MA3403-4. Probabilidades y Estadística

Profesor: Raúl Gouet Auxiliares: Vicente Salinas Fecha: 19 de noviembre de 2021

Auxiliar 11: Más Vectores aleatorios

- **P1.** Se obtienen dos mediciones independientes de una cantidad μ . Estas mediciones se modelan como dos v.a. X e Y normales con la misma esperanza: $E[X] = E[Y] = \mu$, pero distinta varianza: $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$. Si se combinan ambas mediciones para obtener un promedio ponderado de la medición a través de la nueva v.a. $Z = \alpha X + (1 \alpha)Y$, con $\alpha \in [0,1]$:
 - a) Muestre que $E[Z] = \mu$.
 - b) Calcule Var(Z). Encuentre el valor de α que minimiza la varianza del promedio ponderado, en función de σ_X^2 y σ_Y^2 .
- **P2.** Sea (X,Y) un vector aleatoria con densidad conjunta

$$f_{X,Y}(x,y) = 12x1_{\{y < x < \sqrt{y}\}}$$

- a) Plantee las integrales para calcular P(X > 1/2|Y < 1/2)
- b) Sea y > 0, calcule E(X|Y = y); Son X e Y independientes?
- P3. Para ir de la Facultad a su casa, usted tiene dos opciones: puede esperar el bus de la línea A en el paradero correspondiente, o bien el bus de la línea B en otro paradero. Los tiempos T_A y T_B (en minutos) que tarda en pasar el siguiente bus de la línea respectiva son variables aleatorias exponenciales independientes de parámetros λ_A y λ_B , respectivamente. Suponga que usted escoge el paradero al azar, independiente de T_A y T_B . Sea T su tiempo de espera para abordar al bus.
 - 1. Encuentre $P(T_A < T_B)$.
 - 2. Si a los t minutos usted sigue en el paradero, ¿cuál es la probabilidad de que esté esperando el bus de la línea A? Suponiendo $\lambda_B > \lambda_A$, ¿qué ocurre cuando t es grande?
 - 3. Usted cambia su estrategia: se ubica a medio camino entre los paraderos, y apenas visualiza el primer bus que viene llegando, usted corre al paradero correspondiente y aborda el bus. ¿Cuál es la distribución de T con esta estrategia.

Propuestos

Prop1 Sea (X_i, Y_i) , con i = 1, ..., n, con $n \in N$, una secuencia de vectores aleatorios independientes e idénticamente distribuidos. Esto es que, "conjuntamente", (X_1, Y_1) es independientes, y tienen la misma distribución, que (X_2, Y_2) y así sucesivamente. De este modo, para un i y j arbitrarios, tales que $i \neq j$, se tiene que X_i y Y_i pueden ser dependientes mientras que X_i y Y_j son independientes. Además se tiene que para todo i: $\mu_x = E(X_i)$, $\mu_y = E(Y_i)$, $\sigma_x^2 = Var(X_i)$, $\sigma_y^2 = Var(Y_i)$, $\rho = \rho(X_i, Y_i)$

Demuestre que $\rho\left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} Y_i\right) = \rho$

Resumen 1

Definición 1 (V.a. continua). Una v.a. X es continua si exista una función no-negativa definida para todo número real, tal que para todo $B \subseteq \mathbb{R}$

$$\mathbb{P}(X \in B) = \int_{B} f(x)dx$$

A f la llamamos función de densidad de probabilidad de X

Propiedades 1. 1. $\int_{-\infty}^{\infty} f(x)dx = 1$

2. Dado
$$B = [a, b] \subseteq \mathbb{R}, \mathbb{P}(a \le X \le b) = \int_a^b f(x) dx$$

3. Dado
$$a \in \mathbb{R}, \mathbb{P}(X = a) = 0$$

4. Función distribución acumulada, dado
$$a \in \mathbb{R}$$
, $F(a) = \mathbb{P}(X \leq a) = \int_{-\infty}^{a} f(x) dx$

