


The Black–

Scholes–Merton

Model

In the early 1970s, Fischer Black, Myron Scholes, and Robert Merton achieved a major

breakthrough in the pricing of European stock options.1 This was the development of

what has become known as the Black–Scholes–Merton (or Black–Scholes) model. The

model has had a huge influence on the way that traders price and hedge derivatives. In

1997, the importance of the model was recognized when Robert Merton and Myron

Scholes were awarded the Nobel prize for economics. Sadly, Fischer Black died in 1995;

otherwise he too would undoubtedly have been one of the recipients of this prize.

How did Black, Scholes, and Merton make their breakthrough? Previous researchers

had made the similar assumptions and had correctly calculated the expected payoff from

a European option. However, as explained in Section 13.2, it is difficult to know the

correct discount rate to use for this payoff. Black and Scholes used the capital asset

pricing model (see the appendix to Chapter 3) to determine a relationship between the

market’s required return on the option and the required return on the stock. This was

not easy because the relationship depends on both the stock price and time. Merton’s

approach was different from that of Black and Scholes. It involved setting up a riskless

portfolio consisting of the option and the underlying stock and arguing that the return

on the portfolio over a short period of time must be the risk-free return. This is similar

to what we did in Section 13.1—but more complicated because the portfolio changes

continuously through time. Merton’s approach was more general than that of Black and

Scholes because it did not rely on the assumptions of the capital asset pricing model.

This chapter covers Merton’s approach to deriving the Black–Scholes–Merton

model. It explains how volatility can be either estimated from historical data or implied

from option prices using the model. It shows how the risk-neutral valuation argument

introduced in Chapter 13 can be used. It also shows how the Black–Scholes–Merton

model can be extended to deal with European call and put options on dividend-paying

stocks and presents some results on the pricing of American call options on dividend-

paying stocks.

1 See F. Black and M. Scholes, ‘‘The Pricing of Options and Corporate Liabilities,’’ Journal of Political

Economy, 81 (May/June 1973): 637–59; R.C. Merton, ‘‘Theory of Rational Option Pricing,’’ Bell Journal of

Economics and Management Science, 4 (Spring 1973): 141–83.
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15.1 LOGNORMAL PROPERTY OF STOCK PRICES

The model of stock price behavior used by Black, Scholes, and Merton is the model we

developed in Chapter 14. It assumes that percentage changes in the stock price in a very

short period of time are normally distributed. Define

�: Expected return on stock per year

� : Volatility of the stock price per year.

The mean and standard deviation of the return in time �t are approximately ��t and

�
ffiffiffiffiffi

�t
p

, so that
�S

S
� �ð��t; �2�tÞ ð15:1Þ

where �S is the change in the stock price S in time �t, and �ðm; vÞ denotes a normal

distribution with mean m and variance v. (This is equation (14.9).)

As shown in Section 14.7, the model implies that

ln ST � ln S0 � �

��

�� �
2

2

�

T ; �
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�
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ln
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� �
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�
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ð15:2Þ
and

ln ST � �

�

ln S0 þ
�

�� �
2

2

�

T ; �
2
T

�

ð15:3Þ

where ST is the stock price at a future time T and S0 is the stock price at time 0. There is

no approximation here. The variable ln ST is normally distributed, so that ST has a

lognormal distribution. The mean of ln ST is ln S0 þ ð�� �
2
=2ÞT and the standard

deviation of ln ST is �
ffiffiffiffi

T
p

.

Example 15.1

Consider a stock with an initial price of $40, an expected return of 16% per

annum, and a volatility of 20% per annum. From equation (15.3), the probability

distribution of the stock price ST in 6 months’ time is given by

ln ST � �½ln 40 þ ð0:16 � 0:22=2Þ � 0:5; 0:22 � 0:5	
ln ST � �ð3:759; 0:02Þ

There is a 95% probability that a normally distributed variable has a value within

1.96 standard deviations of its mean. In this case, the standard deviation is
ffiffiffiffiffiffiffiffiffi

0:02
p

¼ 0:141. Hence, with 95% confidence,

3:759� 1:96 � 0:141 < ln ST < 3:759þ 1:96 � 0:141

This can be written

e
3:759�1:96�0:141

< ST < e
3:759þ1:96�0:141

or
32:55 < ST < 56:56

Thus, there is a 95% probability that the stock price in 6 months will lie between

