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MODELS OF ASSET
DYNAMICS

jrue multiperiod investments fluctuate in value, distribute random dividends, ex-
ist in an environment of variable interest rates, and are subject to a continuing

A variety of other uncertainties. This chapter initiates the study of such invest-
ments by showing how to model asset price fluctuations conveniently and realistically
This chapter therefore contains no investment principles as such. Rather it introduces
the mathematical models that form the foundation for the analyses developed in later
chapters.

Two primary model types are used to represent asset dynamics: binomial lattices
and Ito processes Binomial lattices are analytically simpler than Ito processes, and
they provide an excellent basis for computational work associated with investment
problems. For these reasons it is best to study binomial lattice models first. The
important investment concepts can all be expressed in terms of these models, and
many real investment problems can be formulated and solved using the binomial
lattice framework. Indeed, roughly 80% of the material in later chapters is presented
in terms of binomial lattice models

Ito processes are more realistic than binomial lattice models in the sense that
they have a continuum of possible stock prices at each period, not just two. Ito process
models also allow some problems to be solved analytically, as well as computationally.
They also provide the foundation for constructing binomial lattice models in a clear and
consistent manner. For these reasons Ito process models are fundamental to dynamic
problems. For a complete understanding of investment principles, it is important to
understand these models.

The organization of this chapter is based on the preceding viewpoint concerning
the roles of different models. The first section presents the binomial lattice model di-
rectly. With this backgiound most of the material in later chapters can be studied.
Therefore you may wish to read only this first section and then skip to the next
chapter
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The remaining sections consider models that have a continuum of price values.
These models are developed progressively from discrete-time models to continuous-
time models based on [to processes.

11.1 BINOMIAL LATTICE MODEL

To define a binomial lattice model, a basic period length is established (such as
I week). According to the model, if the price is known at the beginning of a pe-
riod, the price at the beginning of the next period is one of only two possible values.
Usually these two possibilities are defined to be multiples of the price at the previ-
ous period—a multiple « (for up) and a multiple ¢ (for down) Both « and d are
positive, with © > [ and (usually) d < |. Hence if the price at the beginning of a
period is S, it will be either «S or ¢S at the next period. The probabilities of these
possibilities are p and 1 — p, respectively, for some given probability p, 0 < p < |.
That is, if the current price is S, there is a probability p that the new price will be
#S and a probability 1 — p that it will be 4§ This model continues on for several
periods.

The general form of such a lattice is shown in Figure 11.1. The stock price can be
visualized as moving from node to node in a rightward direction The probability of an
upward movement from any node is p and the probability of a downward movement
is | — p. A lattice is the appropriate structure in this case, rather than a tree, because
an up movement followed by a down is identical to a down followed by an up Both
produce ud times the price.

The model may at first seem too simple because it permits only two possible
values at the next period But if the period length is small, many values are possible
after several short steps.

S FIGURE 11.1 Binomial lattice stock madel. At each
step the stock price S either increases to uS or de-
creases o dS

Seicl

o Suicl”

Such?

* Sch



298

Chapter 11

MODELS OF ASSET DYNAMICS

To specify the model completely, we must select values for « and d and the
probability p. These should be chosen in such a way that the true stochastic nature of
the stock is captured as faithfully as possible, as will be discussed.

Because the model is multiplicative in nature (the new value being uS or dS,
with u > 0, d > 0), the price will never become negative It is therefore possible to
consider the logarithm of price as a fundamental variable. For reasons discussed in
later sections, use of the logarithm is in fact very helpful and leads to simple formulas
for selecting the parameters.

Accordingly, we define v as the expected yearly growth rate.! Specifically,

Vo= E[ In(S; /Sg)]

where Sy is the initial stock price and S7 is the price at the end of 1 year.
Likewise, we define o as the yearly standard deviation. Specifically,

o® = var| In(S7/S0)]

If a period length of At is chosen, which is small compared to I, the parameters
of the binomial lattice can be selected as

P-4+ 3 )V

o
w = oV (1.1
d = e VD

With this choice, the binomial model will closely match the values of v and o
(as shown later); that is, the expected growth rate of In S in the binomial model will
be nearly v, and the variance of that rate will be nearly o>, The closeness of the match
improves if At is made smaller, becoming exact as At goes to zero.

Example 11.1 (A volatile stock) Consider a stock with the parameters v = 15% and
o = 30%. We wish to make a binomial model based on weekly periods. According
to (11.1), we set

w=e3V52 = 104248,  d=1/u= 95925

1 45 {4
p= 5 (l + % ﬁ) = .534669.