Definición 2. Dada X una v.a. continua, se define su **esperanza**, o valor esperado, como

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Definición 3. Dada X una v.a. continua y g una función real, entonces la esperanza de la v.a. g(X) esta dada por

$$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f(x) fx$$

Definición 4. Dada X v.a., se define su varianza como

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

V.a. continuas

1. Uniforme: X U(a,b), entonces

•
$$f(x) = \frac{1}{b-a} 1_{[a,b]}(x)$$

$$\blacksquare \ \mathbb{E}[X] = \frac{a+b}{2}$$

$$Var(X) = \frac{(b-a)^2}{12}$$

2. Normal: $X \mathcal{N}(\mu, \sigma^2)$, entonces

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\blacksquare \mathbb{E}[X] = \mu$$

$$Var(X) = \sigma^2$$

• Si $X \mathcal{N}(0,1)$, la llamamos v.a. normal estándar.

3. **Exponencial:** $X \exp(\lambda)$, entonces

$$f(x) = \begin{cases} \lambda e^{-\lambda} & x \ge 0\\ 0 & x < 0 \end{cases}$$

$$\bullet \ \mathbb{E}[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

Definición 5. Dada una v.a. X y $k \in \mathbb{N}$, le llamamos Momento de orden k al valor esperado de X^k

$$\mu_k = \mathbb{E}[X^k]$$

Definición 6. Dada una v.a. X y $t \in \mathbb{R}$, se define la función generadora de momentos de X como

$$M(t) = \mathbb{E}[e^{tX}]$$

Al derivar M(t) se pueden generar todos los momentos de la v.a. X.

Resumen 2

Definición 7 (Vectores Aleatorios). Un vector aleatorio $X = (X_k)_{k=1}^n$ y $x = (x_k)_{k=1}^n \in \mathbb{R}^n$ se cumple que la:

$$F_X(x) = P(X \le x) = P(X_1 \le x_1, ..., X_n \le x_n)$$

A F la llamamos función de <u>Distribución de probabilidad</u> de X

Definición 8 (Funciones marginales). Dado un vector aleatorio $X=(X_k)_{k=1}^n$ y $x=(x_k)_{k=1}^n\in R^n$ se define la función de distribución marginal:

$$F_{X_k}(x_k) = \lim_{(x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n) \to \infty} F_X(x) = P(X_k \le x_k)$$

A F la llamamos función de <u>Distribución de probabilidad</u> de X

Definición 9. Sea X un vector aleatorio discreto. Se define la función de probabilidad de X, $pX : \mathbb{R}^n \to [0, 1]$, como:

$$p_X(x) = P(X = x) = P(X_1 = x_1, ..., X_n = x_n)$$

Por ejemplo caso k=3: $X=(X_1,X_2,X_3)$ y $p_{X_1}(x_1)=\sum_{x_2,x_3\in R}P_X(x)$

Definición 10. Sea X un vector aleatorio continuo. Se define:

$$P(X \in B) \int_{B} f_{X}(x) dx$$

Obs: A esta función $f_X(x)$ se le conoce como densidad conjunta y note que esta integral suele ser una integral en más de una dimensión.

Por ejemplo: Sea $B=R_+^2$ (El primer cuadrante) y sea $f_X(x)=\frac{1_{\{x^2+y^2\leq 1\}}(x,y)}{\pi}$, se tiene que:

$$P(X \in B) = \int_0^\infty \int_0^\infty f_X(x) dx dy = \int_0^1 \int_0^{\frac{\pi}{2}} \frac{1}{\pi} r d\theta dr = \frac{1}{4}$$

Las funciones de densidad marginal se definen de manera análoga, sea $X = (X_1, X_2, X_3)$.