32.55 and 56.56.
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A variable that has a lognormal distribution can take any value between zero and

infinity. Figure 15.1 illustrates the shape of a lognormal distribution. Unlike the normal

distribution, it is skewed so that the mean, median, and mode are all different. From

equation (15.3) and the properties of the lognormal distribution, it can be shown that

the expected value EðST Þ of ST is given by

EðST Þ ¼ S0e
�T ð15:4Þ

This fits in with the definition of � as the expected rate of return. The variance varðST Þ
of ST , can be shown to be given by2

varðST Þ ¼ S 2
0 e

2�T ðe�
2
T � 1Þ ð15:5Þ

Example 15.2

Consider a stock where the current price is $20, the expected return is 20% per

annum, and the volatility is 40% per annum. The expected stock price, EðST Þ, and
the variance of the stock price, varðST Þ, in 1 year are given by

EðST Þ ¼ 20e0:2�1 ¼ 24:43 and varðST Þ ¼ 400e2�0:2�1ðe0:4
2�1 � 1Þ ¼ 103:54

The standard deviation of the stock price in 1 year is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

103:54
p

, or 10.18.

15.2 THE DISTRIBUTION OF THE RATE OF RETURN

The lognormal property of stock prices can be used to provide information on the

probability distribution of the continuously compounded rate of return earned on a

stock between times 0 and T . If we define the continuously compounded rate of return

0

Figure 15.1 Lognormal distribution.

2 See Technical Note 2 at www.rotman.utoronto.ca/�hull/TechnicalNotes for a proof of the results in

equations (15.4) and (15.5). For a more extensive discussion of the properties of the lognormal distribution,

see J. Aitchison and J.A. C. Brown, The Lognormal Distribution. Cambridge University Press, 1966.
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per annum realized between times 0 and T as x, then

ST ¼ S0e
xT

so that

x ¼ 1

T
ln
ST

S0
ð15:6Þ

From equation (15.2), it follows that

x � �

�

� � �2

2
;
�2

T

�

ð15:7Þ

Thus, the continuously compounded rate of return per annum is normally distributed

with mean �� �2=2 and standard deviation �=
ffiffiffiffi

T
p

. As T increases, the standard

deviation of x declines. To understand the reason for this, consider two cases: T ¼ 1

and T ¼ 20. We are more certain about the average return per year over 20 years than

we are about the return in any one year.

Example 15.3

Consider a stock with an expected return of 17% per annum and a volatility of

20% per annum. The probability distribution for the average rate of return (con-

tinuously compounded) realized over 3 years is normal, with mean

0:17 � 0:22

2
¼ 0:15

or 15% per annum, and standard deviation
ffiffiffiffiffiffiffiffiffi

0:22

3

s

¼ 0:1155

or 11.55% per annum. Because there is a 95% chance that a normally distrib-

uted variable will lie within 1.96 standard deviations of its mean, we can be

95% confident that the average return realized over 3 years will be between

15� 1:96� 11:55 ¼ �7:6% and 15þ 1:96� 11:55 ¼ þ37:6% per annum.

15.3 THE EXPECTED RETURN

The expected return, �, required by investors from a stock depends on the riskiness of

the stock. The higher the risk, the higher the expected return. It also depends on the

level of interest rates in the economy. The higher the level of interest rates, the higher

the expected return required on any given stock. Fortunately, we do not have to concern

ourselves with the determinants of � in any detail. It turns out that the value of a stock

option, when expressed in terms of the value of the underlying stock, does not depend

on � at all. Nevertheless, there is one aspect of the expected return from a stock that

frequently causes confusion and needs to be explained.

Our model of stock price behavior implies that, in a very short period of time, the

mean return is ��t. It is natural to assume from this that � is the expected

continuously compounded return on the stock. However, this is not the case. The

continuously compounded return, x, actually realized over a period of time of length T
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is given by equation (15.6) as

x ¼ 1

T
ln
ST

S0

and, as indicated in equation (15.7), the expected value EðxÞ of x is �� �
2
=2.

The reason why the expected continuously compounded return is different from � is

subtle, but important. Suppose we consider a very large number of very short periods of

time of length �t. Define Si as the stock price at the end of the ith interval and �Si as

Siþ1 � Si. Under the assumptions we are making for stock price behavior, the average

of the returns on the stock in each interval is close to �. In other words, ��t is close to

the arithmetic mean of the �Si=Si. However, the expected return over the whole period

covered by the data, expressed with a compounding interval of �t, is close to �� �
2
=2,

not �.3 Business Snapshot 15.1 provides a numerical example concerning the mutual

fund industry to illustrate why this is so.