The lattice for this example is shown in Figure 11 .2, assuming S(0) = 100.

and

We shall return to the binomial lattice later in this chapter after studying models
that allow a continuum of prices. The binomial model will be found to be a natural
approximation to these models

Hif the process were deterministic, then v = In(S7/Sp) implies S; = Spe'? . which shows that v is the
exponential growth rate
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11811  FIGURE 11.2 Lattice for Example 11.1. The pa-
rameters are chosen so that the expected growth
rate of the logarithm of price and the variance of
that growth rate match the known corresponding
values for the asset.
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11.2 THE ADDITIVE MODEL

We now study models with the property that price can range over a continuum. First
we shall consider discrete-time models, beginning with the additive model of this
section, and then later we shall consider continuous-time models defined by Ito pro-
cesses

Let us focus on N + 1 time points, indexed by k, k = 0, 1,2, .., N. We also
focus on a particular asset that is characterized by a price at each time. The price at
time & is denoted by S(k). Our model will recognize that the price in any one time is
dependent to some extent on previous prices,

The simplest model is the additive model,

Stk + 1) = aS(k) + uk) (11.2)
for k = 0,1,2,.. ., N In this equation a is a constant (usually @ > 1) and the
quantities u(k), k =0,1,.. , N — 1, are random variables. The u(k)’s can be thought

of as “shocks™ or “disturbances™ that cause the price to fluctuate To operate or run
this model, an initial price $(0) is specified; then once the random variable u(0) is
given, S(1) can be determined. The process then repeats progressively in a stepwise
fashion, determining S(2), S(3), .., S(N).

The key ingredient of this model is the sequence of random variables ulk), k=
1,2,.., N. We assume that these are mutually statistically independent

Note that the price at any time depends only on the price at the most recent
previous time and the random disturbance It does not explicitly depend on other
previous prices.
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Normal Price Distribution

It is instructive to solve explicitly for a few of the prices from (11.2). By direct
substitution we have

S(1) = aS(0) 4 u(0)
S(2) = aS(1) + u(i)
= a*S(0) + au(0) + u(1) .

By simple induction it can be seen that for general £,

S(k) = a*S(0) + a* ' u(0) + a*Pu(h) +  +uk —1). (11.3)
Hence S(k) is a*S(0) plus the sum of k random variables.
Frequently we assume that the random variables u(k), k = 0, 1. 2,...,N -1,

are independent normal random variables with a common variance o*. Then, since a
linear combination of normal random variables is also normal (see Appendix A), it
follows from (11 3) that S(k) is itself a normal random variable.
If the expected values of all the u(k)'s are zero, then the expected value of
S(k) is
E[S(k)] = a* S(0)

When a > 1, this model has the property that the expected value of the price increases
geometrically (that is, according to a*). Indeed, the constant a is the growth rate factor
of the model.

The additive model is structurally simple and easy to work with. The expected
value of price grows geometrically, and all prices are normal random variables. How-
ever, the model is seriously flawed because it lacks realism. Normal random variables
can take on negative values, which means that the prices in this model might be neg-
ative as well; but real stock prices are never negative. Furthermore, if a stock were
to begin at a price of, say, $1 with a ¢ of, say, $ 50 and then drift upward to a price
of $100, it seems very unlikely that the ¢ would remain at $.50 It is more likely
that the standard deviation would be proportional to the price. For these reasons the
additive model is not a good general model of asset dynamics. The model is useful for

~ localized analyses, over short periods of time (perhaps up to a few months for com-

mon stocks), and it is a useful building block for other models, but it cannot be used
alone as an ongoing model representing long- or intermediate-term fluctuations. For
this reason we must consider a better alternative, which is the multiplicative model.
(However, our understanding of the additive model will be important for that more
advanced model.)

11.3 THE MULTIPLICATIVE MODEL

The multiplicative model has the form
Stk + 1) = u(k)Sk) (11 .4)
for k =0,1,..., N — 1. Here again the quantities u(k), k = 0,1,2, N -1, are
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mutually independent random variables The variable u(k) defines the relative change
in price between times k and & + 1. This relative change is S(k + 1)/S(k), which is
independent of the overall magnitude of S(k). It is also independent of the units of
price. For example, if we change units from U.S. dollars to German marks, the relative
price change is still n(k).

The multiplicative model takes a familiar form if we take the natural logarithm
of both sides of the equation This yields

InStk+ 1) = InSk) + Inuk) (115)

fork=0,1,2, ., N — 1 Hence in this form the model is of the additive type with
respect to the logarithm of the price, rather than the price itself Therefore we can use
our knowledge of the additive model to analyze the multiplicative model.

It is now natural to specify the random disturbances directly in terms of the
Inu(k)’s In particular we let

w(k) = Inu(k)

for k = 0,1,2, ..,N — 1, and we specify that these w(k)’s be normal random
variables. We assume that they are mutually independent and that each has expected
value W(k) = v and variance o2,

We can express the original multiplicative disturbances as

w(k) = " (11.6)

for k = 0,1,2, . ,N — 1 Each of the variables u(k) is said 1o be a lognormal
random variable since its logarithm is in fact a normal random variable

Notice that now there is no problem with negative values. Although the normal
variable w(k) may be negative, the corresponding u(k) given by (11.6) is always
positive. Since the random factor by which a price is multiplied is u(k), it follows that
prices remain positive in this model

Lognormal Prices

The successive prices of the multiplicative model can be easily found to be
Sy = ulk — Du(k -2} - 1(0)S(0)

Taking the natural logarithm of this equation we find

k=1 k1
InS(k) = In 5(0) + Zlnu(i) = In S(0) + Zw(i)..
i={) i=0
The term In $(0) is a constant, and the w(i)’s are each normal random variables
Since the sum of normal random variables is itself a normal random variable (see
Appendix A), it follows that In S(k) is normal. In other words, all prices are lognormal
under the multiplicative model
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If each w(i) has expected value W(i) = v and variance o, and all are mutually
independent, then we find

Elln S(k)] = In S(0) + vk (11.7a)
var[in S(k)] = ko” (11.7b)

Hence both the expected value and the variance increase linearly with k.

