

PROGRAMA DE CURSO

Códi	Código Nombre							
IN65	IN6534 Introducción al Deep Learning							
Nom	Nombre en Inglés							
Intro	duction to I	Deep Learning						
SCT Unidades Docentes Horas de Cátedra			Horas Docencia Auxiliar	Horas de Trabajo Personal				
6	10	1.5	1.5	7.0				
		Requisitos	Carácter d	el Curso				
(IN35	501 - Tecnol	logías de Información y	Electivo de la carrera Ingeniería Civil					
Com	unicaciones	para la Gestión, y	Industrial.					
IN34	01 – Estadís	stica para la Economía y la	Electivo MDS.					
Gest	ión)		Electivo MGO, MBE, DSI (por aprobar en					
o CC	3001 - Algoi	ritmos y Estructuras de	esos prog	ramas)				
Dato	S.							

Propósito del Curso

Este curso tiene como propósito introducir a los y las estudiantes al área de Deep Learning, o de aprendizaje basado en redes neuronales profundas. Si bien se muestra rigurosamente la teoría que sustenta al Deep Learning, el curso tiene un sesgo intencionado hacia la aplicación práctica de sus técnicas para resolver problemas de gestión cada vez más complejos y desafiantes de las organizaciones. Para ello los y las estudiantes realizarán, para cada tópico teórico general, tareas en que deberán definir un problema de gestión, así como diseñar y programar una solución con herramientas de Deep Learning.

El proceso proporcionará a los y las estudiantes la capacidad de aplicar los modelos del Deep Learning en problemas relacionados con gestión de operaciones, finanzas y marketing en diferentes sectores de la industria, como salud, retail, seguridad y transporte. Por ejemplo, se mostrarán aplicaciones reales basadas en la experiencia aplicada de los profesores en predicción de eventos futuros en procesos de negocios, segmentación de imágenes médicas, predicción de no-show de pacientes de un hospital, sistemas de recomendación para e-commerce, predicción de síntomas de un paciente con COVID, predicción de crimen en la ciudad y predicción de fatiga laboral, carga mental y emociones en sistemas de transporte. Además, se mostrará el uso de las técnicas de Deep Learning en problemas clásicos, como evaluación de riesgo crediticio, predicción de fuga de clientes, pronóstico de demanda, etc. En particular, la y el estudiante entenderá el funcionamiento y los posibles usos de modelos de aprendizaje basado en redes neuronales profundas, pudiendo llevar a cabo su construcción, entrenamiento, optimización y validación para la solución de problemas reales.

El curso entregará las bases para el aprendizaje autodidacta de los últimos temas presentes en la investigación del Deep Learning, área de vertiginosa y rápida evolución.

Se espera que la y el estudiante adquiera una serie de nuevas herramientas y estímulos que le permitan solucionar problemas de manera más eficaz y/o eficiente y, al mismo tiempo, pensar creativamente en su aplicación a nuevos modelos de negocios.

El curso será evaluado desde una perspectiva práctica por el desarrollo de tareas de programación llevadas a cabo en Python con el uso de las librerías de redes neuronales de Keras y Tensorflow, y desde una perspectiva teórica, a través de un control. Las tareas se realizarán en grupo, permitiendo el aprendizaje colaborativo y contribuyendo a las habilidades de trabajo en equipo y creativo en tareas de programación.

Competencias a las que tributa el curso

Competencias Específicas

CE2: Concebir y diseñar soluciones que crean valor para resolver problemas de las organizaciones, utilizando los conocimientos provenientes de la gestión de operaciones, tecnologías de información y comunicaciones, finanzas, economía y marketing.

CE3: Modelar, simular y evaluar problemas de gestión, para encontrar soluciones óptimas, a necesidades de la ingeniería industrial.

CE4: Emplear y aplicar los conocimientos de las distintas disciplinas constitutivas de la ingeniería industrial: gestión de operaciones, tecnologías de información y comunicaciones, finanzas, economía y marketing, en las respectivas áreas funcionales de las organizaciones.

Competencias Genéricas

CG3: Actuar de manera responsable y honesta, dando cuenta en forma crítica de sus propias acciones y sus consecuencias, en el marco del respeto hacia la dignidad de las personas y el cuidado del medio social, cultural y natural.

CG4: Ejecutar con su equipo, de forma estratégica, diversas actividades formativas propuestas, considerando la autogestión de sí mismo y la relación con el otro, asumiendo diversos roles: de líder, colaborador u otros, según requerimientos y objetivos, sin discriminar por género u otra razón.

CG6: Concebir ideas viables y novedosas para resolver problemas o necesidades, materializadas en productos, servicios o en mejoras a procesos, considerando el contexto sociocultural, económico y los beneficios para el usuario.