For another explanation of what is going on, we start with equation (15.4):

EðST Þ ¼ S0e
�T

Taking logarithms, we get
ln½EðST Þ	 ¼ lnðS0Þ þ �T

It is now tempting to set ln½EðST Þ	 ¼ E½lnðST Þ	, so that E½lnðST Þ	 � lnðS0Þ ¼ �T , or

E½lnðST=S0Þ	 ¼ �T , which leads to EðxÞ ¼ �. However, we cannot do this because ln

is a nonlinear function. In fact, ln½EðST Þ	 > E½lnðST Þ	, so that E½lnðST=S0Þ	 < �T , which

leads to EðxÞ < �. (As pointed out above, EðxÞ ¼ �� �
2
=2.)

15.4 VOLATILITY

The volatility, �, of a stock is a measure of our uncertainty about the returns provided

by the stock. Stocks typically have a volatility between 15% and 60%.

From equation (15.7), the volatility of a stock price can be defined as the standard

deviation of the return provided by the stock in 1 year when the return is expressed

using continuous compounding.

When �t is small, equation (15.1) shows that �2�t is approximately equal to the

variance of the percentage change in the stock price in time�t. This means that �
ffiffiffiffiffi

�t
p

is

approximately equal to the standard deviation of the percentage change in the stock

price in time �t. Suppose that � ¼ 0:3, or 30%, per annum and the current stock price

is $50. The standard deviation of the percentage change in the stock price in 1 week is

approximately

30�
ffiffiffiffiffi

1

52

r

¼ 4:16%

A 1-standard-deviation move in the stock price in 1 week is therefore 50� 0:0416 ¼ 2:08.

Uncertainty about a future stock price, as measured by its standard deviation,

increases—at least approximately—with the square root of how far ahead we are

looking. For example, the standard deviation of the stock price in 4 weeks is approxi-

mately twice the standard deviation in 1 week.

3 The arguments in this section show that the term ‘‘expected return’’ is ambiguous. It can refer either to � or

to �� �2=2. Unless otherwise stated, it will be used to refer to � throughout this book.
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Estimating Volatility from Historical Data

To estimate the volatility of a stock price empirically, the stock price is usually observed

at fixed intervals of time (e.g., every day, week, or month). Define:

n þ 1: Number of observations

Si : Stock price at end of ith interval, with i ¼ 0; 1; . . . ;n

	 : Length of time interval in years

and let

ui ¼ ln

�

Si

Si�1

�

for i ¼ 1; 2; . . . ;n

The usual estimate, s, of the standard deviation of the ui is given by

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1ðui � �u Þ2
r

Business Snapshot 15.1 Mutual Fund Returns Can Be Misleading

The difference between � and �� �2=2 is closely related to an issue in the reporting of

mutual fund returns. Suppose that the following is a sequence of returns per annum

reported by a mutual fund manager over the last five years (measured using annual

compounding): 15%, 20%, 30%, �20%, 25%.

The arithmetic mean of the returns, calculated by taking the sum of the returns

and dividing by 5, is 14%. However, an investor would actually earn less than 14%

per annum by leaving the money invested in the fund for 5 years. The dollar value of

$100 at the end of the 5 years would be

100� 1:15� 1:20 � 1:30 � 0:80 � 1:25 ¼ $179:40

By contrast, a 14% return with annual compounding would give

100 � 1:145 ¼ $192:54

The return that gives $179.40 at the end of five years is 12.4%. This is because

100 � ð1:124Þ5 ¼ 179:40

What average return should the fund manager report? It is tempting for the manager

to make a statement such as: ‘‘The average of the returns per year that we have

realized in the last 5 years is 14%.’’ Although true, this is misleading. It is much less

misleading to say: ‘‘The average return realized by someone who invested with us for

the last 5 years is 12.4% per year.’’ In some jurisdictions, regulations require fund

managers to report returns the second way.

This phenomenon is an example of a result that is well known in mathematics. The

geometric mean of a set of numbers is always less than the arithmetic mean. In our

example, the return multipliers each year are 1.15, 1.20, 1.30, 0.80, and 1.25. The

arithmetic mean of these numbers is 1.140, but the geometric mean is only 1.124 and

it is the geometric mean that equals 1 plus the return realized over the 5 years.
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or

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� 1

Xn

i¼1 u
2
i �

1

nðn� 1Þ

�

Xn

i¼1 ui

�2
s

where �u is the mean of the ui.
4

From equation (15.2), the standard deviation of the ui is �
ffiffiffi

	
p

. The variable s is

therefore an estimate of �
ffiffiffi

	
p

. It follows that � itself can be estimated as �̂, where

�̂ ¼ s
ffiffiffi

	
p

The standard error of this estimate can be shown to be approximately �̂=
ffiffiffiffiffiffi

2n
p

.

