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Chapter 6. Relation between discount

factors, betas, and mean-variance frontiers

In this chapter, I draw the connection between discount factors, mean-variance frontiers, and

beta representations. In the Þrst chapter, I showed how mean-variance and a beta represen-

tation follow from p = E(mx) and (in the mean-variance case) complete markets. Here, I

discuss the connections in both directions and in incomplete markets, drawing on the repre-

sentations studied in the last chapter.

The central theme of the chapter is that all three representations are equivalent. Figure

18 summarizes the ways one can go from one representation to another. A discount factor, a

reference variable for betas – the thing you put on the right hand side in the regressions that

give betas – and a return on the mean-variance frontier all carry the same information, and

given any one of them, you can Þnd the others. More speciÞcally,

1. p = E(mx) : Given m such that p = E(mx), m, x , R , or R + wRe all can

serve as reference variables for betas.

2. p = E(mx) mean-variance frontier. You can construct R from x = proj(m|X),
R = x /E(x 2), and then R , R +wRe are on the mean-variance frontier.

3. Mean-variance frontier p = E(mx). If Rmv is on the mean-variance frontier, then

m = a+ bRmv linear in that return is a discount factor; it satisÞes p = E(mx).

4. p = E(mx). If we have an expected return/beta model with factors f , then

m = b0f linear in the factors satisÞes p = E(mx) (and vice-versa).

5. If a return is on the mean-variance frontier, then there is an expected return/beta model

with that return as reference variable.

The following subsections discuss the mechanics of going from one representation to the

other in detail. The last section of the chapter collects some special cases when there is

no riskfree rate. The next chapter discusses some of the implications of these equivalence

theorems, and why they are important.

Roll (197x) pointed out the connection between mean-variance frontiers and beta pricing.

Ross (1978) and Dybvig and Ingersoll (1982) pointed out the connection between linear

discount factors and beta pricing. Hansen and Richard (1987) pointed out the connection

between a discount factor and the mean-variance frontier.

6.1 From discount factors to beta representations

m,x , and R can all be the single factor in a single beta representation.
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SECTION 6.1 FROM DISCOUNT FACTORS TO BETA REPRESENTATIONS

E(Ri) = α + βi’λ

p = E(mx)

Rmv on m.v.f. 

LOOP  � m exists 

f = m, x*, R*

m =  b’f

R* is on m.v.f.

m = a + bRmv

f = Rmv

proj(f|R) on m.v.f.

E(RR’) nonsingular   �  Rmv exists

Figure 18. Relation between three views of asset pricing.

6.1.1 Beta representation usingm

p = E(mx) implies E(Ri) = + i,m m. Start with

1 = E(mRi) = E(m)E(Ri) + cov(m,Ri).

Thus,

E(Ri) =
1

E(m)

cov(m,Ri)

E(m)
.

Multiply and divide by var(m), deÞne 1/E(m) to get

E(Ri) = +

µ
cov(m,Ri)

var(m)

¶µ
var(m)

E(m)

¶
= + i,m m.

As advertised, we have a single beta representation.

For example, we can equivalently state the consumption-based model as: mean asset

returns should be linear in the regression betas of asset returns on (ct+1/ct) . Furthermore,

the slope of this cross-sectional relationship m is not a free parameter, though it is usually

treated as such in empirical evaluation of factor pricing models. m should equal the ratio of
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

variance to mean of (ct+1/ct) .

The factor risk premium m for marginal utility growth is negative. Positive expected

returns are associated with positive correlation with consumption growth, and hence negative

correlation with marginal utility growth andm. Thus, we expect m < 0.

6.1.2 representation using x and R

It is often useful to express a pricing model in a way that the factor is a payoff rather than a

real factor such as consumption growth. In applications, we can then avoid measurement dif-

Þculties of real data. We have already seen the idea of “factor mimicking portfolios” formed

by projection: project m on to X , and the resulting payoff x also serves as a discount fac-

tor. Unsurprisingly, x can also serve as the factor in an expected return-beta representa-

tion. It’s even more useful if the reference payoff is a return. Unsurprisingly, the return

R = x /E(x 2) can also serve as the factor in a beta pricing model. When the factor is also

a return, the model is particularly simple, since the factor risk premium is also the expected

excess return.

Theorem. 1 = E(mRi) implies an expected return - beta model with x =
proj(m|X) or R x /E(x 2) as factors, e.g. E(Ri) = + i,x x and

E(Ri) = + i,R [E(R ) ].
Proof: Recall that p = E(mx) implies p = E [proj(m | X) x], or p = E(x x).
Then

1 = E(mRi) = E(x Ri) = E(x )E(Ri) + cov(x ,Ri).