Real Stock Distributions

At this point it is natural to ask how well this theoretical model fits actual stock price
behavior. Are real stock prices lognormal?

The answer is that, based on an analysis of past stock price records, the price
distributions of most stocks are actually quite close to lognormal. To verify this, we
select a nominal period length of, say, 1 week and record the differences In S(k+1) —
In S{k) for many values of k; that is, we record the weekly changes in the logarithm of
the prices for many weeks. We then construct a histogram of these values and compare
it with that of a normal distribution of the same variance Typically, the measured
distribution is quite close to being normal, except that the observed distribution often
is slightly smaller near the mean and larger at extremely large values (either positive
or negative large values). This slight change in shape is picturesquely termed fat
tails. (See Figure 11 3 2y The observed distribution is larger in the tails than a normal
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FIGURE 113 Observed distribution of the logarithm of return. The distribution has “fatter tails”
than a normal distribution of the same variance.

2The figure shows a histogram of American Airlines weekly log stock returns for the 10-year period of
1982-1992 Shown superimposed is the norma) distribution with the same (sample) mean und standard
deviation Along with fat tails there is invariably a “skinny middle "
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distribution. This implies that large price changes tend to occur somewhat more fre-
quently than would be predicted by a normal distribution of the same variance. For
most applications (but not all) this slight discrepancy is not important

11.4 TYPICAL PARAMETER VALUES*

The return of a stock over the period between & and k+1 is S(k+1)/S(k), which under
the multiplicative model is equal to u (k). The value of w(k) = Inu(k) is therefore the
logarithm of the return. The mean value of w(k) is denoted by v and the variance of
w(k) by o Typical values of these parametess for assets such as common stocks can
be inferred from our knowledge of corresponding values for returns. Thus for stocks,
typical values of v = E[w(k)] and o = stdev [w(k)] might be

v=12%, o= 15%

when the length of a penod is 1 year. If the period length is less than a year, these
values scale downward;® that is, if the period length is p part of a year, then

vy = pu, a, =/ po.

The values can be estimated from historical records in the standard fashion (but
with caution as to the validity of these estimates, as raised in Chapter 8). If we have
N + 1 time points of data, spanning N periods, the estimate of the single-period v is

1A TSk +n] 1
v_Eg;n[w]_-ﬁé{msmw)_msm]

1 S(N)
= —In| ——1{.
N S
Hence all that matters is the ratio of the last to the first price.
The standard estimate of o is

Stk + 1 RE
o 2 (n[ 0] o)
-1 GE
As with the estimation of return parameters, the error in these estimates can be
characterized by their variances For v this variance is
var(d) = o /N
and for o it is [assuming w(k) is normal]

var(6*) = 207 /(N — 1).

}Using log returns, the scaling is exactly proportional. There is no error due to compounding as with returns
(without the log). (See Exercise 2 )
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Hence for the values assumed earlier, namely, v = .12 and ¢ = .15, we find
that 10 years of data is required to reduce the standard deviation of the estimate® of
p to 05 (which is still a sizable fraction of the true value). On the other hand, with
only 1 year of weekly data we can obtain a faitly good estimate® of o”.

11.5 LOGNORMAL RANDOM VARIABLES

If u is a lognormal random variable, then the variable w = Inu is normal In this
case we found that the prices in the multiplicative model are all lognormal ran-
dom variables It is therefore useful (o study a few important properties of such random
variables

The general shape of the probability distribution of a lognormal random vari-
able is shown in Figure 11.4. Note that the variable is always nonnegative and the
distribution is somewhat skewed.

Suppose that w is normal and has expected value W and variance o® What is
the expected value of u = "7 A quick guess mrcht be 7 = ¢, but this is wrong.
Actually 7 is greater than this by the factor 37" that is,

T sl (11.8)

This result can be intuitively understood by noting that as ¢ is increased, the lognormal
distribution will spread out It cannot spread downward below zero, but it can spread
upward unboundedly HenCe the mean value increases as o increases.

The extra term Lo is actually fairly small for low-volatility stocks. For example,
consider a stock wnh a yearly W = .12 and a yearly ¢ of .15 The correction term is

4 FIGURE 11.4 Lognormal distribution. The lognormal dis-
tribution is nonzero only for x > 0

(52)* x 20l (52 x 20* 20" o V2P a®
= ] = Hence g{a~) = R

N-1 ~ (522xsl 5l 515
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%az = 0225, which is small compared to W. For stocks with high volatility, however,
the correction can be significant.

