


Estimating
Volatilities and

Correlations

In this chapter we explain how historical data can be used to produce estimates of the

current and future levels of volatilities and correlations. The chapter is relevant both to

the calculation of value at risk using the model-building approach and to the valuation

of derivatives. When calculating value at risk, we are most interested in the current

levels of volatilities and correlations because we are assessing possible changes in the

value of a portfolio over a very short period of time. When valuing derivatives, forecasts

of volatilities and correlations over the whole life of the derivative are usually required.

The chapter considers models with imposing names such as exponentially weighted

moving average (EWMA), autoregressive conditional heteroscedasticity (ARCH), and

generalized autoregressive conditional heteroscedasticity (GARCH). The distinctive

feature of the models is that they recognize that volatilities and correlations are not

constant. During some periods, a particular volatility or correlation may be relatively

low, whereas during other periods it may be relatively high. The models attempt to keep

track of the variations in the volatility or correlation through time.

23.1 ESTIMATING VOLATILITY

Define �n as the volatility of a market variable on day n, as estimated at the end of

day n � 1. The square of the volatility, �2n, on day n is the variance rate. We described

the standard approach to estimating �n from historical data in Section 15.4. Suppose

that the value of the market variable at the end of day i is Si. The variable ui is defined

as the continuously compounded return during day i (between the end of day i� 1 and

the end of day i):

ui ¼ ln
Si

Si�1

An unbiased estimate of the variance rate per day, �
2
n, using the most recent m

observations on the ui is

�
2
n ¼ 1

m � 1

X

m

i¼1
ðun�i � �uÞ2 ð23:1Þ
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where �u is the mean of the uis:

�u ¼ 1

m

X

m

i¼1
un�i

For the purposes of monitoring daily volatility, the formula in equation (23.1) is

usually changed in a number of ways:

1. ui is defined as the percentage change in the market variable between the end of

day i� 1 and the end of day i, so that:1

ui ¼
Si � Si�1

Si�1
ð23:2Þ

2. �u is assumed to be zero.2

3. m � 1 is replaced by m.3

These three changes make very little difference to the estimates that are calculated, but

they allow us to simplify the formula for the variance rate to

�
2
n ¼ 1

m

X

m

i¼1
u
2
n�i ð23:3Þ

where ui is given by equation (23.2).
4

Weighting Schemes

Equation (23.3) gives equal weight to u2n�1;u
2
n�2; . . . ; u

2
n�m. Our objective is to estimate

the current level of volatility, �n. It therefore makes sense to give more weight to recent

data. A model that does this is

�2n ¼
X

m

i¼1
�iu

2
n�i ð23:4Þ

The variable �i is the amount of weight given to the observation i days ago. The �’s are

positive. If we choose them so that �i < �j when i > j, less weight is given to older

observations. The weights must sum to unity, so that

X

m

i¼1
�i ¼ 1

1 This is consistent with the point made in Section 22.3 about the way that volatility is defined for the

purposes of VaR calculations.

2 As explained in Section 22.3, this assumption usually has very little effect on estimates of the variance

because the expected change in a variable in one day is very small when compared with the standard deviation

of changes.

3 Replacing m � 1 by m moves us from an unbiased estimate of the variance to a maximum likelihood

estimate. Maximum likelihood estimates are discussed later in the chapter.

4 Note that the u’s in this chapter play the same role as the �x’s in Chapter 22. Both are daily percentage

changes in market variables. In the case of the u’s, the subscripts count observations made on different days

on the same market variable. In the case of the �x’s, they count observations made on the same day on

different market variables. The use of subscripts for � is similarly different between the two chapters. In this

chapter, the subscripts refer to days; in Chapter 22 they referred to market variables.
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An extension of the idea in equation (23.4) is to assume that there is a long-run average

variance rate and that this should be given some weight. This leads to the model that

takes the form

�2n ¼ �VL þ
X

m

i¼1
�i u

2
n�i ð23:5Þ

where VL is the long-run variance rate and � is the weight assigned to VL. Since the

weights must sum to unity, we have

� þ
X

m

i¼1
�i ¼ 1

This is known as an ARCH(m) model. It was first suggested by Engle.5 The estimate of

the variance is based on a long-run average variance and m observations. The older an

observation, the less weight it is given. Defining ! ¼ �VL, the model in equation (23.5)

can be written

�2n ¼ !þ
X

m

i¼1
�iu

2
n�i ð23:6Þ

In the next two sections we discuss two important approaches to monitoring volatility

using the ideas in equations (23.4) and (23.5).

23.2 THE EXPONENTIALLY WEIGHTED MOVING AVERAGE MODEL

The exponentially weighted moving average (EWMA) model is a particular case of the

model in equation (23.4) where the weights �i decrease exponentially as we move back

through time. Specifically, �iþ1 ¼ 	�i, where 	 is a constant between 0 and 1.

It turns out that this weighting scheme leads to a particularly simple formula for

updating volatility estimates. The formula is

�
2
n ¼ 	�

2
n�1 þ ð1� 	Þu2n�1 ð23:7Þ

The estimate, �n, of the volatility of a variable for day n (made at the end of day n� 1) is

calculated from �n�1 (the estimate that was made at the end of day n� 2 of the volatility

for day n � 1) and un�1 (the most recent daily percentage change in the variable).
To understand why equation (23.7) corresponds to weights that decrease exponen-

tially, we substitute for �2n�1 to get

�2n ¼ 	½	�2n�2 þ ð1� 	Þu2n�2� þ ð1 � 	Þu2n�1
or

�2n ¼ ð1 � 	Þðu2n�1 þ 	u2n�2Þ þ 	2�2n�2

Substituting in a similar way for �2n�2 gives

�2n ¼ ð1 � 	Þðu2n�1 þ 	u2n�2 þ 	2u2n�3Þ þ 	3�2n�3

5 See R. Engle ‘‘Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of UK

Inflation,’’ Econometrica, 50 (1982): 987–1008.
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Continuing in this way gives

�
2
n ¼ ð1 � 	Þ

X

m

i¼1
	
i�1

u
2
n�i þ 	

m
�
2
n�m

For large m, the term 	
m
�
2
n�m is sufficiently small to be ignored, so that equation (23.7)

is the same as equation (23.4) with �i ¼ ð1 � 	Þ	i�1. The weights for the ui decline at

rate 	 as we move back through time. Each weight is 	 times the previous weight.