Solving for the expected return,

E(Ri) =
1

E(x )

cov(x ,Ri)

E(x )
=

1

E(x )

cov(x ,Ri)

var(x )

var(x )

E(x )
(81)

which we can write as the desired single-beta model,

E(Ri) = + i,x x .

Notice that the zero-beta rate 1/E(x ) appears when there is no riskfree rate.

To derive a single beta representation with R , recall the deÞnition,

R =
x

E(x 2)

SubstitutingR for x , equation (6.81) implies that we can in fact construct a return

R fromm that acts as the single factor in a beta model,

E(Ri) =
E(R 2)

E(R )

cov(R ,Ri)

E(R )
=
E(R 2)

E(R )
+

µ
cov(R ,Ri)

var(R )

¶µ
var(R )

E(R )

¶
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SECTION 6.2 FROM MEAN-VARIANCE FRONTIER TO A DISCOUNT FACTOR AND BETA REPRESENTATION

or, deÞning Greek letters in the obvious way,

E(Ri) = + Ri,R R (82)

Since the factorR is also a return, its expected excess return over the zero beta rate

gives the factor risk premium R . Applying equation (6.82) to R itself,

E(R ) =
var(R )

E(R )
. (83)

So we can write the beta model in an even more traditional form

E(Ri) = + Ri,R [E(R ) ]. (84)

¥

Recall thatR is the minimum second moment frontier, on the lower portion of the mean-

variance frontier. This is why R has an unusual negative expected excess return or factor

risk premium, R = var(R )/E(R ) < 0. is the zero-beta rate on R shown in

Figure15.

Special cases

A footnote to these constructions is that E(m), E(x ), or E(R ) cannot be zero, or you

couldn’t divide by them. This is a pathological case: E(m) = 0 implies a zero price for the

riskfree asset, and an inÞnite riskfree rate. If a riskfree rate is traded, we can simply observe

that it is not inÞnite and verify the fact. Also, in a complete market, E(m) cannot be zero

since, by absence of arbitrage, m > 0. We will see similar special cases in the remaining

theorems: the manipulations only work for discount factor choices that do not imply zero or

inÞnite riskfree rates. I discuss the issue in section 6.6

The manipulation from expected return-covariance to expected return-beta breaks down

if var(m), var(x ) or var(R ) are zero. This is the case of pure risk neutrality. In this case,

the covariances go to zero faster than the variances, so all betas go to zero and all expected

returns become the same as the risk free rate.

6.2 From mean-variance frontier to a discount factor and beta

representation

Rmv is on mean-variance frontier m = a+ bRmv; E(Ri) = i [E(R
mv) ]

We have seen that p = E(mx) implies a single model with a mean-variance efÞcient

reference return, namely R . The converse is also true: for (almost) any return on the mean-

variance frontier, we can deÞne a discount factor m that prices assets as a linear function of
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

the mean-variance efÞcient return. Also, expected returns mechanically follow a single

representation using the mean-variance efÞcient return as reference.

I start with the discount factor.

Theorem: There is a discount factor of the formm = a+ bRmv if and only if Rmv

is on the mean-variance frontier, and Rmvis not the riskfree rate. (If there is no

riskfree rate, if Rmv is not the constant-mimicking portfolio return.)

Graphical argument

The basic idea is very simple, and Figure 19 shows the geometry for the complete markets

case. The discount factor m = x is proportional to R . The mean-variance frontier is

R + wRe . Pick a vector Rmv on the mean-variance frontier as shown in Figure 19. Then

stretch it (bRmv) and then subtract some of the 1 vector (a). Since Re is generated by the

unit vector, we can get rid of the Re component and get back to the discount factor x if we

pick the right a and b.

If the original return vector were not on the mean-variance frontier, then any linear com-

bination a+ bRmv with b 6= 0 would point in some of the n direction, which R and x do

not. If b = 0, though, just stretching up and down the 1 vector will not get us to x . Thus, we

can only get a discount factor of the form a+ bRmv if Rmv is on the frontier.

You may remember that x is not the only discount factor – all discount factors are of the

formm = x + withE( x) = 0. Perhaps a+ bR gives one of these discount factors, when

R is not on the mean-variance frontier? This doesn’t work, however; n is still in the payoff

spaceX while, by deÞnition, is orthogonal to this space.

If the mean-variance efÞcient return Rmv that we start with happens to lie right on the

intersection of the stretched unit vector and the frontier, then stretching the Rmv vector and

adding some unit vector are the same thing, so we again can’t get back to x by stretching and

adding some unit vector. The stretched unit payoff is the riskfree rate, so the theorem rules out

the riskfree rate. When there is no riskfree rate, we have to rule out the “constant-mimicking

portfolio return.” I treat this case in section 6.1.

