

Auxiliar 5 EMV.

Profesor: Raúl Gouet Auxiliares: Bruno Hernández, Sebastián López

- 1. Considere una m.a.s. $X_1, ..., X_n$, donde $X_i \sim U(\theta, \theta + 1)$, con θ un paráametro desconocido en \mathbb{R} . Muestre que no existe un único EMV y que en realidad $\forall x = (x_1, ..., x_n), \exists \alpha, \beta$ tales que $argmax_{\theta \in \Theta}(L(\theta|x)) = [\alpha, \beta]$.
- 2. Calcule el EMV para una muestra $X_1,...,X_n$ iid, con $X_i \sim Poisson(\lambda)$.
- 3. Considere una MAS X del modelo gaussiano $\mathcal{N}(\mu, \sigma^2)$, donde μ, σ son parámetros tales que $\mu \geq \mu_0$, $\sigma > 0$ y μ_0 es un valor conocido.
 - a) Encuentre EMV $\hat{\mu}$.
 - b) Calcule $\mathbb{E}(\hat{\mu})$ y muestre que $\mathbb{E}(\hat{\mu}) \to \mu$ cuando $\mu_0 \to -\infty$.
 - c) Muestre que $\hat{\mu}$ converge cs a μ cuando $n \to \infty$.

Auxiliar 5