MA3403-4. Probabilidades y Estadística

Profesor: Raúl Gouet

Auxiliares: Vicente Salinas Fecha: 27 de agosto de 2021

Auxiliar 1: Axiomas y Conjuntos II

- **P1.** Para esta pregunta y todo el auxiliar, considere (Ω, P) . Usando los axiomas deduzca las siguientes propiedades:
 - a) Compruebe que $\mathbb{P}((A \cap B^c) \cup (B \cap A^c)) = \mathbb{P}(A) + \mathbb{P}(B) 2\mathbb{P}(A \cap B)$
 - b) Sea $A \subseteq \Omega$ un evento tal que $\mathbb{P}(A) = 1$. Pruebe que para cualquier otro evento $B \subseteq \Omega$, se tiene que $\mathbb{P}(A \cap B) = \mathbb{P}(B)$.
- P2. Considere el siguiente experimento: Reordenar, de manera aleatoria, los dígitos 1, 2 y 3.
 - a) Describa el espacio muestral asociado al experimento.
 - b) Para $i, j \in \{1, 2, 3\}$ distintos calcule la probabilidad del evento $A_i = \{\text{El i-\'esimo d\'igito es i}\} \subseteq \Omega$, luego calcule $\mathbb{P}(A_i \cap A_j)$ y finalmente la probabilidad de que al menos un d´igito caiga en su posición correcta.
- **P3.** La probabilidad de que una persona haya visto durante su infancia: Hannah Montana es 0,65 y de haber visto Dragon Ball Z 0,75. También se sabe que la probabilidad de que una persona haya visto ambas es 0,5,
 - a) Determine la probabilidad de que haya visto alguno de los dos programas.
 - b) Determine la probabilidad de solo haya visto Dragon Ball Z.
- **P4.** Un grupo de personas, de tamaño $k \in N$, denotaremos a cada integrante como $\{1, ..., k\}$ va al cine. Si las personas k se sientan juntas en la misma fila, calcule el número de configuraciones posibles en las cuales se pueden sentar si:
 - a) Se pueden sentar como quieran.
 - b) Dos personas en particular se tienen que sentar juntas.
 - c) Dos personas no pueden sentarse juntas.
 - d) [**Propuesto**] Hay un grupo de tamaño $i \leq k$ que se tiene que sentar juntos.

Resumen

Definición 1. Una **probabilidad** \mathbb{P} es una función \mathbb{P} : **Proposición 2** (Principio Aditivo de Conteo). Sean E_1, E_2 $\mathcal{P}(\Omega) \to \mathbb{R}$ que cumple lo siguiente: dos experimentos disjuntos con $|E_1| = n$ y $|E_2| = m$. Entonces

- 1. $0 \le \mathbb{P}(A) \le 1$.
- 2. $\mathbb{P}(\Omega) = 1$.
- 3. Si $(A_n)_n$ son eventos tales que $\forall i \neq j, A_i \cap A_j = \emptyset$, entonces:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Proposición 1. 1. Sea A un evento cualquiera, entonces $\mathbb{P}(A^c) = 1 - \mathbb{P}(A)$.

- 2. $\mathbb{P}(\varnothing) = 0$.
- 3. Sean A, B eventos cualesquiera, entonces $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.
- 4. Si $A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B)$.

Definición 2. Supongamos que $|\Omega| < +\infty$. Diremos que Ω es **equiprobable** cuando

$$(\forall w \in \Omega) \mathbb{P}(\{w\}) = \frac{1}{|\Omega|}.$$

Además se cumple que: $(\forall A \subseteq \Omega)\mathbb{P}(A) = \frac{|A|}{|\Omega|}$.

Proposición 2 (Principio Aditivo de Conteo). Sean E_1, E_2 dos experimentos disjuntos con $|E_1| = n$ y $|E_2| = m$. Entonces el numero de formas de realizar alguno de los dos experimentos viene dado por n + m.

Proposición 3 (Principio Multiplicativo de Conteo). Sean E_1, E_2 dos experimentos disjuntos con $|E_1| = n$ y $|E_2| = m$. Entonces el numero de formas de realizar el primer experimento y luego el segundo experimento viene dada por $n \cdot m$.

Proposición 4. Sean $a_1, ..., a_n$ n objetos diferentes. Entonces la cantidad de formas de elegir k objetos de los n anteriores viene dada por:

	Con Orden	Sin Orden
Con Reposición	n^k	$\binom{k+n-1}{n-1}$
Sin Reposición	$\frac{n!}{(n-k)!}$	$\binom{n}{k}$

Proposición 5. Suponga tenemos n objetos tales que hay n_1 objetos de tipo 1 indistinguibles entre si, n_2 objetos de tipo 2 indistinguibles entre si,..., n_k objetos de tipo k indistinguibles entre si. Entonces la cantidad de permutaciones de los n objetos viene dada por:

$$\frac{n!}{n_1! \cdot n_2! \cdot \ldots \cdot n_k!}$$

[Propuesto]

- Prop 1 La probabilidad que una persona viaje a Buenos Aires durante un año es de un 0,47, la probabilidad que viaje a Miami es de un 0,38 y la probabilidad que viaje a Madrid es de un 0,20. La probabilidad que viaje a Madrid y Buenos Aires es 0,07, que viaje a Madrid y Miami es 0,08, que viaje a Buenos Aires y Miami es 0,15 y la probabilidad que viaje a los 3 lugares es 0,05. Determine la probabilidad de que la persona:
 - a) Viaje a alguno de los lugares.
 - b) Viaje solo a Madrid.
 - c) Viaje solo a Madrid y Miami.
- **Prop 2** De un grupo de 5 mujeres y 7 hombres debe formarse un comité de 2 mujeres y 3 hombres. Determine cuántos posibles comités hay si:
 - a) No hay restricción.
 - b) Dos hombres están peleados y no pueden ser seleccionados ambos.
 - c) Hay un hombre y una mujer que son pareja y solo aceptaran ser parte del comité si se seleccionan a ambos.