Algebraic proof

Now, an algebraic proof that captures the same ideas.

Proof. For an arbitrary R, try the discount factor model

m = a+ bR = a+ b(R +wRe + n). (85)

We show that this discount factor prices an arbitrary payoff if and only if n = 0, and

except for the w choice that makes R the riskfree rate, or the constant-mimicking

portfolio return if there is no riskfree rate.

We can determine a and b by forcing m to price any two assets. I Þnd a and b to
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SECTION 6.2 FROM MEAN-VARIANCE FRONTIER TO A DISCOUNT FACTOR AND BETA REPRESENTATION

R*

Re*

1

0

x* = a + bRmv

Rmv

bRmv

E - σ frontier Rf

Figure 19. There is a discount factor m = a + bRmv if and only if Rmv is on the

mean-variance frontier and not the risk free rate.

make the model price R and Re .

1 = E(mR ) = aE(R ) + bE(R 2)

0 = E(mRe ) = aE(Re ) + bwE(Re 2) = (a+ bw)E(Re ).

Solving for a and b,

a =
w

wE(R ) E(R 2)

b =
1

wE(R ) E(R 2)
.

Thus, if it is to price R and Re , the discount factor must be

m =
w (R +wRe + n)

wE(R ) E(R 2)
. (86)

Now, let’s see if m prices an arbitrary payoff xi. Any xi X can also be decom-
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

posed as

xi = yiR +wiRe + ni.

(See Figure 14 if this isn’t obvious.) The price of xi is yi, since both Re and ni are

zero-price (excess return) payoffs. Therefore, we want E(mxi) = yi. Does it?

E(mxi) = E

µ
(w R wRe n)(yiR +wiRe + ni)

wE(R ) E(R 2)

¶

Using the orthogonality of R , Re n; E(n) = 0 and E(Re 2) = E(Re ) to sim-

plify the product,

E(mxi) =
wyiE(R ) yiE(R 2) E(nni)

wE(R ) E(R 2)
= yi

E(nni)

wE(R ) E(R 2)
.

To get p(xi) = yi = E(mxi), we need E(nni) = 0. The only way to guarantee

this condition for every payoff xi X is to insist that n = 0.
Obviously, this construction can’t work if the denominator of (6.86) is zero, i.e. if

w = E(R 2)/E(R ) = 1/E(x ). If there is a riskfree rate, then Rf = 1/E(x ),
so we are ruling out the case Rmv = R + RfRe , which is the risk free rate. If

there is no riskfree rate, I interpret R̂ = R + E(R 2)/E(R )Re as a “constant

mimicking portfolio return” in section 5.3, and I give a graphical interpretation of

this special case in section 6.1 ¥

We can generalize the theorem somewhat. Nothing is special about returns; any payoff of

the form yR +wRe or yx +wRe can be used to price assets; such payoffs have minimum

variance among all payoffs with given mean and price. Of course, we proved existence not

uniqueness: m = a+ bRmv + ², E(²x) = 0 also price assets as always.

To get from the mean-variance frontier to a beta pricing model, we can just chain this

theorem and the theorem of the last section together. There is a slight subtlety about special

cases when there is no riskfree rate, but since it is not important for the basic points I relegate

the direct connection and the special cases to section 6.2.

6.3 Factor models and discount factors

Beta-pricing models are equivalent to linear models for the discount factor m.

E(Ri) = + 0

i m = a+ b0f
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SECTION 6.3 FACTOR MODELS AND DISCOUNT FACTORS

We have shown that p = E(mx) implies a single beta representation using m, x or

R as factors. Let’s ask the converse question: suppose we have an expected return - beta

model such as CAPM, APT, ICAPM, etc. What discount factor model does this imply? I

show that an expected return - beta model is equivalent to a model for the discount factor that

is a linear function of the factors in the beta model. This is an important and central result.

It gives the connection between the discount factor formulation emphasized in this book and

the expected return/beta, factor model formulation common in empirical work.

You can write a linear factor model most compactly asm = b0f , letting one of the factors

be a constant. However, since we want a connection to the beta representation based on

covariances rather than second moments, it is easiest to fold means of the factors in to the

constant, and writem = a+ b0f with E(f) = 0 and hence E(m) = a.

The connection is easiest to see in the special case that all the test assets are excess returns.

Then 0 = E(mRe) does not identify the mean of m, and we can normalize a arbitrarily. I

Þnd it convenient to normalize to E(m) = 1, or m = 1 + b0 [f E (f)]. Then,

Theorem: Given the model

m = 1 + b0 [f E (f)] ; 0 = E(mRe) (87)

one can Þnd such that

E(Re) = 0 (88)

where are the multiple regression coefÞcients of excess returns Re on the factors.