Example 23.1

Suppose that 	 is 0.90, the volatility estimated for a market variable for day n � 1

is 1% per day, and during day n� 1 the market variable increased by 2%. This

means that �2n�1 ¼ 0:012 ¼ 0:0001 and u2n�1 ¼ 0:022 ¼ 0:0004. Equation (23.7)

gives

�2n ¼ 0:9� 0:0001þ 0:1 � 0:0004 ¼ 0:00013

The estimate of the volatility, �n, for day n is therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00013
p

, or 1.14%, per

day. Note that the expected value of u2n�1 is �
2
n�1, or 0.0001. In this example, the

realized value of u2n�1 is greater than the expected value, and as a result our

volatility estimate increases. If the realized value of u2n�1 had been less than its
expected value, our estimate of the volatility would have decreased.

The EWMA approach has the attractive feature that relatively little data need be

stored. At any given time, only the current estimate of the variance rate and the most

recent observation on the value of the market variable need be remembered. When a

new observation on the market variable is obtained, a new daily percentage change is

calculated and equation (23.7) is used to update the estimate of the variance rate. The

old estimate of the variance rate and the old value of the market variable can then be

discarded.

The EWMA approach is designed to track changes in the volatility. Suppose there

is a big move in the market variable on day n � 1, so that u
2
n�1 is large. From

equation (23.7) this causes the estimate of the current volatility to move upward.

The value of 	 governs how responsive the estimate of the daily volatility is to the

most recent daily percentage change. A low value of 	 leads to a great deal of weight

being given to the u2n�1 when �n is calculated. In this case, the estimates produced for

the volatility on successive days are themselves highly volatile. A high value of 	 (i.e.,

a value close to 1.0) produces estimates of the daily volatility that respond relatively

slowly to new information provided by the daily percentage change.

The RiskMetrics database, which was originally created by JPMorgan and made

publicly available in 1994, used the EWMA model with 	 ¼ 0:94 for updating daily

volatility estimates. This is because the company found that, across a range of different

market variables, this value of 	 gives forecasts of the variance rate that come closest to

the realized variance rate.6 The realized variance rate on a particular day was calculated

as an equally weighted average of the u2i on the subsequent 25 days (see Problem 23.19).

6 See JPMorgan, RiskMetrics Monitor, Fourth Quarter, 1995. We will explain an alternative (maximum

likelihood) approach to estimating parameters later in the chapter.
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23.3 THE GARCH(1, 1) MODEL

We now move on to discuss what is known as the GARCH(1,1) model, proposed by

Bollerslev in 1986.7 The difference between the GARCH(1,1) model and the EWMA

model is analogous to the difference between equation (23.4) and equation (23.5). In

GARCH(1,1), �2n is calculated from a long-run average variance rate, VL, as well as

from �n�1 and un�1. The equation for GARCH(1,1) is

�
2
n ¼ �VL þ �u

2
n�1 þ 
�

2
n�1 ð23:8Þ

where � is the weight assigned to VL, � is the weight assigned to u
2
n�1, and 
 is the weight

assigned to �2n�1. Since the weights must sum to unity, it follows that

� þ �þ 
 ¼ 1

The EWMA model is a particular case of GARCH(1,1) where � ¼ 0, � ¼ 1� 	,

and 
 ¼ 	.

The ‘‘(1,1)’’ in GARCH(1,1) indicates that �2n is based on the most recent observa-

tion of u2 and the most recent estimate of the variance rate. The more general

GARCH(p, q) model calculates �2n from the most recent p observations on u2 and

the most recent q estimates of the variance rate.8 GARCH(1,1) is by far the most

popular of the GARCH models.

Setting ! ¼ �VL, the GARCH(1,1) model can also be written

�
2
n ¼ !þ �u

2
n�1 þ 
�

2
n�1 ð23:9Þ

This is the form of the model that is usually used for the purposes of estimating the

parameters. Once !, �, and 
 have been estimated, we can calculate � as 1 � �� 
. The

long-term variance VL can then be calculated as !=�. For a stable GARCH(1,1) process

we require �þ 
 < 1. Otherwise the weight applied to the long-term variance is

negative.

Example 23.2

Suppose that a GARCH(1,1) model is estimated from daily data as

�2n ¼ 0:000002þ 0:13u2n�1 þ 0:86�2n�1

This corresponds to � ¼ 0:13, 
 ¼ 0:86, and ! ¼ 0:000002. Because

� ¼ 1 � �� 
, it follows that � ¼ 0:01. Because ! ¼ �VL, it follows that

VL ¼ 0:0002. In other words, the long-run average variance per day implied by

the model is 0.0002. This corresponds to a volatility of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0002
p

¼ 0:014, or 1.4%,

per day.

7 See T. Bollerslev, ‘‘Generalized Autoregressive Conditional Heteroscedasticity,’’ Journal of Econometrics,

31 (1986): 307–27.

8 Other GARCH models have been proposed that incorporate asymmetric news. These models are designed

so that �n depends on the sign of un�1. Arguably, the models are more appropriate for equities than

GARCH(1,1). As mentioned in Chapter 20, the volatility of an equity’s price tends to be inversely related to

the price so that a negative un�1 should have a bigger effect on �n than the same positive un�1. For a
discussion of models for handling asymmetric news, see D. Nelson, ‘‘Conditional Heteroscedasticity and

Asset Returns: A New Approach,’’ Econometrica, 59 (1990): 347–70; R. F. Engle and V. Ng, ‘‘Measuring and

Testing the Impact of News on Volatility,’’ Journal of Finance, 48 (1993): 1749–78.
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Suppose that the estimate of the volatility on day n� 1 is 1.6% per day, so that

�2n�1 ¼ 0:0162 ¼ 0:000256, and that on day n � 1 the market variable decreased

by 1%, so that u2n�1 ¼ 0:012 ¼ 0:0001. Then

�
2
n ¼ 0:000002þ 0:13 � 0:0001 þ 0:86� 0:000256 ¼ 0:00023516

The new estimate of the volatility is therefore
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00023516
p

¼ 0:0153, or 1.53%,

per day.

The Weights

Substituting for �2n�1 in equation (23.9) gives

�
2
n ¼ !þ �u

2
n�1 þ 
ð!þ �u

2
n�2 þ 
�

2
n�2Þ

or

�
2
n ¼ !þ 
!þ �u

2
n�1 þ �
u

2
n�2 þ 


2
�
2
n�2

Substituting for �2n�2 gives

�
2
n ¼ !þ 
!þ 


2
!þ �u

2
n�1 þ �
u

2
n�2 þ �


2
u
2
n�3 þ 


3
�
2
n�3

Continuing in this way, we see that the weight applied to u
2
n�i is �


i�1. The weights
decline exponentially at rate 
. The parameter 
 can be interpreted as a ‘‘decay rate’’. It

is similar to 	 in the EWMA model. It defines the relative importance of the observa-

tions on the u’s in determining the current variance rate. For example, if 
 ¼ 0:9, then

u2n�2 is only 90% as important as u2n�1; u
2
n�3 is 81% as important as u2n�1; and so on.