Choosing an appropriate value for n is not easy. More data generally lead to more

accuracy, but � does change over time and data that are too old may not be relevant for

predicting the future volatility. A compromise that seems to work reasonably well is to

use closing prices from daily data over the most recent 90 to 180 days. Alternatively, as

a rule of thumb, n can be set equal to the number of days to which the volatility is to be

applied. Thus, if the volatility estimate is to be used to value a 2-year option, daily data

for the last 2 years are used. More sophisticated approaches to estimating volatility

involving GARCH models are discussed in Chapter 23.

Example 15.4

Table 15.1 shows a possible sequence of stock prices during 21 consecutive trading

days. In this case, n ¼ 20, so that
Xn

i¼1 ui ¼ 0:09531 and
Xn

i¼1 u
2
i ¼ 0:00326

and the estimate of the standard deviation of the daily return is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00326

19
� 0:095312

20 � 19

s

¼ 0:01216

or 1.216%. Assuming that there are 252 trading days per year, 	 ¼ 1=252 and the

data give an estimate for the volatility per annum of 0:01216
ffiffiffiffiffiffiffiffi

252
p

¼ 0:193; or

19.3%. The standard error of this estimate is

0:193
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 20
p ¼ 0:031

or 3.1% per annum.

The foregoing analysis assumes that the stock pays no dividends, but it can be adapted

to accommodate dividend-paying stocks. The return, ui, during a time interval that

includes an ex-dividend day is given by

ui ¼ ln
Si þ D

Si�1

where D is the amount of the dividend. The return in other time intervals is still

ui ¼ ln
Si

Si�1

4 The mean �u is often assumed to be zero when estimates of historical volatilities are made.
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However, as tax factors play a part in determining returns around an ex-dividend date,

it is probably best to discard altogether data for intervals that include an ex-dividend

date.

Trading Days vs. Calendar Days

An important issue is whether time should be measured in calendar days or trading

days when volatility parameters are being estimated and used. As shown in Business

Snapshot 15.2, research shows that volatility is much higher when the exchange is open

for trading than when it is closed. As a result, practitioners tend to ignore days when the

exchange is closed when estimating volatility from historical data and when calculating

the life of an option. The volatility per annum is calculated from the volatility per

trading day using the formula

Volatility
per annum

¼ Volatility
per trading day

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Number of trading days
per annum

r

This is what we did in Example 15.4 when calculating volatility from the data in

Table 15.1. The number of trading days in a year is usually assumed to be 252 for stocks.

Table 15.1 Computation of volatility.

Day

i

Closing stock price

(dollars), Si

Price relative

Si=Si�1

Daily return

ui ¼ lnðSi=Si�1Þ

0 20.00

1 20.10 1.00500 0.00499

2 19.90 0.99005 �0.01000
3 20.00 1.00503 0.00501

4 20.50 1.02500 0.02469

5 20.25 0.98780 �0.01227
6 20.90 1.03210 0.03159

7 20.90 1.00000 0.00000

8 20.90 1.00000 0.00000

9 20.75 0.99282 �0.00720
10 20.75 1.00000 0.00000

11 21.00 1.01205 0.01198

12 21.10 1.00476 0.00475

13 20.90 0.99052 �0.00952
14 20.90 1.00000 0.00000

15 21.25 1.01675 0.01661

16 21.40 1.00706 0.00703

17 21.40 1.00000 0.00000

18 21.25 0.99299 �0.00703
19 21.75 1.02353 0.02326

20 22.00 1.01149 0.01143
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The life of an option is also usually measured using trading days rather than calendar

days. It is calculated as T years, where

T ¼ Number of trading days until option maturity

252

15.5 THE IDEA UNDERLYING THE BLACK–SCHOLES–MERTON
DIFFERENTIAL EQUATION

The Black–Scholes–Merton differential equation is an equation that must be satisfied

by the price of any derivative dependent on a non-dividend-paying stock. The equation

is derived in the next section. Here we consider the nature of the arguments we will use.