$$f_{X_1}(x_1) = \int_0^\infty \int_0^\infty f_X(x_1, x_2, x_3) dx_2 dx_3$$

Propiedades 2. $\frac{\partial^n F_X(x)}{\partial x_1...\partial x_n} = f_X(x)$

Obs: Si las componentes de un vector aleatorio, son variables independientes:

$$F_X(x) = \prod_{i=1}^n F_{Xi}(x_i)$$

$$f_X(x) = \prod_{i=1}^n f_{Xi}(x_i)$$

$$\frac{\partial^n F_X(x)}{\partial x_1...\partial x_n} = \prod_{i=1}^n \frac{\partial F_{Xi}(x_i)}{\partial x_i} = \prod_{i=1}^n f_{X_i}(x_i) = f_X(x)$$

Definición 11 (Covarianza). Dadas dos v.a.'s X, Y, al **covarianza** indica la relación entre ambas variables, y se define como

$$Cov(X, Y) = \mathbb{E}\left((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))\right)$$

Trabajando la expresión, se tiene que

$$Cov(X, Y) = \mathbb{E}(X \cdot Y) - \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

Con los cual, si X e Y son independientes, Cov(X,Y)=0. (la inversa **no** es cierta)

Propiedades 3. Dadas X, Y v.a.'s, se cumple que

- 1. Cov(X,Y) = Cov(Y,X)
- 2. Cov(X, X) = Var(X)
- 3. Cov(aX, Y) = aCov(X, Y) para todo $a \in \mathbb{R}$.
- 4. Var(X + Y) = Var(X) + Var(Y) 2Cov(X, Y)
- 5. Covarianza es lineal en las sumas en cada componente, es decir, dadas $X_1, ..., X_n$ e $Y_1, ..., Y_m$ v.a.'s,

$$Cov\left(\sum_{i=1}^{n} X_i, \sum_{j=1}^{m} Y_j\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} Cov(X_i, Y_j)$$

Definición 12 (Coeficiente correlación). Dadas X, Y v.a.'s, se define el coeficiente de correlación $\rho(X, Y)$ entre ambas variables como

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

Se o con	btien la mi icion	en do isma	os me	edicio	ones : a: E[[X] =	endi = E[Y	ente $[] =$	es de μ , p	una ero	canti distir	dad pata va	u. Es arian	tas m za:V	ar(X)	iones $f(x) = 0$	s se n σ_X^2 ,	node Var	$\operatorname{lan} c$ (Y)	$como$ $= \sigma_Y^2$	dos . Si	v.a se co	X e X ombi: (1 —	zno: nan α)V	rm: am
$\alpha \in$	[0,1]:	: :	ira o	occii	ci ui	i pic	inca	ор	ond.	rado	ac i	a me	arcio	11 a	nave	,5 GC	10 11	acve	· v.a		- a2	. 1	(1	α)1	,
	Mue						,		,				,		,	,	,		,	,		· ·	, 1	9	
<i>b</i>)	Calc	cule V	/ ar(Z). E □	incue	entre	el va	alor	de α	que	mini	miza	la va	rianz	za de	el pro	omed	10 p	onde:	rado,	en i	unci	ón d€	σ_X^2	У

P2. Sea (X,Y) un vector aleatoria con densidad conjunta

$$f_{X,Y}(x,y) = 12x1_{\{y < x < \sqrt{y}\}}$$

- a) Plantee las integrales para calcular P(X > 1/2|Y < 1/2)
- b) Sea y > 0, calcule E(X|Y = y) ¿Son $X \in Y$ independientes?