The GARCH(1,1) model is similar to the EWMA model except that, in addition to

assigning weights that decline exponentially to past u2, it also assigns some weight to

the long-run average volatility.

Mean Reversion

The GARCH (1,1) model recognizes that over time the variance tends to get pulled

back to a long-run average level of VL. The amount of weight assigned to VL is � ¼
1� � � 
. The GARCH(1,1) is equivalent to a model where the variance V follows the

stochastic process
dV ¼ aðVL � V Þ dtþ �V dz

where time is measured in days, a ¼ 1 � �� 
, and � ¼ �
ffiffiffi

2
p

(see Problem 23.14). This

is a mean-reverting model. The variance has a drift that pulls it back to VL at rate a.

When V > VL, the variance has a negative drift; when V < VL, it has a positive drift.

Superimposed on the drift is a volatility �. Chapter 27 discusses this type of model

further.

23.4 CHOOSING BETWEEN THE MODELS

In practice, variance rates do tend to be mean reverting. The GARCH(1,1) model

incorporates mean reversion, whereas the EWMA model does not. GARCH (1,1) is

therefore theoretically more appealing than the EWMA model.
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In the next section, wewill discuss how best-fit parameters !, �, and 
 in GARCH(1,1)

can be estimated. When the parameter ! is zero, the GARCH(1,1) reduces to EWMA. In

circumstances where the best-fit value of ! turns out to be negative, the GARCH(1,1)

model is not stable and it makes sense to switch to the EWMA model.

23.5 MAXIMUM LIKELIHOOD METHODS

It is now appropriate to discuss how the parameters in the models we have been

considering are estimated from historical data. The approach used is known as the

maximum likelihood method. It involves choosing values for the parameters that

maximize the chance (or likelihood) of the data occurring.

To illustrate the method, we start with a very simple example. Suppose that we

sample 10 stocks at random on a certain day and find that the price of one of them

declined on that day and the prices of the other nine either remained the same or

increased. What is the best estimate of the probability of a stock’s price declining on the

day? The natural answer is 0.1. Let us see if this is what the maximum likelihood

method gives.

Suppose that the probability of a price decline is p. The probability that one

particular stock declines in price and the other nine do not is pð1 � pÞ9. Using the
maximum likelihood approach, the best estimate of p is the one that maximizes

pð1 � pÞ9. Differentiating this expression with respect to p and setting the result equal

to zero, we find that p ¼ 0:1 maximizes the expression. This shows that the maximum

likelihood estimate of p is 0.1, as expected.

Estimating a Constant Variance

Our next example of maximum likelihood methods considers the problem of estimating

the variance of a variable X from m observations on X when the underlying distribution

is normal with zero mean. Assume that the observations are u1, u2, . . . , um. Denote the

variance by v. The likelihood of ui being observed is defined as the probability density

function for X when X ¼ ui. This is

1
ffiffiffiffiffiffiffiffi

2v
p exp

�

�u
2
i

2v

�

The likelihood of m observations occurring in the order in which they are observed is

Y

m

i¼1

�

1
ffiffiffiffiffiffiffiffi

2v
p exp

�

�u2i

2v

��

ð23:10Þ

Using the maximum likelihood method, the best estimate of v is the value that

maximizes this expression.

Maximizing an expression is equivalent to maximizing the logarithm of the expres-

sion. Taking logarithms of the expression in equation (23.10) and ignoring constant

multiplicative factors, it can be seen that we wish to maximize

X

m

i¼1

�

� lnðvÞ � u2i

v

�

ð23:11Þ
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or

�m lnðvÞ �
X

m

i¼1

u
2
i

v

Differentiating this expression with respect to v and setting the resulting equation to

zero, we see that the maximum likelihood estimator of v is9

1

m

X

m

i¼1
u
2
i

Estimating EWMA or GARCH (1,1) Parameters

We now consider how the maximum likelihood method can be used to estimate the

parameters when EWMA, GARCH (1,1), or some other volatility updating scheme is

used. Define vi ¼ �2i as the variance estimated for day i. Assume that the probability

distribution of ui conditional on the variance is normal. A similar analysis to the one

just given shows the best parameters are the ones that maximize

Y

m

i¼1

�

1
ffiffiffiffiffiffiffiffiffi

2vi
p exp

�

�u
2
i

2vi

��

Taking logarithms, we see that this is equivalent to maximizing

X

m

i¼1

�

� lnðviÞ �
u
2
i

vi

�

ð23:12Þ

This is the same as the expression in equation (23.11), except that v is replaced by vi. It is

necessary to search iteratively to find the parameters in the model that maximize the

expression in equation (23.12).

The spreadsheet in Table 23.1 indicates how the calculations could be organized for

the GARCH(1,1) model. The table analyzes data on the S&P 500 between July 18, 2005,

and August 13, 2010.10 The first column in the table records the date. The second column

counts the days. The third column shows the S&P 500, Si, at the end of day i. The fourth

column shows the proportional change in the S&P 500 between the end of day i� 1 and

the end of day i. This is ui ¼ ðSi � Si�1Þ=Si�1. The fifth column shows the estimate of the
variance rate, vi ¼ �2i , for day imade at the end of day i� 1. On day 3, we start things off

by setting the variance equal to u22. On subsequent days, equation (23.9) is used. The

sixth column tabulates the likelihood measure, � lnðviÞ � u2i =vi. The values in the fifth

and sixth columns are based on the current trial estimates of !, �, and 
. We are

interested in choosing !, �, and 
 to maximize the sum of the numbers in the sixth

column. This involves an iterative search procedure.11

9 This confirms the point made in footnote 3.

10 The data and calculations can be found at www.rotman.utoronto.ca/
hull/OFOD/GarchExample.

11 As discussed later, a general purpose algorithm such as Solver in Microsoft’s Excel can be used.

Alternatively, a special purpose algorithm, such as Levenberg–Marquardt, can be used. See, e.g., W.H. Press,

B. P. Flannery, S.A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C: The Art of Scientific

Computing, Cambridge University Press, 1988.
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In our example, the optimal values of the parameters turn out to be

! ¼ 0:0000013465; � ¼ 0:083394; 
 ¼ 0:910116

and the maximum value of the function in equation (23.12) is 10,228.2349. The

numbers shown in Table 23.1 were calculated on the final iteration of the search for

the optimal !, �, and 
.