Conversely, given in (6.88), we can Þnd b such that (6.87) holds.

Proof: From (6.87)

0 = E(mRe) = E(Re) + b0cov(f,Re)

E(Re) = b0cov(f,Re).

From covariance to beta is quick,

E(Re) = b0var(f)var(f) 1cov(f,Re) = 0

Thus, and b are related by

= var(f)b.

¥

When the test assets are returns, the same idea works just as well, but gets a little more

drowned in algebra since we have to keep track of the constant inm and the zero-beta rate in

the beta model.
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

Theorem: Given the model

m = a+ b0f, 1 = E(mRi), (89)

one can Þnd and such that

E(Ri) = + 0

i, (90)

where i are the multiple regression coefÞcients of Ri on f with a constant. Con-

versely, given and in a factor model of the form (6.90), one can Þnd a, b such

that (6.89) holds.

Proof: We just have to construct the relation between ( , ) and (a, b) and show

that it works. Start withm = a+ b0f , 1 = E(mR), and hence

E(R) =
1

E(m)

cov(m,R)

E(m)
=

1

a

E(Rf 0)b

a
(91)

i is the vector of the appropriate regression coefÞcients,

i E
¡
ff 0
¢ 1

E(fRi),

so to get in the formula, continue with

E(R) =
1

a

E(Rf 0)E(ff 0) 1E(ff 0)b

a
=

1

a
0
E(ff 0)b

a

Now, deÞne and to make it work,

1

E (m)
=

1

a
(6.92)

1

a
E(ff 0)b = E [mf ]

Using (6.92) we can just as easily go backwards from the expected return-beta rep-

resentation tom = a+ b0f .

As always, we have to worry about a special case of zero or inÞnite riskfree rates.

We rule out E(m) = E(a + b0f) = 0 to keep (6.91) from exploding, and we rule

out = 0 and E(ff 0) singular to go from , , in (6.92) back tom. ¥

Given either model there is a model of the other form. They are not unique. We can add to

m any random variable orthogonal to returns, and we can add spurious risk factors with zero

and/or , leaving pricing implications unchanged. We can also express the multiple beta

model as a single beta model withm = a+ b0f as the single factor, or use its corresponding

R .

Equation (6.92) shows that the factor risk premium can be interpreted as the price of the

factor; A test of 6= 0 is often called a test of whether the “factor is priced.” More precisely,
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SECTION 6.3 FACTOR MODELS AND DISCOUNT FACTORS

captures the price E(mf) of the (de-meaned) factors brought forward at the risk free rate.

If we start with underlying factors f̃ such that the demeaned factors are f = f̃ E(f̃),

p
h
f̃ E(f̃)

i
=

"

p(f̃)
E(f̃)

#

represents the price of the factors less their risk-neutral valuation, i.e. the factor risk pre-

mium. If the factors are not traded, is the model’s predicted price rather than a market

price. Low prices are high risk premia, resulting in the negative sign. If the factors are re-

turns with price one, then the factor risk premium is the expected return of the factor, less ,
= E(f) .

Note that the “factors” need not be returns (though they may be); they need not be orthog-

onal, and they need not be serially uncorrelated or conditionally or unconditionally mean-

zero. Such properties may occur as natural special cases, or as part of the economic deriva-

tion of speciÞc factor models, but they are not required for the existence of a factor pricing

representation. For example, if the riskfree rate is constant then Et(mt+1) is constant and at

least the sum b0f should be uncorrelated over time. But if the riskfree rate is not constant,

then Et(mt+1) = Et(b0f t+1) should vary over time.

Factor-mimicking portfolios

It is often convenient to use factor-mimicking payoffs

f = proj(f |X)

factor-mimicking returns

f =
proj(f |X)

p [proj(f |X)]

or factor-mimicking excess returns

f = proj(f |Re)

in place of true factors. These payoffs carry the same pricing information as the original

factors, and can serve as reference variables in expected return-beta representations

When the factors are not already returns or excess returns, it is convenient to express a beta

pricing model in terms of its factor mimicking portfolios rather than the factors themselves.

Recall that x = proj(m|X) carries all ofm0s pricing implications onX; p(x) = E(mx) =
E(x x). The factor-mimicking portfolios are just the same idea using the individual factors.
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

DeÞne the payoffs f by

f = proj(f |X)

Then,m = b0f carries the same pricing implications onX as doesm = b0f :

p = E(mx) = E(b0f x) = E [b0(projf |X) x] = E [b0f x] . (93)

(I include the constant as one of the factors.)