Primeso lever conditional 1 Su definition

$$P(x = \frac{1}{2} | y \in \frac{1}{2}) = P(x = \frac{1}{2}, y \in \frac{1}{2})$$

Clair est
$$P(y \in \frac{1}{2})$$

Maginal y

Sexon

22xy

$$\frac{1}{3620,15}, x \in [5], \sqrt{5}[$$

$$\frac{1}{3} = 6(x_0 - x_0^2)$$

$$\begin{aligned}
F_{Y}(y) &= 6(y - y^{2}) \frac{1}{2} |_{0 \leq y \leq 17} \\
F(Y(\frac{1}{2}) &= \int_{-\infty}^{\frac{1}{2}} (y - y^{2}) \frac{1}{2} |_{0 \leq y \leq 1/2} \\
&= \int_{0}^{\frac{1}{2}} 6(y - y^{2}) dy \\
&= 3y^{2} - 2y^{3} |_{0}^{\frac{1}{2}} \\
&= y^{2} |_{0}^{\frac{1}{2}} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0}^{\frac{1}{2}} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1/2} \\
&= y^{2} |_{0 \leq y \leq 1/2} |_{0 \leq y \leq 1$$

No
$$S \in [\frac{1}{4}, \frac{1}{2}]$$
 $S \in [\frac{1}{4}, \frac{1}{2}]$
 $S \in [\frac{1}{4}, \frac{1}{2}]$
 $S \in [\frac{1}{2}, \frac{1}{3}]$
 $S \in [\frac{1}{2},$

$$= \int_{1}^{2} 6(3-\frac{1}{4}) 2N$$

$$= 33^{2} - 35 / \frac{1}{4}$$

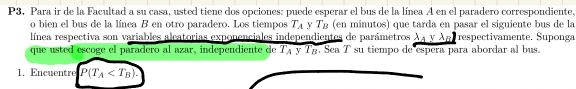
$$= 33^{2} - \frac{1}{4}$$

 $=-\frac{3}{16}+\frac{3}{8}=\frac{3}{16}$

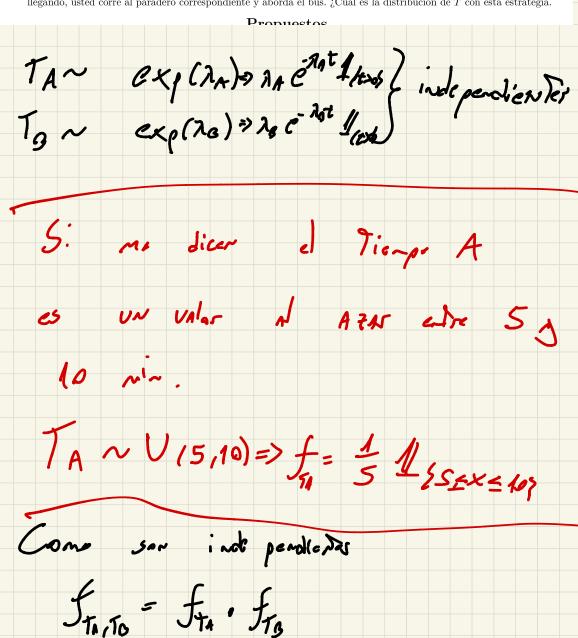
$$P(X > \frac{1}{2} | Y < \frac{1}{2}) = \frac{3}{14}$$

$$\frac{3}{2} | \frac{3}{2} | \frac{$$

$$= \frac{2}{3} \times \frac{3}{3} \cdot \frac{1}{3} \cdot \frac{$$



- 2. Si a los t minutos usted sigue en el paradero, ¿cuál es la probabilidad de que esté esperando el bus de la línea A? Suponiendo $\lambda_B > \lambda_A$, ¿qué ocurre cuando t es grande?
- 3. Usted cambia su estrategia: se ubica a medio camino entre los paraderos, y apenas visualiza el primer bus que viene llegando, usted corre al paradero correspondiente y aborda el bus. ¿Cuál es la distribución de T con esta estrategia.