The long-term variance rate, VL, in our example is

!

1 � � � 

¼ 0:0000013465

0:006490
¼ 0:0002075

The long-term volatility is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0002075
p

, or 1.4404%, per day.

Figures 23.1 and 23.2 show the S&P 500 index and its GARCH(1,1) volatility during

the 5-year period covered by the data. Most of the time, the volatility was less than 2%

per day, but volatilities as high as 5% per day were experienced during the credit crisis.

(Very high volatilities are also indicated by the VIX index—see Section 15.11.)

An alternative approach to estimating parameters inGARCH(1,1), which is sometimes

more robust, is known as variance targeting.12 This involves setting the long-run average

variance rate, VL, equal to the sample variance calculated from the data (or to some other

value that is believed to be reasonable). The value of! then equalsVLð1� � � 
Þ and only
two parameters have to be estimated. For the data in Table 23.1, the sample variance is

0.0002412, which gives a daily volatility of 1.5531%. Setting VL equal to the sample

variance, the values of � and 
 that maximize the objective function in equation (23.12)

are 0.08445 and 0.9101, respectively. The value of the objective function is 10,228.1941,

only marginally below the value of 10,228.2349 obtained using the earlier procedure.

Table 23.1 Estimation of Parameters in GARCH(1,1) Model for S&P 500 between

July 18, 2005, and August 13, 2010.

Date Day i Si ui vi ¼ �2i � lnðviÞ � u2i =vi

18-Jul-2005 1 1221.13

19-Jul-2005 2 1229.35 0.006731

20-Jul-2005 3 1235.20 0.004759 0.00004531 9.5022

21-Jul-2005 4 1227.04 �0.006606 0.00004447 9.0393

22-Jul-2005 5 1233.68 0.005411 0.00004546 9.3545

25-Jul-2005 6 1229.03 �0.003769 0.00004517 9.6906
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

11-Aug-2010 1277 1089.47 �0.028179 0.00011834 2.3322

12-Aug-2010 1278 1083.61 �0.005379 0.00017527 8.4841

13-Aug-2010 1279 1079.25 �0.004024 0.00016327 8.6209

10,228.2349

Trial estimates of GARCH parameters

! ¼ 0:0000013465 � ¼ 0:083394 
 ¼ 0:910116

12 See R. Engle and J. Mezrich, ‘‘GARCH for Groups,’’ Risk, August 1996: 36–40.
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When the EWMA model is used, the estimation procedure is relatively simple. We set

! ¼ 0, � ¼ 1� 	, and 
 ¼ 	, and only one parameter has to be estimated. In the data in

Table 23.1, the value of 	 that maximizes the objective function in equation (23.12) is

0.9374 and the value of the objective function is 10,192.5104.

For both GARCH (1,1) and EWMA, we can use the Solver routine in Excel to search

for the values of the parameters that maximize the likelihood function. The routine

works well provided that the spreadsheet is structured so that the parameters being

searched for have roughly equal values. For example, in GARCH (1,1) we could let cells
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Figure 23.1 S&P 500 index: July 18, 2005, to August 13, 2010.
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Figure 23.2 Daily volatility of S&P 500 index: July 18, 2005, to August 13, 2010.
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A1, A2, and A3 contain !� 105, 10�, and 
. We could then set B1=A1/100,000,

B2=A2/10, and B3=A3. We would use B1, B2, and B3 to calculate the likelihood

function. We would ask Solver to calculate the values of A1, A2, and A3 that maximize

the likelihood function. Occasionally Solver gives a local maximum, so testing a number

of different starting values for parameters is a good idea.

How Good Is the Model?

The assumption underlying a GARCH model is that volatility changes with the passage

of time. During some periods volatility is relatively high; during other periods it is

relatively low. To put this another way, when u
2
i is high, there is a tendency for u

2
iþ1,

u
2
iþ2, . . . to be high; when u

2
i is low, there is a tendency for u

2
iþ1, u

2
iþ2, . . . to be low. We

can test how true this is by examining the autocorrelation structure of the u
2
i .

Let us assume the u2i do exhibit autocorrelation. If a GARCHmodel is working well, it

should remove the autocorrelation. We can test whether it has done so by considering the

autocorrelation structure for the variables u2i =�
2
i . If these show very little autocorrelation,

our model for �i has succeeded in explaining autocorrelations in the u
2
i .

Table 23.2 shows results for the S&P 500 data used above. The first column shows the

lags considered when the autocorrelation is calculated. The second shows autocorrela-

tions for u2i ; the third shows autocorrelations for u2i =�
2
i .
13 The table shows that the

autocorrelations are positive for u2i for all lags between 1 and 15. In the case of u
2
i =�

2
i ,

some of the autocorrelations are positive and some are negative. They are all much

smaller in magnitude than the autocorrelations for u2i .

Table 23.2 Autocorrelations before and after the use of

a GARCH model for S&P 500 data.

Time lag Autocorrelation

for u2i

Autocorrelation

for u2i =�
2
i

1 0.183 �0.063
2 0.385 �0.004
3 0.160 �0.007
4 0.301 0.022

5 0.339 0.014

6 0.308 �0.011
7 0.329 0.026

8 0.207 0.038

9 0.324 0.041

10 0.269 0.083

11 0.431 �0.007
12 0.286 0.006

13 0.224 0.001

14 0.121 0.017

15 0.222 �0.031

13 For a series xi, the autocorrelation with a lag of k is the coefficient of correlation between xi and xiþk.
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The GARCH model appears to have done a good job in explaining the data. For a

more scientific test, we can use what is known as the Ljung–Box statistic.14 If a certain

series has m observations the Ljung–Box statistic is

m
X

K

k¼1
wk �

2
k

where �k is the autocorrelation for a lag of k, K is the number of lags considered, and

wk ¼
m þ 2

m� k

For K ¼ 15, zero autocorrelation can be rejected with 95% confidence when the Ljung–

Box statistic is greater than 25.

From Table 23.2, the Ljung–Box statistic for the u
2
i series is about 1,566. This is

strong evidence of autocorrelation. For the u2i =�
2
i series, the Ljung–Box statistic is 21.7,

suggesting that the autocorrelation has been largely removed by the GARCH model.