The factor-mimicking portfolios also form a beta representation. Just go from (6.93) back

to an expected return- beta representation

E(Ri) = + 0 , (94)

and Þnd , using (6.92). The are the regression coefÞcients of the returns Ri on the

factor-mimicking portfolios, not on the factors, as they should be.

It is more traditional to use the returns or excess returns on the factor-mimicking portfo-

lios rather than payoffs as I have done so far. To generate returns, divide the payoff by its

price,

f =
proj(f |X)

p [proj(f |X)]
.

The resulting b will be scaled down by the price of the factor-mimicking payoff, and the

model is the same. Note you project on the space of payoffs, not of returns. Returns R are

not a space, since they don’t contain zero.

If the test assets are all excess returns, you can even more easily project the factors on the

set of excess returns, which are a space since they do include zero. If we deÞne

f = proj(f |Re)

then of course the excess returns f carry the same pricing implications as the factors f for a

set of excess returns;m = b0f satisÞes 0 = E(mRei) and

E(Rei) = i,f = i,f E(f )

6.4 Discount factors and beta models to mean - variance frontier

Fromm, we can construct R which is on the mean variance frontier

If a beta pricing model holds, then the return R on the mean-variance frontier is a linear

combination of the factor-mimicking portfolio returns.
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SECTION 6.5 THREE RISKFREE RATE ANALOGUES

Any frontier return is a combination of R and one other return, a risk free rate or a risk

free rate proxy. Thus, any frontier return is a linear function of the factor-mimicking returns

plus a risk free rate proxy.

It’s easy to show that given m that we can Þnd a return on the mean-variance frontier.

Given m construct x = proj(m|X) and R = x /E(x 2). R is the minimum second

moment return, and hence on the mean-variance frontier.

Similarly, if you have a set of factors f for a beta model, then a linear combination of the

factor-mimicking portfolios is on the mean-variance frontier. A beta model is the same as

m = b0f . Sincem is linear in f , x is linear in f = proj(f |X), soR is linear in the factor

mimicking payoffs f or their returns f /p(f ).

Section 5.4 showed how we can span the mean-variance frontier with R and a risk free

rate, if there is one, or the zero-beta, minimum variance, or constant-mimicking portfolio

return R̂ = proj(1|X)/p[proj(1|X)] if there is no risk free rate. The latter is particularly

nice in the case of a linear factor model, since we may consider the constant as a factor, so

the frontier is entirely generated by factor-mimicking portfolio returns.

6.5 Three riskfree rate analogues

I introduce three counterparts to the risk free rate that show up in asset pricing formulas

when there is no risk free rate. The three returns are the zero-beta return, the minimum-

variance return and the constant-mimicking portfolio return.

Three different generalizations of the riskfree rate are useful when a risk free rate or unit

payoff is not in the set of payoffs. These are the zero-beta return, the minimum-variance re-

turn and the constant-mimicking portfolio return. I introduce the returns in this section, and I

use them in the next section to state some special cases involving the mean-variance frontier.

Each of these returns maintains one property of the risk free rate in a market in which there

is no risk free rate. The zero-beta return is a mean-variance efÞcient return that is uncorre-

lated with another given mean-variance efÞcient return. The minimum-variance return is just

that. The constant-mimicking portfolio return is the return on the payoff “closest” to the unit

payoff. Each of these returns one has a representation in the standard form R +wRe with

slightly different w. In addition, the expected returns of these risky assets are used in some

asset pricing representations. For example, the zero beta rate is often used to refer to the

expected value of the zero beta return.

Each of these riskfree rate analogues is mean-variance efÞcient. Thus, I characterize each

one by Þnding its weight w in a representation of the form R + wRe . We derived such a
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CHAPTER 6 RELATION BETWEEN DISCOUNT FACTORS, BETAS, AND MEAN-VARIANCE FRONTIERS

representation above for the riskfree rate as equation (5.72),

Rf = R +RfRe . (95)

In the last subsection, I show how each riskfree rate analogue reduces to the riskfree rate

when there is one.

6.5.1 Zero-beta return for R

The zero beta return for R , denoted R , is the mean-variance efÞcient return uncorre-

lated with R . Its expected return is the zero beta rate = E(Ra). This zero beta return has

representation

Ra = R +
var(R )

E(R )E(Re )
Re ,

and the corresponding zero beta rate is

= E(R ) =
E(R 2)

E(R )
=

1

E(x )
.

The zero beta rate is found graphically in mean-standard deviation space by extending the

tangency at R to the vertical axis. It is also the inverse of the price that x and R assign to

the unit payoff.