11.6 RANDOM WALKS AND WIENER PROCESSES

In Section 11.7 we will shorten the period length in a multiplicative model and take
the limit as this length goes to zero. This will produce a model in continuous time.
In preparation for that step, we introduce special random functions of time, called
random walks and Wiener processes

Suppose that we have N periods of length At We define the additive process
z by

trsr) = () + eV AL (119)
ke = Ix + A1 (11.10)

for k = 0,1,2, N This process is termed a random walk. In these equations
€(1) 1s a normal random variable with mean 0 and variance |—a standardized nor-
mal random variable. These random variables are mutually uncorrelated; that is,
E[E({; )e(rk)] = 0 for j # k. The process is started by setting z(t5) = 0 Thereafter a
particular realized path wanders around according to the happenstance of the random
variables €(1x). [The reason for using +/Ar in (11.9) will become clear shortly ] A
particular path of a random walk is shown in Figure 11.5.

Of special interest are the difference random variables z(7;) ~ () for j < k.
We can write such a difference as

k1
W) = 2() = ) eV AL
i=j
This is a normal random variable because it is the sum of normal random variables.

We find immediately that

Elz(tx) — z(1))] = 0.

AZ FIGURE 11.5 Possible random walk. The move-
ments are cletermined by normal random vari-
ables.

~ Y
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Also, using the independence of the €(#)’s, we find

k=1 ?
varz(ty) — 2(£)] = E {Ze(x,-)m]

i=j

k—1
- E[Ze(!;}zm]
i=j
= (k= )AL = I — ;.

Hence thc variance of (r;.)«u,(r ) is exactly equai to the time dxfferencewjk___,. IJ between
random walk so that Ar would appear in the variance.

It should be clear that the difference variables associated with two different
time intervals are uncorrelated if the two intervals are nonoverlapping. That is, if
Ity < lky < Iy <ty then z(tg,) —2(f,) is uncorrelated with z(f,) — z(1, ) because each

of these dif’fercnces is madc up of' diff'erenl €’s, which are themsclves uncorrelaled
(11.9) as m = 0 ‘In symbolic form we wute the equations govemning a Wiener
process as

; dz = e(r)/dr (11.11)

where each €(r) is a standardized normal random variable. The random variables €(1')
and e(1") are uncorrelated whenever 1’ # 1”.

This description of a Wiener process is not rigorous because we have no assur-
ance that the limiting operations are defined; but it provides a good intuitive descrip-
tion. An alternative definition of a Wiener process can be made by simply listing the
required properties. In this approach we say a process z(f) is a Wiener process (or,
alternatively, Bmwman motion) if it satisfies the following:

1. For any s < ¢ the quantity z(r) — z(s) is a normal random variable with mean zero
and vanance .f — 3. ’

Y e

2, Forany 0 < 1) < 1, <13 < 14, the random variables z(t2) — z(t) and z(14) — z(13)
are uncorrelated

3. z(fy) = 0 with probability 1

These properties parallel the properties of the random walk process given earlier.

It is fun to try to visualize the outcome of a Wiener process. A sketch of a
possible path is shown in Figure 11.6. Remember that given z(r) at time ¢, the value
of z(s) at time s > 1 is, on average, the same as z(¢) but will vary from that according
to a standard deviation equal to /s — 1



116 RANDOM WALKS AND WIENER PROCESSES 307

A FIGURE 11.6 Path of a Wiener process, A
2 Wiener process moves continuously but is not

differentiable
WA "
t

A Wiener process is not differentiable with respect to time. We can roughly
verify this by noting that for 1 < s,

E[z(.s}~z(r)]“=(s-r I A

5§ —1 5§ —tR2 =t

as s = 1

It is, however, useful to have a word for the term dz/dr since this expression
appears in many stochastic equations. A common word used, arising from the systems
engineering field (the field that motivated Wiener’s work), is white noise. It is really
fun to try to visualize white noise One depiction is presented in Figure 11.7

Generalized Wiener Processes and [to Processes

The Wiener process (or Brownian motion) is the fundamental building block for a
whole collection of more general processes. These generalizations are obtained by
inserting white noise in an ordinary differential equation.

The simplest extension of this kind is the generalized Wiener process, which
is of the form

dy(r) = adr + bdz (11.12)
dz/dt FIGURE 11.7 Fantasizing white noise. White

noise is the derivative of a Wiener process, but
that derivative does not exist in the normal sense
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where x(1) is a random variable for each ¢, z is a Wiener process, and a and b are
constants.