23.6 USING GARCH(1, 1) TO FORECAST FUTURE VOLATILITY

The variance rate estimated at the end of day n� 1 for day n, when GARCH(1,1) is

used, is

�
2
n ¼ ð1� � � 
ÞVL þ �u

2
n�1 þ 
�

2
n�1

so that

�
2
n � VL ¼ �ðu2n�1 � VLÞ þ 
ð�2n�1 � VLÞ

On day n þ t in the future,

�
2
nþt � VL ¼ �ðu2nþt�1 � VLÞ þ 
ð�2nþt�1 � VLÞ

The expected value of u2nþt�1 is �
2
nþt�1. Hence,

E½�2nþt � VL� ¼ ð� þ 
ÞE½�2nþt�1 � VL�

where E denotes expected value. Using this equation repeatedly yields

E½�2nþt � VL� ¼ ð�þ 
Þtð�2n � VLÞ
or

E½�2nþt� ¼ VL þ ð�þ 
Þtð�2n � VLÞ ð23:13Þ

This equation forecasts the volatility on day n þ t using the information available at the

end of day n � 1. In the EWMA model, � þ 
 ¼ 1 and equation (23.13) shows that the

expected future variance rate equals the current variance rate. When � þ 
 < 1, the final

term in the equation becomes progressively smaller as t increases. Figure 23.3 shows the

expected path followed by the variance rate for situations where the current variance

rate is different from VL. As mentioned earlier, the variance rate exhibits mean reversion

with a reversion level of VL and a reversion rate of 1� � � 
. Our forecast of the future

14 See G.M. Ljung and G.E.P. Box, ‘‘On a Measure of Lack of Fit in Time Series Models,’’ Biometrica, 65

(1978): 297–303.
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variance rate tends towards VL as we look further and further ahead. This analysis

emphasizes the point that we must have �þ 
 < 1 for a stable GARCH(1,1) process.

When � þ 
 > 1, the weight given to the long-term average variance is negative and the

process is ‘‘mean fleeing’’ rather than ‘‘mean reverting’’.

For the S&P 500 data considered earlier, � þ 
 ¼ 0:9935 and VL ¼ 0:0002075.

Suppose that the estimate of the current variance rate per day is 0.0003. (This

corresponds to a volatility of 1.732% per day.) In 10 days, the expected variance rate is

0:0002075 þ 0:993510ð0:0003 � 0:0002075Þ ¼ 0:0002942

The expected volatility per day is 1.72%, still well above the long-term volatility of

1.44% per day. However, the expected variance rate in 500 days is

0:0002075 þ 0:9935500ð0:0003� 0:0002075Þ ¼ 0:0002110

and the expected volatility per day is 1.45%, very close to the long-term volatility.

Volatility Term Structures

Suppose it is day n. Define:

V ðtÞ ¼ Eð�2nþtÞ
and

a ¼ ln
1

�þ 


so that equation (23.13) becomes

V ðtÞ ¼ VL þ e�at½V ð0Þ � VL�

Here, V ðtÞ is an estimate of the instantaneous variance rate in t days. The average

Figure 23.3 Expected path for the variance rate when (a) current variance rate is

above long-term variance rate and (b) current variance rate is below long-term

variance rate.
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variance rate per day between today and time T is given by

1

T

ðT

0

V ðtÞ dt ¼ VL þ 1 � e
�aT

aT
½V ð0Þ � VL�

The larger T is, the closer this is to VL. Define �ðT Þ as the volatility per annum that

should be used to price a T -day option under GARCH(1,1). Assuming 252 days per

year, �ðT Þ2 is 252 times the average variance rate per day, so that

�ðT Þ2 ¼ 252

�

VL þ 1� e
�aT

aT
½V ð0Þ � VL�

�

ð23:14Þ

As discussed in Chapter 20, the market prices of different options on the same asset are

often used to calculate a volatility term structure. This is the relationship between the

implied volatilities of the options and their maturities. Equation (23.14) can be used to

estimate a volatility term structure based on the GARCH(1,1) model. The estimated

volatility term structure is not usually the same as the implied volatility term structure.

However, as we will show, it is often used to predict the way that the implied volatility

term structure will respond to volatility changes.

When the current volatility is above the long-term volatility, the GARCH(1,1)

model estimates a downward-sloping volatility term structure. When the current

volatility is below the long-term volatility, it estimates an upward-sloping volatility

term structure. In the case of the S&P 500 data, a ¼ lnð1=0:99351Þ ¼ 0:006511 and

VL ¼ 0:0002075. Suppose that the current variance rate per day, V ð0Þ, is estimated as
0.0003 per day. It follows from equation (23.14) that

�ðT Þ2 ¼ 252

�

0:0002075 þ 1� e�0:006511T

0:006511T
ð0:0003� 0:0002075Þ

�

where T is measured in days. Table 23.3 shows the volatility per year for different values

of T .

Impact of Volatility Changes

Equation (23.14) can be written

�ðT Þ2 ¼ 252

�

VL þ 1� e�aT

aT

�

�ð0Þ2

252
� VL

��

When �ð0Þ changes by ��ð0Þ, �ðT Þ changes by approximately

1� e�aT

aT

�ð0Þ
�ðT Þ ��ð0Þ ð23:15Þ

Table 23.3 S&P 500 volatility term structure predicted from GARCH(1,1).

Option life (days) 10 30 50 100 500

Option volatility (% per annum) 27.36 27.10 26.87 26.35 24.32
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Table 23.4 shows the effect of a volatility change on options of varying maturities for

the S&P 500 data considered above. We assume as before that V ð0Þ ¼ 0:0003, so that

�ð0Þ ¼
ffiffiffiffiffiffiffiffi

252
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0003
p

¼ 27:50%. The table considers a 100-basis-point change in the

instantaneous volatility from 27.50% per year to 28.50% per year. This means that

��ð0Þ ¼ 0:01, or 1%.

Many financial institutions use analyses such as this when determining the exposure

of their books to volatility changes. Rather than consider an across-the-board increase

of 1% in implied volatilities when calculating vega, they relate the size of the volatility

increase that is considered to the maturity of the option. Based on Table 23.4, a 0.97%

volatility increase would be considered for a 10-day option, a 0.92% increase for a

30-day option, a 0.87% increase for a 50-day option, and so on.

23.7 CORRELATIONS

The discussion so far has centered on the estimation and forecasting of volatility. As

explained in Chapter 22, correlations also play a key role in the calculation of VaR. In

this section, we show how correlation estimates can be updated in a similar way to

volatility estimates.

The correlation between two variables X and Y can be defined as

covðX; YÞ
�X�Y

where �X and �Y are the standard deviations of X and Y and covðX; YÞ is the covariance
between X and Y . The covariance between X and Y is defined as

E½ðX� �XÞðY � �Y Þ�

where �X and �Y are the means of X and Y , and E denotes the expected value.