These are similar to the no-arbitrage arguments we used to value stock options in

Chapter 13 for the situation where stock price movements were assumed to be binomial.

They involve setting up a riskless portfolio consisting of a position in the derivative and

a position in the stock. In the absence of arbitrage opportunities, the return from the

portfolio must be the risk-free interest rate, r. This leads to the Black-Scholes-Merton

differential equation.

Business Snapshot 15.2 What Causes Volatility?

It is natural to assume that the volatility of a stock is caused by new information

reaching the market. This new information causes people to revise their opinions

about the value of the stock. The price of the stock changes and volatility results.

This view of what causes volatility is not supported by research. With several years of

daily stock price data, researchers can calculate:

1. The variance of stock price returns between the close of trading on one day

and the close of trading on the next day when there are no intervening

nontrading days

2. The variance of the stock price returns between the close of trading on Friday

and the close of trading on Monday

The second of these is the variance of returns over a 3-day period. The first is a variance

over a 1-day period. We might reasonably expect the second variance to be three times

as great as the first variance. Fama (1965), French (1980), and French and Roll (1986)

show that this is not the case. These three research studies estimate the second variance

to be, respectively, 22%, 19%, and 10.7% higher than the first variance.

At this stage one might be tempted to argue that these results are explained by more

news reaching the market when the market is open for trading. But research by Roll

(1984) does not support this explanation. Roll looked at the prices of orange juice

futures. By far the most important news for orange juice futures prices is news about

the weather and this is equally likely to arrive at any time. When Roll did a similar

analysis to that just described for stocks, he found that the second (Friday-to-Monday)

variance for orange juice futures is only 1.54 times the first variance.

The only reasonable conclusion from all this is that volatility is to a large extent

caused by trading itself. (Traders usually have no difficulty accepting this conclusion!)
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The reason a riskless portfolio can be set up is that the stock price and the derivative

price are both affected by the same underlying source of uncertainty: stock price

movements. In any short period of time, the price of the derivative is perfectly

correlated with the price of the underlying stock. When an appropriate portfolio of

the stock and the derivative is established, the gain or loss from the stock position

always offsets the gain or loss from the derivative position so that the overall value of

the portfolio at the end of the short period of time is known with certainty.

Suppose, for example, that at a particular point in time the relationship between a

small change �S in the stock price and the resultant small change �c in the price of a

European call option is given by

�c ¼ 0:4�S

This means that the slope of the line representing the relationship between c and S

is 0.4, as indicated in Figure 15.2. A riskless portfolio would consist of:

1. A long position in 40 shares

2. A short position in 100 call options.

Suppose, for example, that the stock price increases by 10 cents. The option price will

increase by 4 cents and the 40� 0:1 ¼ $4 gain on the shares is equal to the 100� 0:04 ¼
$4 loss on the short option position.

There is one important difference between the Black–Scholes–Merton analysis and

our analysis using a binomial model in Chapter 13. In Black–Scholes–Merton, the

position in the stock and the derivative is riskless for only a very short period of time.

(Theoretically, it remains riskless only for an instantaneously short period of time.) To

remain riskless, it must be adjusted, or rebalanced, frequently.5 For example, the

relationship between �c and �S in our example might change from �c ¼ 0:4�S today

to �c ¼ 0:5�S tomorrow. This would mean that, in order to maintain the riskless

position, an extra 10 shares would have to be purchased for each 100 call options sold.

It is nevertheless true that the return from the riskless portfolio in any very short period

of time must be the risk-free interest rate. This is the key element in the Black–Scholes–

Merton analysis and leads to their pricing formulas.

Stock price

Slope = 0.4

Call
price

S0

Figure 15.2 Relationship between call price and stock price. Current stock price is S0.

5 We discuss the rebalancing of portfolios in more detail in Chapter 19.
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Assumptions

The assumptions we use to derive the Black–Scholes–Merton differential equation are

as follows:

1. The stock price follows the process developed in Chapter 14 with � and � constant.

2. The short selling of securities with full use of proceeds is permitted.

3. There are no transaction costs or taxes. All securities are perfectly divisible.

4. There are no dividends during the life of the derivative.

5. There are no riskless arbitrage opportunities.

6. Security trading is continuous.

7. The risk-free rate of interest, r, is constant and the same for all maturities.

As we discuss in later chapters, some of these assumptions can be relaxed. For example,

� and r can be known functions of t. We can even allow interest rates to be stochastic

provided that the stock price distribution at maturity of the option is still lognormal.