The riskfree rate Rf is of course uncorrelated with R . Risky returns uncorrelated with

R earn the same average return as the risk free rate if there is one, so they might take the

place ofRf when the latter does not exist. For any returnR that is uncorrelated withR we

have E(R R ) = E(R )E(R ), so

= E(R ) =
E(R 2)

E(R )
=

1

E(x )
.

The Þrst equality introduces a popular notation for this rate. I call the zero beta rate, and

Ra the zero beta return. There is no riskfree rate, so there is no security that just pays .

As you can see from the formula, the zero-beta rate is the inverse of the price that R and

x assign to the unit payoff, which is another natural generalization of the riskfree rate. It is

called the zero beta rate because cov(R ,R ) = 0 implies that the regression beta of R on

R is zero. More precisely, one might call it the zero beta rate onR , since one can calculate

zero-beta rates for returns other than R and they are not the same as the zero-beta rate for

R In particular, the zero-beta rate on the “market portfolio” will generally be different from

the zero beta rate on R .
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σ(R)

E(R)

R*

α = 

E(R*2 )/ E(R* )

= 1/E(x*) 

Rα

Figure 20. Zero-beta rate and zero-beta return Ra for R .
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I draw in Figure 20 as the intersection of the tangency and the vertical axis. This

is a property of any return on the mean variance frontier: The expected return on an asset

uncorrelated with the mean-variance efÞcient asset (a zero-beta asset) lies at the point so

constructed. To check this geometry, use similar triangles: The length of R in Figure 20 isp
E(R 2), and its vertical extent is E(R ). Therefore, /

p
E(R 2) =

p
E(R 2)/E(R ),

or = E(R 2)/E(R ). Since R is on the lower portion of the mean-variance frontier, this

zero beta rate is above the minimum variance return.

Note that in general 6= 1/E(m). Projecting m on X preserves asset pricing implica-

tions on X but not for payoffs not in X. Thus if a risk free rate is not traded, x and m may

differ in their predictions for the riskfree rate as for other nontraded assets.

The zero beta return is the rate of return on the mean-variance frontier with mean equal to

the zero beta rate, as shown in Figure 20. We want to characterize this return in R +wRe

form. To do this, we want to Þnd w such that

E(Ra) =
E(R 2)

E(R )
= E(R ) +wE(Re ).

Solving, the answer is

w =
E(R 2) E(R )2

E(R )E(Re )
=

var(R )

E(R )E(Re )
.

Thus, the zero beta return is

Ra = R +
var(R )

E(R )E(Re )
Re ,

expression (6.103). Note that the weight is not E(Ra) = E(R 2)/E(R ). When there is no

risk free rate, the weight and the mean return are different.

6.5.2 Minimum variance return

The minimum variance return has the representation

Rmin. var. = R +
E(R )

1 E(Re )
Re .

The riskfree rate obviously is the minimum variance return when it exists. When there is

no risk free rate, the minimum variance return is

Rmin. var. = R +
E(R )

1 E(Re )
Re . (96)
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Taking expectations,

E(Rmin. var.) = E(R ) +
E(R )

1 E(Re )
E(Re ) =

E(R )

1 E(Re )
.

The minimum variance return retains the nice property of the risk free rate, that its weight on

Re is the same as its mean,

Rmin. var. = R +E(Rmin. var.)Re

just as Rf = R + RfRe . When there is no risk free rate, the zero-beta and minimum

variance returns are not the same. You can see this fact clearly in Figure 20.

We can derive expression (6.96) for the minimum variance return by brute force: choose

w in R +wRe to minimize variance.

min
w

var(R +wRe ) = E[(R +wRe )2] E(R +wRe )2 =

= E(R 2) +w2E(Re ) E(R )2 2wE(R )E(Re ) w2E(Re )2.

The Þrst order condition is

0 = wE(Re )[1 E(Re )] E(R )E(Re )

w =
E(R )

1 E(Re )
.

6.5.3 Constant-mimicking portfolio return

The constant-mimicking portfolio return is deÞned as the return on the projection of the

unit vector on the payoff space,

R̂ =
proj(1|X)

p [proj(1|X)]
.

It has the representation

R̂ = R +
E(R 2)

E(R )
Re .

When there is a risk free rate, it is the rate of return on a unit payoff,Rf = 1/p(1). When

there is no risk free rate, we might deÞne the rate of return on the mimicking portfolio for a
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unit payoff,

R̂ =
proj(1|X)

p [proj(1|X)]
.

I call this object the constant-mimicking portfolio return.