Although it is easier to develop intuition about the meaning of a correlation than it

is for a covariance, it is covariances that are the fundamental variables of our analysis.15

Define xi and yi as the percentage changes in X and Y between the end of day i� 1

and the end of day i:

xi ¼
Xi �Xi�1

Xi�1
; yi ¼

Yi � Yi�1
Yi�1

where Xi and Yi are the values of X and Y at the end of day i. We also define the

Table 23.4 Impact of 1% change in the instantaneous volatility predicted

from GARCH(1,1).

Option life (days) 10 30 50 100 500

Increase in volatility (%) 0.97 0.92 0.87 0.77 0.33

15 An analogy here is that variance rates were the fundamental variables for the EWMA and GARCH

procedures in the first part of this chapter, even though volatilities are easier to understand.
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following:

�x;n : Daily volatility of variable X, estimated for day n

�y;n : Daily volatility of variable Y , estimated for day n

covn : Estimate of covariance between daily changes in X and Y , calculated on day n.

The estimate of the correlation between X and Y on day n is

covn
�x;n �y;n

Using equal weighting and assuming that the means of xi and yi are zero, equation (23.3)

shows that the variance rates of X and Y can be estimated from the most recent m

observations as

�2x;n ¼
1

m

X

m

i¼1
x
2
n�i; �

2
y;n ¼

1

m

X

m

i¼1
y
2
n�i

A similar estimate for the covariance between X and Y is

covn ¼ 1

m

X

m

i¼1
xn�i yn�i ð23:16Þ

One alternative for updating covariances is an EWMAmodel similar to equation (23.7).

The formula for updating the covariance estimate is then

covn ¼ 	 covn�1þð1� 	Þxn�1 yn�1

A similar analysis to that presented for the EWMA volatility model shows that the

weights given to observations on the xi yi decline as we move back through time. The

lower the value of 	, the greater the weight that is given to recent observations.

Example 23.3

Suppose that 	 ¼ 0:95 and that the estimate of the correlation between two

variables X and Y on day n� 1 is 0.6. Suppose further that the estimate of the

volatilities for the X and Y on day n � 1 are 1% and 2%, respectively. From the

relationship between correlation and covariance, the estimate of the covariance

between the X and Y on day n� 1 is

0:6� 0:01� 0:02 ¼ 0:00012

Suppose that the percentage changes in X and Y on day n � 1 are 0.5% and 2.5%,

respectively. The variance and covariance for day n would be updated as follows:

�
2
x;n ¼ 0:95� 0:012 þ 0:05 � 0:0052 ¼ 0:00009625

�
2
y;n ¼ 0:95� 0:022 þ 0:05 � 0:0252 ¼ 0:00041125

covn ¼ 0:95� 0:00012 þ 0:05� 0:005� 0:025 ¼ 0:00012025

The new volatility of X is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00009625
p

¼ 0:981% and the new volatility of Y is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00041125
p

¼ 2:028%. The new coefficient of correlation between X and Y is

0:00012025

0:00981 � 0:02028
¼ 0:6044
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GARCH models can also be used for updating covariance estimates and forecasting the

future level of covariances. For example, the GARCH(1,1) model for updating a

covariance is

covn ¼ !þ �xn�1 yn�1 þ 
 covn�1

and the long-term average covariance is !=ð1� � � 
Þ. Formulas similar to those in
equations (23.13) and (23.14) can be developed for forecasting future covariances and

calculating the average covariance during the life of an option.16

Consistency Condition for Covariances

Once all the variances and covariances have been calculated, a variance–covariance

matrix can be constructed. As explained in Section 22.4, when i 6¼ j, the ði; jÞth element
of this matrix shows the covariance between variable i and variable j. When i ¼ j, it

shows the variance of variable i.

Not all variance–covariance matrices are internally consistent. The condition for an

N �N variance–covariance matrix � to be internally consistent is

w
T
�w > 0 ð23:17Þ

for all N � 1 vectors w, where wT is the transpose of w. A matrix that satisfies this

property is known as positive-semidefinite.

To understand why the condition in equation (23.17) must hold, suppose that wT is

½w1;w2; . . . ;wn�. The expression wT
�w is the variance of w1x1 þ w2x2 þ � � � þ wnxn,

where xi is the value of variable i. As such, it cannot be negative.

To ensure that a positive-semidefinite matrix is produced, variances and covariances

should be calculated consistently. For example, if variances are calculated by giving equal

weight to the lastm data items, the same should be done for covariances. If variances are

updated using an EWMAmodel with 	 ¼ 0:94, the same should be done for covariances.

An example of a variance–covariance matrix that is not internally consistent is

1 0 0:9

0 1 0:9

0:9 0:9 1

2

4

3

5

The variance of each variable is 1.0, and so the covariances are also coefficients of

correlation. The first variable is highly correlated with the third variable and the second

variable is highly correlated with the third variable. However, there is no correlation at

all between the first and second variables. This seems strange. When w is set equal to

ð1; 1;�1Þ, the condition in equation (23.17) is not satisfied, proving that the matrix is
not positive-semidefinite.17

16 The ideas in this chapter can be extended to multivariate GARCH models, where an entire variance–

covariance matrix is updated in a consistent way. For a discussion of alternative approaches, see R. Engle and

J. Mezrich, ‘‘GARCH for Groups,’’ Risk, August 1996: 36–40.

17 It can be shown that the condition for a 3� 3 matrix of correlations to be internally consistent is

�212 þ �213 þ �223 � 2�12 �13 �23 6 1

where �ij is the coefficient of correlation between variables i and j.
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23.8 APPLICATION OF EWMA TO FOUR-INDEX EXAMPLE

We now return to the example considered in Section 22.2. This involved a portfolio on

September 25, 2008, consisting of a $4 million investment in the Dow Jones Industrial

Average, a $3 million investment in the FTSE 100, a $1 million investment in the

CAC 40, and a $2 million investment in the Nikkei 225. Daily returns were collected

over 500 days ending on September 25, 2008. Data and all calculations presented here

can be found at: www.rotman.utoronto.ca/
hull/OFOD/VaRExample.

The correlation matrix that would be calculated on September 25, 2008, by giving

equal weight to the last 500 returns is shown in Table 23.5. The FTSE 100 and CAC 40

are very highly correlated. The Dow Jones Industrial Average is moderately highly

correlated with both the FTSE 100 and the CAC 40. The correlation of the Nikkei 225

with other indices is less high.

The covariance matrix for the equal-weight case is shown in Table 23.6. From

equation (22.3), this matrix gives the variance of the portfolio losses ($000s) as

8,761.833. The standard deviation is the square root of this, or 93.60. The one-day

99% VaR in $000s is therefore 2:33 � 93:60 ¼ 217:757. This is $217,757, which

compares with $253,385, calculated using the historical simulation approach in

Section 22.2.

