqrt{5}-1}{2\sqrt{5}}$

Finalmente para $n$ grande $x_n\approx \dfrac{1+\sqrt{5}}{2\sqrt{5}}\left(\dfrac{1+\sqrt{5}}{2}\right)^n$

Comparacion con http://bandicoot.maths.adelaide.edu.au/Leslie_matrix/leslie.cgi?initial_pop[0]=0&initial_pop[1]=100&initial_pop[2]=100&initial_pop[3]=100&initial_pop[4]=0&initial_pop[5]=0&initial_pop[6]=0&initial_pop[7]=0&birth_rates[0]=0&birth_rates[1]=0&birth_rates[2]=0.8&birth_rates[3]=0.5&birth_rates[4]=0&birth_rates[5]=0&birth_rates[6]=0&birth_rates[7]=0&survival_rates[0]=0.95&survival_rates[1]=0.9&survival_rates[2]=0.739&survival_rates[3]=0&survival_rates[4]=0&survival_rates[5]=0&survival_rates[6]=0&survival_rates[7]=0&Submit+Leslie+Matrix=Submit+Leslie+Matrix

Ejercicio 1.25