The mean-variance representation of the constant-mimicking portfolio return is

R̂ = R + Re = R +
E(R 2)

E(R )
Re . (97)

Note that the weight equal to the zero beta rate creates the constant-mimicking return, not

the zero beta return. To show (6.97), start with property (5.73),

Re = proj(1|X)
E(R )

E(R 2)
R . (98)

Take the price of both sides. Since the price of Re is zero and the price of R is one, we

establish

p [proj(1|X)] =
E(R )

E(R 2)
. (99a)

Solving (6.98) for proj(1|X), dividing by (6.99a) we obtain the right hand side of (6.97).

6.5.4 Risk free rate

The risk free rate has the mean-variance representation

Rf = R +RfRe .

The zero-beta, minimum variance and constant-mimicking portfolio returns reduce to this

formula when there is a risk free rate.

Again, we derived in equation (5.72) that the riskfree rate has the representation,

Rf = R +RfRe . (100)

Obviously, we should expect that the zero-beta return, minimum-variance return, and constant-

mimicking portfolio return reduce to the riskfree rate when there is one. These other rates

are

constant-mimicking: R̂ = R +
E(R 2)

E(R )
Re (101)
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minimum-variance: Rmin. var. = R +
E(R )

1 E(Re )
Re (102)

zero-beta: R = R +
var(R )

E(R )E(Re )
Re . (103)

To establish that these are all the same when there is a riskfree rate, we need to show that

Rf =
E(R 2)

E(R )
=

E(R )

1 E(Re )
=

var(R )

E(R )E(Re )
(104)

We derived the Þrst equality above as equation (5.74). To derive the second equality, take

expectations of (6.95),

Rf = E(R ) +RfE(Re ) (105)

and solve for Rf . To derive the third equality, use the Þrst equality from (6.104) in (6.105),

E(R 2)

E(R )
= E(R ) +RfE(Re ).

Solving for Rf ,

Rf =
E(R 2) E(R )2

E(R )E(Re )
=

var(R )

E(R )E(Re )
.

6.6 Mean-variance special cases with no riskfree rate

We can Þnd a discount factor from any mean-variance efÞcient return except the constant-

mimicking return.

We can Þnd a beta representation from any mean-variance efÞcient return except the

minimum-variance return.

I collect in this section the special cases for the equivalence theorems of this chapter. The

special cases all revolve around the problem that the expected discount factor, price of a unit

payoff or riskfree rate must not be zero or inÞnity. This is typically an issue of theoretical

rather than practical importance. In a complete, arbitrage free market, m > 0 so we know

E(m) > 0. If a riskfree rate is traded you can observe > E(m) = 1/Rf > 0. However,

in an incomplete market in which no riskfree rate is traded, there are many discount factors

with the same asset pricing implications, and you might have happened to choose one with

E(m) = 0 in your manipulations. By and large, this is easy to avoid: choose another of the
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many discount factors with the same pricing implications that does not haveE(m) = 0. More

generally, when you choose a particular discount factor you are choosing an extension of the

current set of prices and payoffs; you are viewing the current prices and payoffs as a subset

of a particular contingent-claim economy. Make sure you pick a sensible one. Therefore, we

could simply state the special cases as “when a riskfree rate is not traded, make sure you use

discount factors with 0 < E(m) < .” However, it is potentially useful and it certainly is

traditional to specify the special return on the mean-variance frontier that leads to the inÞnite

or zero implied riskfree rate, and to rule it out directly. This section works out what those

returns are and shows why they must be avoided.

6.6.1 The special case for mean variance frontier to discount factor

When there is no riskfree rate, we can Þnd a discount factor that is a linear function of

any mean-variance efÞcient return except the constant-mimicking portfolio return.

In section 6.2, we saw that we can form a discount factor a + bRmv from any mean-

variance efÞcient returnRmv except one particular return, of the formR + E(R 2)
E(R ) R

e . This

return led to an inÞnite m. We now recognize this return as the risk-free rate, when there is

one, or the constant-mimicking portfolio return, if there is no riskfree rate.

Figure 21 shows the geometry of this case. To use no more than three dimensions I had to

reduce the return and excess return spaces to lines. The payoff space X is the plane joining

the return and excess return sets as shown. The set of all discount factors is m = x + ,
E( x) = 0, the line through x orthogonal to the payoff space X in the Þgure. I draw the

unit payoff (the dot marked “1” in Figure 21) closer to the viewer than the plane X, and I

draw a vector through the unit payoff coming out of the page.

Take any return on the mean-variance frontier,Rmv. (Since the return space only has two

dimensions, all returns are on the frontier.) For a givenRmv, the space a+ bRmv is the plane

spanned by Rmv and the unit payoff. This plane lies sideways in the Þgure. As the Þgure

shows, there is a vector a+ bRmv in this plane that lies on the line of discount factors.