15.6 DERIVATION OF THE BLACK–SCHOLES–MERTON
DIFFERENTIAL EQUATION

In this section, the notation is different from elsewhere in the book. We consider a

derivative’s price at a general time t (not at time zero). If T is the maturity date, the time

to maturity is T � t.

The stock price process we are assuming is the one we developed in Section 14.3:

dS ¼ �S dtþ �S dz ð15:8Þ

Suppose that f is the price of a call option or other derivative contingent on S. The

variable f must be some function of S and t. Hence, from equation (14.14),

df ¼
�

@f

@S
�S þ @f

@t
þ 1

2

@
2
f

@S 2
�
2
S
2

�

dtþ @f

@S
�S dz ð15:9Þ

The discrete versions of equations (15.8) and (15.9) are

�S ¼ �S�tþ �S�z ð15:10Þ
and

�f ¼
�

@f

@S
�S þ @f

@t
þ 1

2

@
2
f

@S 2
�
2
S
2

�

�tþ @f

@S
�S�z ð15:11Þ

where �f and �S are the changes in f and S in a small time interval �t. Recall from

the discussion of Itô’s lemma in Section 14.6 that the Wiener processes underlying f

and S are the same. In other words, the �z (¼ �
ffiffiffiffiffi

�t
p

Þ in equations (15.10) and (15.11)

are the same. It follows that a portfolio of the stock and the derivative can be

constructed so that the Wiener process is eliminated. The portfolio is

�1: derivative

þ@f=@S : shares.
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The holder of this portfolio is short one derivative and long an amount @f=@S of

shares. Define � as the value of the portfolio. By definition

� ¼ �f þ @f

@S
S ð15:12Þ

The change �� in the value of the portfolio in the time interval �t is given by

�� ¼ ��f þ @f

@S
�S ð15:13Þ

Substituting equations (15.10) and (15.11) into equation (15.13) yields

�� ¼
�

� @f

@t
� 1

2

@2f

@S 2
�
2
S
2

�

�t ð15:14Þ

Because this equation does not involve�z, the portfolio must be riskless during time�t.

The assumptions listed in the preceding section imply that the portfolio must instant-

aneously earn the same rate of return as other short-term risk-free securities. If it earned

more than this return, arbitrageurs could make a riskless profit by borrowing money to

buy the portfolio; if it earned less, they could make a riskless profit by shorting the

portfolio and buying risk-free securities. It follows that

�� ¼ r��t ð15:15Þ

where r is the risk-free interest rate. Substituting from equations (15.12) and (15.14) into

(15.15), we obtain
�

@f

@t
þ 1

2

@
2
f

@S 2
�2S 2

�

�t ¼ r

�

f � @f

@S
S

�

�t

so that

@f

@t
þ rS

@f

@S
þ 1

2
�
2
S
2 @

2
f

@S 2
¼ rf ð15:16Þ

Equation (15.16) is the Black–Scholes–Merton differential equation. It has many

solutions, corresponding to all the different derivatives that can be defined with S as

the underlying variable. The particular derivative that is obtained when the equation is

solved depends on the boundary conditions that are used. These specify the values of the

derivative at the boundaries of possible values of S and t. In the case of a European call

option, the key boundary condition is

f ¼ maxðS �K; 0Þ when t ¼ T

In the case of a European put option, it is

f ¼ maxðK � S; 0Þ when t ¼ T

Example 15.5

A forward contract on a non-dividend-paying stock is a derivative dependent on

the stock. As such, it should satisfy equation (15.16). From equation (5.5), we

know that the value of the forward contract, f , at a general time t is given in terms
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of the stock price S at this time by

f ¼ S �Ke�rðT�tÞ

where K is the delivery price. This means that

@f

@t
¼ �rKe�rðT�tÞ;

@f

@S
¼ 1;

@2f

@S 2
¼ 0

When these are substituted into the left-hand side of equation (15.16), we obtain

�rKe
�rðT�tÞ þ rS

This equals rf , showing that equation (15.16) is indeed satisfied.

A Perpetual Derivative

Consider a perpetual derivative that pays off a fixed amount Q when the stock price

equals H for the first time. In this case, the value of the derivative for a particular S

has no dependence on t, so the @f=@t term vanishes and the partial differential

equation (15.16) becomes an ordinary differential equation.