A generalized Wiener process is especially important because it has an analytic
solution (which can be found by integrating both sides) Specifically,

x(1) = x(0) + ar + bz(t). (11.13)

An Ito process is somewhat more general still Such a process is described by
an equation of the form

dx (1) = a(x, 1)Yydr + b(x, 1) dz. (11.14)

As before, z denotes a Wiener process. Now, however, the coefficients a(x, 1) and
b(x, 1) may depend on x and 7, and a general solution cannot be written in an analytic
form. A special form of Ito process is used frequently to describe the behavior of
financial assets, as discussed in the next section.

11.7 A STOCK PRICE PROCESS

We now have the tools necessary to extend the multiplicative model of stock prices
to a continuous-time model . Recall that the multiplicative model is

InStk+ 1) = In Sk = wik)

where the w(k)’s are uncorrelated normal random variables The continuous-time ver-
sion of this equation is

dinS(1) =vdr+odz (11.15)

where v and o > 0 are constants and z is a standard Wiener process. The whole right-
hand side of the equation can be regarded as playing the role of the random variable
w(k) in the discrete-time model. This side can be thought of as a constant plus a normal
random variable with zero mean, and hence, overall it is a normal random variable
(Although all terms in the equation are differentials or multiples of differentials and
thus do not themselves have magnitude in the usual sense, it is helpful to think of
dt and dz as being “small” like Ar and Az.) The term v dr is, accordingly, the mean
value of the right-hand side. This mean value is proportional to df, consistent with
the fact that in the logarithin version of the multiplicative model the mean value of
the change in In S is proportional to the length of one period. The standard deviation
of the right-hand side is o times the standard deviation of dz. Hence it is of order of
magnitude o+/df, which is consistent with the fact that in the logarithm version of
the multiplicative model the standard deviation of the change in In S is proportional
to the square root of the length of one period, as reflected by (11.7a) and (11 7h).

Since equation (11.15) is expressed in terms of In S(1), it is actually a generalized
Wiener process. Hence we can solve it explicitly using (11.13) as

InS(1) = InSO) + vt +oz(1) (11.16)

This shows that E[In S(7)] = E[In S(0)] -+ vz, and hence E{ln S(r)] grows linearly with
¢t Because the expected logarithm of this process increases linearly with ¢, just as a
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continuously compounded bank account, this process is termed geometric Brownian
motion.

Lognormal Prices

Like the discrete-time multiplicative model, the geometric Brownian motion process
described by (11.15) is a lognormal process. This can be seen easily from the solution
(11.16). The right-hand side of that equation is a normal random variable with expected
value In $(0) + vr and standard deviation o /7 .

We conclude that the price S(r) itself has a lognormal distribution. We can
express this formally by In S(z) ~ N(In $(0) + vt , o°t), where N(m, ¢°) denotes the
normal distribution with mean m and variance o2

Although we can write S(r) = exp[ln $(1)] = S(0) exp[vt + oz(1)], it does not
follow that the expected value of S(r) is S(0)e". The mean value must instead be
determined by equation (11.8), the general formula that applies to lognormal variables
Hence,

E[S(f)] - S(O)e“'"’%"z)ll
[f we define u = v+ Jo?, we have
E[S(t)] = S(0)e'.

The standard deviation of S(r) is also given by a general relation for lognormal
variables. In the case of the standard deviation, the required calculation is a bit more
complex The formula is (see Exercise 5)

sgdev[S(I)} — S,(o)el'f'f'%a':f(e(r:f _ l)l/2‘

Standard Ito Form

We have defined the random process for S(r) in terms of In S(¢) rather than directly
in terms of S(r). The use of In S(¢) facilitated the development, and it highlights the
fact that the process is a straightforward generalization of the multiplicative model
that leads to lognormal distributions It is, however, useful to express the process in
terms of S(r) itself
In ordinary calculus we know that
o, dS(n)

dIn[S(r)] = 50
Hence we might be tempted to substitute dS(7)/5(¢) for dIn S(¢) in the basic equation
[Eq (11 15)], obtaining dS(¢)/S(¢) = vdr + o dz This would be almost correct, but
there is a correction term that must be applied when changing variables in Ito processes
(because Wiener processes are not ordinary functions and do not follow the rules of
ordinary calculus). The appropriate Ito process in terms of S(1) is

ds() ¥ )
—56"5——(}1'-}-"7“0')(1(‘]{‘0'(14.. (III?)
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Note that the correction term %cr?' is exactly the same as needed in the expression for
the expected value of a lognormal random variable. Putting st = v + 307, we may
write the equation in the standard Ito form for price dynamics, )
dS()
50 = pdt +odz. (11.18)
The term dS(1)/S(¢) can be thought of as the differential return of the stock; hence
in this form the differential return has a simple form.
The correction term required when transforming the equation from In S(r) to
S(t) is a special instance of a general transformation equation defined by Ite’s lemma,
which applies to variables defined by Ito processes Ito’s lemma is discussed in the
next section.
Note that if the equation in standard form is written with § in the denominator, as
in (11.17), it is an equation for d§/S. This term can be interpreted as the instantaneous
rate of return on the stock.'Hence the standard form is often referred to as an equation