Resultados de Aprendizaje	Competencia a la que tributa (CE- CG)
Entender y aplicar modelos de aprendizaje basado en redes neuronales profundas a problemas relacionados con la industria en áreas de marketing, gestión de operaciones, finanzas u otros.	CE2 - CE4 - CG6
Diseñar redes neuronales profundas para problemas específicos, considerando las distintas arquitecturas de redes posibles y los datos disponibles para entrenamiento.	

Implementar modelos de deep learning usando librerías de software basadas en lenguajes de programación de Python, Tensorflow y Keras.	
Consultar el estado del arte del área para implementar nuevas arquitecturas u optimizaciones.	

Metodología Docente	Evaluación General
La metodología consiste en cátedras teóricas	El curso se evaluará mediante:
y basadas en resultados de casos reales, y	Perspectiva práctica: cuatro tareas en
clases auxiliares de programación.	grupos de tres personas.
Los y las estudiantes deberán realizar tareas y presentar revisiones de artículos académicos en grupos. Se considera un control de medio semestre.	 Perspectiva teórica: Un control asíncrono individual (70%) Una presentación de revisión de papers en grupos de tres personas (30%)
	Nota final: 60% práctica, 40% teórica.
	Tanto la perspectiva práctica como teórica
	deben ser aprobadas por separado.

UNIDADES TEMÁTICAS

Número		No	mbre de la Unidad		Duración en Semanas
	1	Introducción	a N	Nachine y Deep Learning	2.5
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía	
I. Inteligencia artificial y su aplicación a los datos masivos de las organizaciones.		La 1.	y el estudiante demuestra que: Comprende la importancia de	[1] Cap. II.5	
II. -	Learning: Algoritm	básicos de Machine os de aprendizaje.		las herramientas de machine y deep learning y algunas aplicaciones a problemas presentados en diferentes	3.6, Cap IV. [3] Cap. 2.2.
-	underfitt	d, overfitting y ing. aje supervisado y no	2.	industrias. Comprende los conceptos	[4]

	ONIVERSIDAD DE CITE
supervisado.	básicos de machine learning y
- Métricas de evaluación.	de redes neuronales.
III. Aplicaciones de Machine y Deep Learning en la industria.	3. Comprende los conceptos detrás de las librerías a utilizar para la aplicación de modelos
IV. Librerías de programación para Machine y Deep Learning, conceptos básicos.	de redes neuronales profundas.
	4. Comprende cómo el deep
 V. Estructura y conceptos básicos de redes neuronales Perceptron. Funciones de activación. Arquitectura de red neuronal. Selección de características. Funciones de costo/error. 	learning permite sobrepasar los obstáculos presentes en machine learning.
VI. Ejercitación en computación numérica.	

Número	No	Duración en Semanas		
2	Fundam	ent	os en Deep Learning	3.5
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
Deep feedforward networks: Aprendizaje basado en gradientes.		La 1.	y el estudiante demuestra que: Comprende los fundamentos	[1] Cap. II.6-8, Cap. II 11
 Diseño de arquitecturas de redes. Algoritmo de 			teóricos de las redes neuronales feedforward.	[2] Cap I.3.1, Cap I.4
	pagation y otros os de diferenciación.	2.	Implementa redes neuronales utilizando paquetes especializados.	[3] Cap 3.1, 3.2, 3.3, 3.4, 3.5.
deep learr - Penalizad - Dropout	ción en modelos iing: ción de parámetros. aje adaptativo	3.	Conoce las métricas de eficiencia en el entrenamiento de las redes feedforward.	
		4.	Aplica métodos de	

- III. Optimización para entrenar modelos de deep learning:
 - Descenso de gradiente estocástico.
 - Inicialización de parámetros.
 - Método de aproximación de segundo orden.
- IV. Metodología práctica:
 - Métricas de eficiencia
 - Búsqueda y optimización de hiperparámetros.
 - Técnicas de debugging.
- V. Cómo definir un proyecto de aplicación de Deep Learning.
 - Ejemplos reales en salud, marketing y gestión de operaciones.
- VI. Modelamiento de redes en Keras

- mejoramiento en el entrenamiento de las redes neuronales feedforward.
- Comprende cómo definir un proyecto en que se aplican herramientas de Deep Learning.

Número Nom		mbr	e de la Unidad	Duración en Semanas	
	3	Redes Neuronale	s Co	nvolucionales y Aplicaciones	4
	Cor	ntenidos	Re	sultados de Aprendizajes de la Unidad	Referencias a la Bibliografía
I.	aplicacion	ronales onales (CNN) y sus es en problemas de a, especialmente de	La qu 1.		[1] Cap. II.9, II.12. [2] Cap. II.5 [3] Cap. 8.2, 8.3, 8.4, 8.6.
II. - -	una CNN: Padding, Backprop	la arquitectura de strides, pooling. pagation a través de	2.	convolucionales utilizados en el estado del arte. Comprende el uso de las CNN	
III.	convoluc Modelació	iones. In de una CNN en		en los diferentes ámbitos de la industria.	
	Keras aplic	cada a un problema	3.	Propone e implementa	

	particular.		soluciones a problemas específicos de un área de la	
11.7	Arquitecturas de CNN		industria utilizando las CNN.	
IV.	•		illuusti la utilizalluo las Civiv.	
	preentrenadas y sus			
	aplicaciones:	4.	Conoce el funcionamiento de	
-	AlexNet.		arquitecturas preentrenadas	
-	VGG.		de CNNs y su configuración	
-	U-Net.		en casos específicos.	
-	SegNet.			
-	ResNet.			
-	El concepto de transfer			
	learning.			
V.	Modelos de Deep Learning			
	para detección de objetos y			
	segmentación en imágenes.			
	segmentation en imagenes.			