Suppose first that S < H. The boundary conditions for the derivatives are f ¼ 0

when S ¼ 0 and f ¼ Q when S ¼ H. The simple solution f ¼ QS=H satisfies both the

boundary conditions and the differential equation. It must therefore be the value of the

derivative.

Suppose next that S > H. The boundary conditions are now f ¼ 0 as S tends to

infinity and f ¼ Q when S ¼ H. The derivative price

f ¼ Q

�

S

H

���

where � is positive, satisfies the boundary conditions. It also satisfies the differential

equation when

�r� þ 1
2
�
2
�ð�þ 1Þ � r ¼ 0

or � ¼ 2r=�2. The value of the derivative is therefore

f ¼ Q

�

S

H

��2r=�2

ð15:17Þ

Problem 15.23 shows how equation (15.17) can be used to price a perpetual American

put option. Section 26.2 extends the analysis to show how perpetual American call and

put options can be priced when the underlying asset provides a yield at rate q.

The Prices of Tradeable Derivatives

Any function f ðS; tÞ that is a solution of the differential equation (15.16) is the

theoretical price of a derivative that could be traded. If a derivative with that price

existed, it would not create any arbitrage opportunities. Conversely, if a function f ðS; tÞ
does not satisfy the differential equation (15.16), it cannot be the price of a derivative

without creating arbitrage opportunities for traders.
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To illustrate this point, consider first the function eS. This does not satisfy the

differential equation (15.16). It is therefore not a candidate for being the price of a

derivative dependent on the stock price. If an instrument whose price was always eS

existed, there would be an arbitrage opportunity. As a second example, consider the

function

eð�
2�2rÞðT�tÞ

S

This does satisfy the differential equation, and so is, in theory, the price of a tradeable

security. (It is the price of a derivative that pays off 1=ST at time T .) For other examples

of tradeable derivatives, see Problems 15.11, 15.12, 15.23, and 15.28.

15.7 RISK-NEUTRAL VALUATION

We introduced risk-neutral valuation in connection with the binomial model in

Chapter 13. It is without doubt the single most important tool for the analysis of

derivatives. It arises from one key property of the Black–Scholes–Merton differential

equation (15.16). This property is that the equation does not involve any variables that

are affected by the risk preferences of investors. The variables that do appear in the

equation are the current stock price, time, stock price volatility, and the risk-free rate of

interest. All are independent of risk preferences.

The Black–Scholes–Merton differential equation would not be independent of risk

preferences if it involved the expected return, �, on the stock. This is because the value

of � does depend on risk preferences. The higher the level of risk aversion by investors,

the higher � will be for any given stock. It is fortunate that � happens to drop out in

the derivation of the differential equation.

Because the Black–Scholes–Merton differential equation is independent of risk

preferences, an ingenious argument can be used. If risk preferences do not enter the

equation, they cannot affect its solution. Any set of risk preferences can, therefore, be

used when evaluating f . In particular, the very simple assumption that all investors are

risk neutral can be made.

In a world where investors are risk neutral, the expected return on all investment

assets is the risk-free rate of interest, r. The reason is that risk-neutral investors do not

require a premium to induce them to take risks. It is also true that the present value of

any cash flow in a risk-neutral world can be obtained by discounting its expected value

at the risk-free rate. The assumption that the world is risk neutral does, therefore,

considerably simplify the analysis of derivatives.

Consider a derivative that provides a payoff at one particular time. It can be valued

using risk-neutral valuation by using the following procedure:

1. Assume that the expected return from the underlying asset is the risk-free interest

rate, r (i.e., assume � ¼ r).

2. Calculate the expected payoff from the derivative.

3. Discount the expected payoff at the risk-free interest rate.

It is important to appreciate that risk-neutral valuation (or the assumption that all

investors are risk neutral) is merely an artificial device for obtaining solutions to the
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Black–Scholes–Merton differential equation. The solutions that are obtained are valid

in all worlds, not just those where investors are risk neutral. When we move from a risk-

neutral world to a risk-averse world, two things happen. The expected growth rate in

the stock price changes and the discount rate that must be used for any payoffs from the

derivative changes. It happens that these two changes always offset each other exactly.

Application to Forward Contracts on a Stock

We valued forward contracts on a non-dividend-paying stock in Section 5.7. In

Example 15.5, we verified that the pricing formula satisfies the Black–Scholes–Merton

differential equation. In this section we derive the pricing formula from risk-neutral

valuation. We make the assumption that interest rates are constant and equal to r. This

is somewhat more restrictive than the assumption in Chapter 5.