Instead of calculating variances and covariances by giving equal weight to all observed

returns, we now use the exponentially weighted moving average method with 	 ¼ 0:94.

This gives the variance–covariance matrix in Table 23.7.18 From equation (22.3), the

Table 23.5 Correlation matrix on September 25, 2008, calculated by giving equal

weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;

variable 3 is CAC 40; variable 4 is Nikkei 225.

1 0:489 0:496 �0:062
0:489 1 0:918 0:201

0:496 0:918 1 0:211

�0:062 0:201 0:211 1

2

6

6

6

4

3

7

7

7

5

Table 23.6 Covariance matrix on September 25, 2008, calculated by giving equal

weight to the last 500 daily returns: variable 1 is DJIA; variable 2 is FTSE 100;

variable 3 is CAC 40; variable 4 is Nikkei 225.

0:0001227 0:0000768 0:0000767 �0:0000095
0:0000768 0:0002010 0:0001817 0:0000394

0:0000767 0:0001817 0:0001950 0:0000407

�0:0000095 0:0000394 0:0000407 0:0001909

2

6

6

6

4

3

7

7

7

5

18 In the EWMA calculations, the variance was initially set equal to the population variance. This is an

alternative to setting it equal to the first squared return as in Table 23.1. The two approaches give similar final

variances, and the final variance is all we are interested in.
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variance of portfolio losses ($000s) is 40,995.765. The standard deviation is the square

root of this, or 202.474. The one-day 99% VaR is therefore

2:33 � 202:474 ¼ 471:025

This is $471,025, over twice as high as the value given when returns are equally

weighted. Tables 23.8 and 23.9 show the reasons. The standard deviation of a portfolio

consisting of long positions in securities increases with the standard deviations of

security returns and also with the correlations between security returns. Table 23.8

shows that the estimated daily standard deviations are much higher when EWMA is

used than when data are equally weighted. This is because volatilities were much higher

during the period immediately preceding September 25, 2008, than during the rest of

the 500 days covered by the data. Comparing Table 23.9 with Table 23.5, we see that

correlations had also increased.19

Table 23.7 Covariance matrix on September 25, 2008, calculated using the EWMA

method with 	 ¼ 0:94: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is

CAC 40; variable 4 is Nikkei 225.

0:0004801 0:0004303 0:0004257 �0:0000396

0:0004303 0:0010314 0:0009630 0:0002095

0:0004257 0:0009630 0:0009535 0:0001681

�0:0000396 0:0002095 0:0001681 0:0002541

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Table 23.8 Volatilities (% per day) using equal weighting and EWMA.

DJIA FTSE 100 CAC 40 Nikkei 225

Equal weighting: 1.11 1.42 1.40 1.38

EWMA: 2.19 3.21 3.09 1.59

Table 23.9 Correlation matrix on September 25, 2008, calculated using the EWMA

method: variable 1 is DJIA; variable 2 is FTSE 100; variable 3 is CAC 40; variable 4

is Nikkei 225.

1 0:611 0:629 �0:113

0:611 1 0:971 0:409

0:629 0:971 1 0:342

�0:113 0:409 0:342 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

19 This is an example of the phenomenon that correlations tend to increase in adverse market conditions.
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SUMMARY

Most popular option pricing models, such as Black–Scholes–Merton, assume that the

volatility of the underlying asset is constant. This assumption is far from perfect. In

practice, the volatility of an asset, like the asset’s price, is a stochastic variable. Unlike

the asset price, it is not directly observable. This chapter has discussed procedures for

attempting to keep track of the current level of volatility.

We define ui as the percentage change in a market variable between the end of

day i� 1 and the end of day i. The variance rate of the market variable (that is, the

square of its volatility) is calculated as a weighted average of the u2i . The key feature of

the procedures that have been discussed here is that they do not give equal weight to

the observations on the u2i . The more recent an observation, the greater the weight

assigned to it. In the EWMA and the GARCH(1,1) models, the weights assigned to

observations decrease exponentially as the observations become older. The

GARCH(1,1) model differs from the EWMA model in that some weight is also

assigned to the long-run average variance rate. It has a structure that enables forecasts

of the future level of variance rate to be produced relatively easily.

Maximum likelihood methods are usually used to estimate parameters from historical

data in the EWMA, GARCH(1,1), and similar models. These methods involve using an

iterative procedure to determine the parameter values that maximize the chance or

likelihood that the historical data will occur. Once its parameters have been determined,

a GARCH(1,1) model can be judged by how well it removes autocorrelation from the u2i .

For every model that is developed to track variances, there is a corresponding model

that can be developed to track covariances. The procedures described here can therefore

be used to update the complete variance–covariance matrix used in value at risk

calculations.
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Practice Questions (Answers in Solutions Manual)

23.1. Explain the exponentially weighted moving average (EWMA) model for estimating

volatility from historical data.
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23.2. What is the difference between the exponentially weighted moving average model and

the GARCH(1,1) model for updating volatilities?

23.3. The most recent estimate of the daily volatility of an asset is 1.5% and the price of the

asset at the close of trading yesterday was $30.00. The parameter 	 in the EWMA model

is 0.94. Suppose that the price of the asset at the close of trading today is $30.50. How

will this cause the volatility to be updated by the EWMA model?

23.4. A company uses an EWMA model for forecasting volatility. It decides to change the

parameter 	 from 0.95 to 0.85. Explain the likely impact on the forecasts.

23.5. The volatility of a certain market variable is 30% per annum. Calculate a 99%

confidence interval for the size of the percentage daily change in the variable.

23.6. A company uses the GARCH(1,1) model for updating volatility. The three parameters

are !, �, and 
. Describe the impact of making a small increase in each of the parameters

while keeping the others fixed.

23.7. The most recent estimate of the daily volatility of the US dollar/sterling exchange rate is

0.6% and the exchange rate at 4 p.m. yesterday was 1.5000. The parameter 	 in the

EWMA model is 0.9. Suppose that the exchange rate at 4 p.m. today proves to be 1.4950.

How would the estimate of the daily volatility be updated?

23.8. Assume that S&P 500 at close of trading yesterday was 1,040 and the daily volatility of

the index was estimated as 1% per day at that time. The parameters in a GARCH(1,1)

model are ! ¼ 0:000002, � ¼ 0:06, and 
 ¼ 0:92. If the level of the index at close of

trading today is 1,060, what is the new volatility estimate?