“for the instantaneous return

Example 11.2 (Bond price dynamics) Let P(r) denote the price of a bond that pays
$1 at time t = T, with no other payments. Assume that interest rates are constant at
- The price of this bond satisfies

dP(1)
P(1)

which is a deterministic Ito equation, paralleling the equation for stock prices. The

solution to this equation is P(r) = P(0)e”" Using P(T) = I, we find that P(r) =
er{r—')")

=r

We now summarize the relations between S(#) and In S(r):

Relations for geometric Brownian motion Suppose the geometric Brownian motion
process S(t) is governed by

dS(1) = uS(1)dr +0S(t)dz

where z is a standard Wiener process Define v = p — Lo* Then S(1) is lognormal
and

E{In[S(1)/S(0)]} = vt
stdev{In[S(1)/SO)]} = o/t
E{S(1)/S(O)} = e
stdev{S(1)/S(0)) = e (e” —1)'?
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Simulation

A continuous-time price process can be simulated by taking a series of small time
periods and then stepping the process forward period by period There are two natural
ways to do this, and they are nor exactly equivalent

First, consider the process in standard form defined by (11.18). We take a basic
period length Ar and set S(#p) = So, a given initial price at f = 1. The corresponding
simulation equation is

S(tre1) = S(n) = uSW) Al + o St )e(t)V Al

where the €(#)’s are uncorrelated normal random variables of mean 0 and standard
deviation 1. This leads to

S(fie)) = [1 +,um+ae(:k}\/E] S(1e) (11.19)

which is a multiplicative model, but the random coefficient is normal rather than log-
normal, so this simulation method does not produce the lognormal price distributions
that are characteristic of the underlying Ito process (in either of its forms).

A second approach is to use the log (or multiplicative) form (11 15). In discrete
form this is

InS(tipr1) ~ InS(1e) = v At + oe () V At
This leads to
S(’k-&-l) — e!’ﬁ!-ﬁ-ﬂé(uimks'(fk} (1 120)

which is also a multiplicative model, but now the random coefficient is lognormal.
The two methods are different, but it can be shown that their differences tend to
cancel in the long run. Hence in practice, either method is about as good as the other.

Example 11.3 (Simulation by two methods) Consider a stock with an initial price
of $10 and having v = 15% and ¢ = 40% We take the basic time interval to be
I week (Ar = 1/52), and we simulate the stock behavior for 1 year. Both methods
described in this subsection were applied using the same random €’s, which were
generated from a normal distribution of mean 0 and standard deviation 1. Table 11.1
gives the results. The first column shows the random variables dz = e+/Ar for that
week. The second column lists the corresponding multiplicative factors The value P,
is the simulated price using the standard method as represented by (11 19) The fourth
column shows the appropriate exponential factors for the second method, (11 20) The
value P, is the simulated price using that method. Note that even at the first step the
results are not identical. However, overall the results are fairly close.
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TABLE 11.1
Simulation of Price Dynamics

Week dz @+ odz P v+ odz P,

0 10.0000 10.0000
1 06476 00802 10.0802 00648 10.0650
2 — 19945 - 00664 10.0132 ~00818 99830
3 — 83883 —04211 95916 —04365 95567
4 49609 03194 98980 03040 98517
5 —.33892 —.01438 97557 ~01592 96961
6 1 30485 08180 105536 08026 105064
7 61869 03874 109625 03720 109046
8 40201 02672 11.2554 02518 11,1827
9 — 71118 —03503 108612 03656 10.7812
10 16937 01382 110113 01228 109144
il 1 19678 07081 11.7910 06927 116973
12 — 14408 —00357 117489 - 00511 116377
13 80590 04913 123261 04759 122049
26 | ~123335 —06399 13.1428 —06553 129157
39 68140 04222 17 6850 04068 17 3668
52 69955 04323 15.1230 04169 14.7564

The price procesy is simulated by two methods Although they differ step
by step. the overall results are similar.

11.8 ITO’S LEMMA*

We saw that the two Ito equations—ifor S(7) and for In S(s)—are different, and that
the difference is not exactly what would be expected from the application of ordinary
calculus to the transformation of variables from S(¢) to In S(¢); an additional term l:c:r2
is required. This extra term arises because the random variables have order Jdr, and
hence their squares produce first-order, rather than second-order, effects. There is a
systematic method for making such transformations in general, and this is encapsulated
in Ito’s lemma:

Ito’s lemma  Suppose that the random process x is defined by the Ito process
da(t) = alx, 1)dt + b(x, 1) dz (11 21)

where z is a standard Wiener process. Suppose also that the process y(t) is defined by
y(1) = F(x,t). Then y(1) satisfies the Ito equation
aF 19°F ,) aF

oF
()= [ — i s (3 e By d 2 11.22
dy(r) (8.\' a -+ Y +23,\-3b dr + o hdz ( )

where z is the same Wiener process as in Eq (11.21)

Proof: Ordinary calculus would give a formula similar to (11 22), but with-
out the term with 1
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We shall sketch a rough proof of the full formula We expand y with
respect to a change Av. In the expansion we keep terms up to first order in
Ar, but since Ax is of order +/ At, this means that we must expand to second
order in Ax We find