Número	Nombre de la Unidad		Duración en
		Semanas	
4	Redes Neurona	les Recurrentes y Aplicaciones	4
Co	ntenidos	Resultados de Aprendizajes de la	Referencias a la
	Titeriidos	Unidad	Bibliografía
I. Arquitectu	ıra de Redes	La y el estudiante demuestra que:	[1] Cap. II.10,
Neuronale	es Recurrentes		II.12.
(RNNs):		1. Comprende y aplica las	
- Backprop	pagation temporal.	estructuras básicas de las	[2] Cap. II.6
- RNNs bio	lireccionales.	redes neuronales recurrentes.	
- RNNs mu	ılti capas.		[3] Cap. 7.1, 7.2,
		2. Comprende y aplica redes	7.5, 7.6, 7.7.2,
II. Redes Lon	g short term	neuronales recurrentes con	7.7.5, 7.7.6.
memory (LSTM)	variaciones en temporalidad y	
		memoria.	[5]
III. Redes Gat	ed Recurrent Units		
(GRUs)		3. Comprende y aplica	
		estructuras más complejas	
IV. Arquitectu	ıra Encoder-	basadas en las estructuras de	
Decoder.		redes neuronales recurrentes.	
•	es de RNNs:	4. Propone e implementa	
- Pronósti	co de series de	soluciones a problemas	
tiempo.		específicos de un área de la	
- Sistemas	de recomendación	industria utilizando redes	

temporales.	neuronales recurrentes y sus
·	•
 Clasificación en texto y 	diferentes arquitecturas.
aprendizaje sequence-to-	
sequence.	
VI. Modelamiento de RNNs en	
Keras.	

Número		No	Nombre de la Unidad		Duración en
					Semanas
	5	Exposició	n d	e Tópicos Avanzados	1
Contenidos		Resultados de Aprendizajes de la		Referencias a la	
	CO	iiteiiiuos		Unidad	Bibliografía
Aplicaciones de arquitecturas combinadas:		La	y el estudiante demuestra que:	[1] Cap. 14	
-	Modelos	multi entradas	1.	Es capaz de enfrentarse a la	[2] Cap. 7.1, 8.4,
-	Modelos	multi salidas		literatura científica del área, permitiendo el	8.5.
II.		ón a Autoencoders y I Autoencoders.		autoaprendizaje en el estado del arte.	[5] Sección 4
III.	Introducció generativo	ón a Deep Learning o.	2.	Comprende las arquitecturas, funcionalidades y posibles aplicaciones de modelos más	
IV.	estimaciór	ón a modelos de n estocástica: density network con		avanzados en el ámbito.	

Bibliografía General

Obligatoria:

- 1. Y. Goodfellow, Y. Bengio & A. Courville. "Deep Learning", MIT Press, 2016. En línea: http://www.deeplearningbook.org
- 2. Francois Chollet. "Deep learning with Python", Manning Publications, 2018.
- **3.** Charu C. Aggarwal. "Neural Networks and Deep Learning: A Textbook", Springer, 2018.

Complementaria:

- **4.** LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature 521.7553: 436, 2015.
- **5.** Graves, A. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.
- **6.** Kaggle. Google online community of data scientist and machine learners. En línea: www.kaggle.com
- 7. Portal sobre deep learning. En línea: www.deeplearning.net
- **8.** Listado de los papers en deep learning más citados. En línea: http://github.com/terryum/awesome-deep-learning-papers
- **9.** Tutoriales sobre deep learning. En línea: http://github.com/ujjwalkarn/Machine-Learning-Tutorials
- **10.** Curso online de G. Hinton en redes neuronales. En línea: www.coursera.org/learn/neural-networks
- **11.** Curso online de Andrew Ng en deep learning. En línea: www.coursera.org/specializations/deep-learning
- 12. Repositorio Keras. En línea: http://keras.github.com
- 13. TensorFlow playground. En línea: http://playground.tensorflow.org
- **14.** NIPS. Conferencia en deep learning.
- 15. ICML International Conference on Machine Learning.

Vigencia desde:	Primavera 2019
Elaborado por:	Ángel Jiménez, Francisco Díaz, Juan Velásquez, Rocío Ruíz
Actualizado por:	Ángel Jiménez, Francisco Díaz
Aprobado por:	Comisión de Docencia.