$$\begin{aligned}
&= \int_{0}^{T_{3}} \lambda_{4} e^{-\lambda_{3} t} dt \\
&= \int_{0}^{T_{3}} \lambda_{4} e^{-\lambda_{3} t} dt \\
&= \int_{0}^{T_{3}} \lambda_{4} e^{-\lambda_{3} t} dt
\end{aligned}$$

$$\int_{1A/T_0}^{(t_1(t_1))} \lambda_4 \lambda_0 e^{-\lambda_4 t_4 \cdot \lambda_3 t_2}$$

$$\int_{1A/T_0}^{(t_1(t_1))} \lambda_4 \lambda_0 e^{-\lambda_4 t_4 \cdot \lambda_3 t_3}$$

$$\int_{1A/T_0}^{(t_1)} \lambda_4 \lambda_0 e^{-\lambda_4 t_4 \cdot \lambda_3 t_3}$$

$$\int_{1A/T_0}^{(t_1)} \lambda_4 \lambda_0 e^{-\lambda_4 t_4 \cdot \lambda_3 t_3}$$

$$\int_{1A/T_0}^{(t_1)} \lambda_4 \lambda_0 e^{-\lambda_4 t_4 \cdot \lambda_3 t_3}$$

P(TA < TO) = P((TA, TB)E CZ)

$$= \int_{0}^{\infty} \lambda_{A} \cdot e^{-\lambda_{0}t_{1}} dt_{1}$$

$$= \int_{0}^{\infty} \lambda_{A} \cdot C^{-\lambda_{0}t_{1}} - \lambda_{3}t_{1}$$

$$= \frac{1}{A} \left(\frac{1}{12 + \lambda_{3}} \right) C^{-\lambda_{0}+\lambda_{0}} t_{1}$$

$$= \int_{0}^{\infty} \lambda_{A} \cdot C^{-\lambda_{0}t_{1}} \cdot C^{-\lambda_{0}t_{1}} dt_{1}$$

$$= \underbrace{\lambda_{A}}_{(\lambda_{0}+\lambda_{0})} \cdot \underbrace{\lambda_{A}}$$

 $P(t_{A}T_{B}) = \frac{\lambda_{A}}{\lambda_{A} + \lambda_{B}}$

2)
$$P(X=A \mid T>t)$$
 f_T
 N_0
 $Cacho$
 f_{T0}
 F_{T0}
 N_0
 E_{510}
 g_{co}
 f_{T0}
 N_0
 M_0
 M_0

$$P(T > t)$$

$$P(T > t) = P(T_0 > t) = \frac{1}{2}$$

$$P(T > t | x \sim 4) P(x \sim 4) + P(T \times 1 | x \sim 4) P(x \sim 9)$$

$$= P(T_0 > t) = \frac{1}{2}$$

$$P(T_0 > t) + P(T_0 > t)$$

$$P(T_0 > t) + P(T_0 > t)$$

= P(Taxt) =

 $P(F>t) = \sum_{t=1}^{\infty} \lambda e^{-\lambda x} dx$ $S=[t,\infty)$

P(X=A|T>t)

$$= (-c^{-2x})_{+}^{2x} = c^{-2x}$$

$$R(x=A(T)+t) = \frac{C^{-\lambda_0 t}}{C^{-\lambda_0 t}}$$

$$\frac{c}{c} = \frac{c^{-\lambda_0 t}}{c^{-\lambda_0 t}} + c^{-\lambda_0 t}$$

 $P(x) = \sum_{i=1}^{n} P(x = A/T > t) = 1$

$$P(x=A|T>t) = \frac{C^{-\lambda_0 t}}{C^{-\lambda_0 t}} + C^{-\lambda_0 t}$$

$$P(x=A|T>t) = \frac{1}{1 + C^{-(\lambda_0 - \lambda_0)} t}$$

$$\frac{\lambda_0 - \lambda_0 \lambda_0}{A^{-\lambda_0 \lambda_0 t}}$$

$$P(T > t) = P(Min(Ta, Ta) > t)$$

$$= P(Ta > t, Ta > t)$$

$$= P(Ta > t, Ta > t)$$

$$= P(Ta > t) P(Ta > t)$$

$$= e^{-Aat} \cdot e^{-Aat}$$

T = Mi~ (TA, T3)