_ aF JdF 1 3°F 4
Y+ Ay = F(x, 1)+ —Ax + — Al + - —=(Ax)~
ax ar 2 9x-

- OF o5, o assiimosiy s DF 1 8*F
= F(x,t)+ :J;—(a i +bAz)+ *(;}*;«ﬁ! e E 92
The quadratic expression in the last term must be treated in a special way
When expanded, it becomes a>(Ar)? + 2ab At Az + b*(Az)* The first two
terms of this expression are of order higher than | in Ar, so they can be
dropped. The term 5?(Az)? is all that remains. However, Az has expected
value zero and variance Ar, and hence this last term is of order At and cannot
be dropped. Indeed, it can be shown that, in the limit as At goes to zero, the
term (Az)* is nonstochastic and is equal to At Substitution of this into the
previous expansion leads to

(a At + b Az)*.

aF aF 19*F , aF
Ay = F(x,1 e — 4 = 1A —b Az,
y+ 8y (1 }+(3.xa+ a1 +28.x3b) I+r’).\‘

Taking the limit and using y = F(x, 1) yields Ito’s equation, (11.22). fl

Example 11.4 (Stock dynamics) Suppose that S(7) is governed by the geometric
Brownian motion

dS = uSdr +oSdz.

Let us use Ito’s lemma to find the equation governing the process F(S(f)) = In S(1)
We have the identifications a = uS and b = oS We also have F /05 = 1/S
and 3*°F /3S* = —1/S§> Therefore according to (11.22),
a 1b? b

dlnS = { Lol Vars 2 de
b (S 252)”“5

I,
a (,u——;rr)dr—}-crdz

which agrees with our earlier result.

11.9 BINOMIAL LATTICE REVISITED

Let us consider again the binomial lattice model shown in Figure 11.8 (which is
identical to Figure 11.1). The model is analogous to the multiplicative model discussed
earlier in this chapter, since at each step the price is multiplied by a random variable
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FIGURE 11.8 Binomial lattice stock model. At each
step the stock price § either increases to uS or de-
creases {o d$

In this case, the random variable takes only the two possible values ¥ and d We can
find suitable values for v, d, and p by matching the multiplicative model as closely
as possible This is done by matching both the expected value of the logarithm of a
price change and the variance of the logarithm of the price change.®

To cairy out the matching, it is only necessary to ensure that the random variable
S|, which is the price after the first step, has the correct properties since the process
is identical thereafter. Taking S(0) = 1, we find by direct calculation that

E(InSy)) = phnu+ (1~ p)ind
var (In §;) = p(Inu)* + (1 = pY(Ind)* = [plnu + (1 — p)Ind]?
= p(l = p)(Inu — Ind)*.
Therefore the appropriate parameter matching equations are
pU + (1 = p)D = v At (11.23)
p(1 = pYU — D) = o’ At (1124)

where U = Inu and D = Ind.

Notice that three parameters are to be chosen: U, D, and p; but there are only
two requitements. Therefore there is one degree of freedom. One way to use this
freedom is to set D = —U (which is equivalent to setting d = 1/u). In this case the

OFor the lattice. the probability of attaining the various end nodes of the lattice is given by the binomial
distribution Specifically, the probability of reaching the value Sufd"* is (I) prel — py*k, where

" ! ; G § \ G s e ; ;
(A) = {"w is the binomial coefficient This distribution approaches (in a certain sense) 2 normal
9 = Kj}K.

distribution for large n The logarithm of the final prices is of the form k Inu <+ (n—4) Ind. which is linear
in & Hence the distribution of the end point prices can be considered to be nearly lognormal
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equations (11.23) and (11 24) reduce to
2p—-NHU = v At
4p(l — pU* = oAt .
If we square the first equation and add it to the second, we obtain
U? =0 At + (v A1)*

Substituting this in the first equation, we may solve for p directly, and then U = Inu
can be determined. The resulting solutions to the parameter matching equations are

I !
p=:+ =
2 Jo/(viAr) + 1
lnu = /oAt + (v Ar)? (11.25)

Ind = —/aAt + (v A1)?

For small At (11.25) can be approximated as
p= 3—,+‘;(3)«/At
= =N
¢ VA (11.26)

I =

d = e V™

These are the values presented in Section 11 |

11.10 SUMMARY

A simple and versatile model of asset dynamics is the binomial lattice In this model
an asset’s price is assumed to be multiplied either by the factor 1 or by the factor d, the
choice being made each period according to probabilities p and 1~ p, respectively This
model is used extensively in theoretical developments and as a basis for computing
solutions to investment problems.

Another broad class of models are those where the asset price may take on values
from a continuum of possibilities. The simplest model of this type is the additive model
If the random inputs of this model are normal random variables, the asset prices are
also normal random variables. This model has the disadvantage, however, that prices
may be negative.