Next, the special case. This construction would go awry if the plane spanning the unit

payoff and the return Rmv were parallel to the plane containing the discount factor. Thus,

the construction would not work for the return marked R̂ in the Figure. This is a return

corresponding to a payoff that is the projection of the unit payoff on toX, so that the residual

will be orthogonal to X, as is the line of discount factors.

With Figure 21 in front of us, we can also see why the constant-mimicking portfolio return

is not the same thing as the minimum-variance return. Variance is the size or second moment
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0

R*

Re

R

X

Rmv

1

Constant-mimicking return RDiscount factors

a+b Rmv
x*

^

Figure 21. One can construct a discount factor m = a + bRmv from any

mean-variance-efÞcient return except the constant-mimicking return R̂.

of the residual in a projection (regression) on 1.

var(x) = E
£
(x E(x))2

¤
= E

£
(x proj(x|1))2

¤
= ||x proj(x|1)||2

Thus, the minimum variance return is the return closest to extensions of the unit vector. It is

formed by projecting returns on the unit vector. The constant-mimicking portfolio return is

the return on the payoff closest to 1 It is formed by projecting the unit vector on the set of

payoffs.

6.6.2 The special case for mean-variance frontier to a beta model

We can use any return on the mean-variance frontier as the reference return for a single

beta representation, except the minimum-variance return.

We already know mean variance frontiers discount factor and discount factor single

beta representation, so at a superÞcial level we can string the two theorems together to go
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from a mean-variance efÞcient return to a beta representation. However it is more elegant to

go directly, and the special cases are also a bit simpler this way.

Theorem: There is a single beta representation with a return Rmv as factor,

E(Ri) = Rmv + i,Rmv [E(Rmv) ] ,

if and only if Rmv is mean-variance efÞcient and not the minimum variance return.

This famous theorem is given by Roll (1976) and Hansen and Richard (1987). We rule

out minimum variance to rule out the special case E(m) = 0. Graphically, the zero-beta rate

is formed from the tangency to the mean-variance frontier as in Figure 20. I use the notation

Rmv to emphasize that we use the zero-beta rate corresponding to the particular mean-

variance return Rmv that we use as the reference return. If we used the minimum-variance

return, that would lead to an inÞnite zero-beta rate.

Proof: The mean-variance frontier is Rmv = R + wRe . Any return is Ri =
R +wiRe + ni. Thus,

E(Ri) = E(R ) +wiE(Re ) (106)

Now,

cov(Ri, Rmv) = cov
£
(R +wRe ) , (R +wiRe )

¤

= var(R ) +wwivar(Re ) (w +wi)E(R )E(Re )

= var(R ) wE(R )E(Re ) +wi [w var(Re ) E(R )E(Re )]

Thus, cov(Ri, Rmv) and E(Ri) are both linear functions of wi. We can solve

cov(Ri, Rmv) for wi, plug into the expression for E(Ri) and we’re done.

To do this, of course, we must be able to solve cov(Ri,Rmv) for wi. This requires

w 6=
E(R )E(Re )

var(Re )
=

E(R )E(Re )

E(Re 2) E(Re )2
=

E(R )

1 E(Re )
(107)

which is the condition for the minimum variance return. ¥

6.7 Problems

1. In the argument that Rmv on the mean variance frontier, Rmv = R +wRe , implies a

discount factorm = a+ bRmv, do we have to rule out the case of risk neutrality? (Hint:

What is Re when the economy is risk-neutral?)

2. If you use factor mimicking portfolios as in (6.93), you know that the predictions for

expected returns are the same as they are if you use the factors themselves . Are the ,
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, and for the factor mimicking portfolio representation the same as the original ,

, and of the factor pricing model?

3. Suppose the CAPM is true, m = a bRm prices a set of assets, and there is a risk-free

rate Rf . Find R in terms of the moments of Rm, Rf .

4. If you express the mean-variance frontier as a linear combination of factor-mimicking

portfolios from a factor model, do the relative weights of the various factor portfolios in

the mean-variance efÞcient return change as you sweep out the frontier, or do they stay

the same? (Start with the riskfree rate case)

5. For an arbitrary mean-variance efÞcient return of the form R +wRe , Þnd its zero-beta

return and zero-beta rate. Show that your rate reduces to the riskfree rate when there is

one.

6. When the economy is risk neutral, and if there is no risk-free rate, show that the

zero-beta, minimum-variance, and constant-mimicking portfolio returns are again all

equivalent, though not equal to the risk-free rate. (In this case, the mean-variance frontier

is just the minimum-variance point.)
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