23.9. Suppose that the daily volatilities of asset A and asset B, calculated at the close of trading

yesterday, are 1.6% and 2.5%, respectively. The prices of the assets at close of trading

yesterday were $20 and $40 and the estimate of the coefficient of correlation between the

returns on the two assets was 0.25. The parameter 	 used in the EWMA model is 0.95.

(a) Calculate the current estimate of the covariance between the assets.

(b) On the assumption that the prices of the assets at close of trading today are $20.5

and $40.5, update the correlation estimate.

23.10. The parameters of a GARCH(1,1) model are estimated as ! ¼ 0:000004, � ¼ 0:05, and


 ¼ 0:92. What is the long-run average volatility and what is the equation describing the

way that the variance rate reverts to its long-run average? If the current volatility is 20%

per year, what is the expected volatility in 20 days?

23.11. Suppose that the current daily volatilities of asset X and asset Y are 1.0% and 1.2%,

respectively. The prices of the assets at close of trading yesterday were $30 and $50 and

the estimate of the coefficient of correlation between the returns on the two assets made

at this time was 0.50. Correlations and volatilities are updated using a GARCH(1,1)

model. The estimates of the model’s parameters are � ¼ 0:04 and 
 ¼ 0:94. For the

correlation ! ¼ 0:000001, and for the volatilities ! ¼ 0:000003. If the prices of the two

assets at close of trading today are $31 and $51, how is the correlation estimate

updated?

23.12. Suppose that the daily volatility of the FTSE 100 stock index (measured in pounds

sterling) is 1.8% and the daily volatility of the dollar/sterling exchange rate is 0.9%.

Suppose further that the correlation between the FTSE 100 and the dollar/sterling

exchange rate is 0.4. What is the volatility of the FTSE 100 when it is translated to

US dollars? Assume that the dollar/sterling exchange rate is expressed as the number of
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US dollars per pound sterling. (Hint : When Z ¼ XY , the percentage daily change in Z is

approximately equal to the percentage daily change in X plus the percentage daily

change in Y .)

23.13. Suppose that in Problem 23.12 the correlation between the S&P 500 Index (measured in

dollars) and the FTSE 100 Index (measured in sterling) is 0.7, the correlation between

the S&P 500 Index (measured in dollars) and the dollar/sterling exchange rate is 0.3, and

the daily volatility of the S&P 500 index is 1.6%. What is the correlation between the

S&P 500 index (measured in dollars) and the FTSE 100 index when it is translated to

dollars? (Hint : For three variables X, Y , and Z, the covariance between Xþ Y and Z

equals the covariance between X and Z plus the covariance between Y and Z.)

23.14. Show that the GARCH (1,1) model �2

n ¼ !þ �u2n�1 þ 
�2

n�1 in equation (23.9) is

equivalent to the stochastic volatility model dV ¼ aðVL � V Þ dtþ �V dz, where time is

measured in days, V is the square of the volatility of the asset price, and

a ¼ 1 � � � 
; VL ¼ !

1� � � 

; � ¼ �

ffiffiffi

2
p

What is the stochastic volatility model when time is measured in years? (Hint : The

variable un�1 is the return on the asset price in time �t. It can be assumed to be normally

distributed with mean zero and standard deviation �n�1. It follows from the moments of

the normal distribution that the mean and variance of u
2
n�1 are �

2
n�1 and 2�4n�1,

respectively.)

23.15. At the end of Section 23.8, the VaR for the four-index example was calculated using the

model-building approach. How does the VaR calculated change if the investment is

$2.5 million in each index? Carry out calculations when (a) volatilities and correlations

are estimated using the equally weighted model and (b) when they are estimated using

the EWMA model with 	 ¼ 0:94. Use the spreadsheets on the author’s website.

23.16. What is the effect of changing 	 from 0.94 to 0.97 in the EWMA calculations in the four-

index example at the end of Section 23.8. Use the spreadsheets on the author’s website.

Further Questions

23.17. Suppose that the price of gold at close of trading yesterday was $600 and its volatility

was estimated as 1.3% per day. The price at the close of trading today is $596. Update

the volatility estimate using

(a) The EWMA model with 	 ¼ 0:94

(b) The GARCH(1,1) model with ! ¼ 0:000002, � ¼ 0:04, and 
 ¼ 0:94.

23.18. Suppose that in Problem 23.17 the price of silver at the close of trading yesterday was $16,

its volatility was estimated as 1.5% per day, and its correlation with gold was estimated as

0.8. The price of silver at the close of trading today is unchanged at $16. Update the

volatility of silver and the correlation between silver and gold using the two models in

Problem 23.17. In practice, is the ! parameter likely to be the same for gold and silver?

23.19. An Excel spreadsheet containing over 900 days of daily data on a number of different

exchange rates and stock indices can be downloaded from the author’s website:

www.rotman.utoronto.ca/
hull/data.

Choose one exchange rate and one stock index. Estimate the value of 	 in the EWMA
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model that minimizes the value of
P

iðvi � 
iÞ2, where vi is the variance forecast made at
the end of day i� 1 and 
i is the variance calculated from data between day i and day

iþ 25. Use the Solver tool in Excel. Set the variance forecast at the end of the first day

equal to the square of the return on that day to start the EWMA calculations.

23.20. Suppose that the parameters in a GARCH (1,1) model are � ¼ 0:03, 
 ¼ 0:95, and

! ¼ 0:000002.

(a) What is the long-run average volatility?

(b) If the current volatility is 1.5% per day, what is your estimate of the volatility in 20,

40, and 60 days?

(c) What volatility should be used to price 20-, 40-, and 60-day options?

(d) Suppose that there is an event that increases the current volatility by 0.5% to 2% per

day. Estimate the effect on the volatility in 20, 40, and 60 days.

(e) Estimate by how much the event increases the volatilities used to price 20-, 40-, and

60-day options?

23.21. The calculations for the four-index example at the end of Section 23.8 assume that the

investments in the DJIA, FTSE 100, CAC 40, and Nikkei 225 are $4 million, $3 million,

$1 million, and $2 million, respectively. How does the VaR calculated change if the

investments are $3 million, $3 million, $1 million, and $3 million, respectively? Carry out

calculations when (a) volatilities and correlations are estimated using the equally

weighted model and (b) when they are estimated using the EWMA model. What is

the effect of changing 	 from 0.94 to 0.90 in the EWMA calculations? Use the

spreadsheets on the author’s website.

23.22. Estimate parameters for EWMA and GARCH(1, 1) from data on the euro–USD

exchange rate between July 27, 2005, and July 27, 2010. This data can be found on

the author’s website:
www.rotman.utoronto.ca/
hull/data.
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