A better model is the multiplicative model of the form S(k-+1) = u(k)S(k). If the
multiplicative inputs 1 (k) are lognormal, then the future prices S(k) are also lognormal
The model can be expressed in the alternative form as In S(k+ ) —InS(k) = Inu(k).

By letting the period length tend to zero, the multiplicative mode! becomes the
Ito process d In S(t) = vdr + odz(r), where z is a normalized Wiener process. This
special form of an Ito process is called geometric Brownian motion. This model can
be expressed in the alternative (but equivalent) form dS(¢) = uS(r)dr + o S(t)dz(1),
where u = v + é—oz.
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Ito processes are useful representations of asset dynamics. An important tool for
transforming such processes is Ito’s lemma: If x(r) satisfies an Ito process, and y(r)
is defined by y(r) = F(x, 1), Ito’s lemma specifies the process satisfied by y(r).

A binomial lattice model can be considered to be an approximation to an Ito
process. The parameters of the lattice can be chosen so that the mean and standard
deviation of the logarithm of the return agree in the two models. )

1. (Stock lattice) A stock with current value S(0) = 100 has an expected growth rate of
its Jogarithm of v = 12% and a volatility of that growth rate of & = 20% Find suitable
parameters of a binomial lattice representing this stock with a basic elementary period of
3 months. Draw the lattice and enter the node values for 1 year. What are the probabilities
of attaining the various final nodes?

2. (Time scaling) A stock price § is governed by the model
In Stk + 1) = InS(k) + w(k)
where the period length is 1 month. Let v = E[w(k)] and o* = var[w(k)] for ali k. Now
suppose the basic period length is changed to 1 year. Then the model is
InS(K + 1) = In S(K) + W(K)

ki v

where each movement in K corresponds to 1 year What is t}{e natural definition of W (K')?
Show that E[W(K)] = 12v and var{W(K)] = 120 Hence parameters scale in proportion
to time.

3. (Arithmetic and geometric means) Suppose that v, vs, ., v, are positive numbers The
arithmetic mean and the geometric mean of these numbers are, respectively,

i i 1/n
I
Yy o= » v and Vg = H v;

i= el
(@) Itis always true that vy > vg Prove this inequality forn = 2.

by Tf ry,ra, .. ,r, are rates of return of a stock in each of n periods, the arithmetic and
P
geometric mean rates of return are likewise

i " i 1/n
Tg= - Zr,- and rg = H(I +r',v)) ~
s (:‘:i
Suppose $40 is invested During the first year it increases to $60 and during the second
year it decreases to $48 What are the arithmetic and geometric mean rates of return
over the 2 years?
(¢) When is it appropriate to use these means to describe investment performance?

4. (Complete the square ©) Suppose that 1 = ¢", where w is normal with expected value W
and variance 0@ Then

me-lfln—-ami“’ﬂﬂz dw

é

i {=¥]
=
J2ra? .[--oo
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Show that

(w-w)? ] T T
——'2—;'—:—““—3*&':,:[!}}“(!1}4*6’)] +w+-2—

Use the fact that

] OO
/ L,—‘.'.r-.r"}ﬂﬂ" dy = I
M2Iro? fos
to evaluate 1.

(Log variance ¢} Use the method of Exercise 4 to find the variance of a lognormal variable
in terms of the parameters of the underlying normal variable

(Expectations) A stock price is governed by geometric Brownian motion with ¢ = 20
and o = 40 The initial price is S(0) = | Evaluate the four quantities
Efln S(1)], stdev[In 5(1)]
E[S(D)], stdev[S(1)].

(Application of Ito's lemma) A stock price S is governed by
dS=aSdt +b5dz
where z is a standardized Wiener process Find the process that governs
G(r) = $'"*(1).

(Reverse check) Gavin Jones was mystified by Ito's lemma when he first studied it, so
he tested it He started with 5 governed by

dS = uSdt +oSdz
and found that Q = In § satisfies
dQ = (. ~ %a’z}df +odz.

He then applied Ito’s lemma to this last equation using the change of variable § = ¢¢
Duplicate his calculations What did he get?

(Two simulations ©) A useful expansion is
e =14x+ i+

Use this to express the exponential in equation (i1 20) in linear terms of powers of Ar
up to fisst order. Note that this differs from the expression in (11.19), so conclude that the
standard form and the multiplicative (or lognormal) form of simulation are different even
to first order Show, however, that the expected values of the two expressions are identical
to first ordet, and hence, over the long run the two methods shouid produce similar results

(A simulation experiment@} Consider a stock price S governed by the geometric Brow-
nian motion process
ds

50 10dr + .30d
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{a) Using Ar = 1/12 and S(0) = 1, simulate several (i.e, many) years of this process
using either method, and evaluate

; In{S(1)]

as a function of 1. Note that it tends to a limit p. What is the theoretical value of this
limit?

(b) About how large must r be to obtain two-place accuracy?

(¢) Evaluate

| 2

— | InS{1) — p1

ol pi]

as a function of ¢+ Does this tend 1o a limit? If so, what is its theoretical value?
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