Consider a long forward contract that matures at time T with delivery price, K. As

indicated in Figure 1.2, the value of the contract at maturity is

ST �K

where ST is the stock price at time T . From the risk-neutral valuation argument, the

value of the forward contract at time 0 is its expected value at time T in a risk-neutral

world discounted at the risk-free rate of interest. Denoting the value of the forward

contract at time zero by f , this means that

f ¼ e
�rT

ÊðST �KÞ

where Ê denotes the expected value in a risk-neutral world. Since K is a constant, this

equation becomes

f ¼ e�rT ÊðST Þ �Ke�rT ð15:18Þ

The expected return � on the stock becomes r in a risk-neutral world. Hence, from

equation (15.4), we have

ÊðST Þ ¼ S0e
rT ð15:19Þ

Substituting equation (15.19) into equation (15.18) gives

f ¼ S0 �Ke�rT

This is in agreement with equation (5.5).

15.8 BLACK–SCHOLES–MERTON PRICING FORMULAS

The most famous solutions to the differential equation (15.16) are the Black–Scholes–

Merton formulas for the prices of European call and put options. These formulas are:

c ¼ S0Nðd1Þ �Ke
�rT

Nðd2Þ ð15:20Þ
and

p ¼ Ke
�rT

Nð�d2Þ � S0Nð�d1Þ ð15:21Þ
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where

d1 ¼
ln ðS0=KÞ þ ðrþ �2=2ÞT

�
ffiffiffiffi

T
p

d2 ¼
ln ðS0=KÞ þ ðr� �2=2ÞT

�
ffiffiffiffi

T
p ¼ d1 � �

ffiffiffiffi

T
p

The function NðxÞ is the cumulative probability distribution function for a variable with

a standard normal distribution. In other words, it is the probability that a variable with

a standard normal distribution will be less than x. It is illustrated in Figure 15.3. The

remaining variables should be familiar. The variables c and p are the European call and

European put price, S0 is the stock price at time zero, K is the strike price, r is the

continuously compounded risk-free rate, � is the stock price volatility, and T is the time

to maturity of the option.

One way of deriving the Black–Scholes–Merton formulas is by solving the differ-

ential equation (15.16) subject to the boundary condition mentioned in Section 15.6.6

(See Problem 15.17 to prove that the call price in equation (15.20) satisfies the

differential equation.) Another approach is to use risk-neutral valuation. Consider a

European call option. The expected value of the option at maturity in a risk-neutral

world is

Ê½maxðST �K; 0Þ	

where, as before, Ê denotes the expected value in a risk-neutral world. From the risk-

neutral valuation argument, the European call option price c is this expected value

discounted at the risk-free rate of interest, that is,

c ¼ e
�rT

Ê½maxðST �K; 0Þ	 ð15:22Þ

x0

Figure 15.3 Shaded area represents NðxÞ.

6 The differential equation gives the call and put prices at a general time t. For example, the call price that

satisfies the differential equation is c ¼ SNðd1Þ �Ke�rðT�tÞNðd2Þ, where

d1 ¼
lnðS=KÞ þ ðrþ �2=2ÞðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

and d2 ¼ d1 � �
ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

.
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The appendix at the end of this chapter shows that this equation leads to the result in

equation (15.20).

Since it is never optimal to exercise early an American call option on a non-dividend-

paying stock (see Section 11.5), equation (15.20) is the value of an American call option

on a non-dividend-paying stock. Unfortunately, no exact analytic formula for the value

of an American put option on a non-dividend-paying stock has been produced.

Numerical procedures for calculating American put values are discussed in Chapter 21.

When the Black–Scholes–Merton formula is used in practice the interest rate r is set

equal to the zero-coupon risk-free interest rate for a maturity T . As we show in later

chapters, this is theoretically correct when r is a known function of time. It is also

theoretically correct when the interest rate is stochastic provided that the stock price at

time T is lognormal and the volatility parameter is chosen appropriately. As mentioned

earlier, time is normally measured as the number of trading days left in the life of the

option divided by the number of trading days in 1 year.

Understanding Nðd1Þ and Nðd2Þ
The term Nðd2Þ in equation (15.20) has a fairly simple interpretation. It is the prob-

ability that a call option will be exercised in a risk-neutral world. The Nðd1Þ term is not

quite so easy to interpret. The expression S0Nðd1ÞerT is the expected stock price at

time T in a risk-neutral world when stock prices less than the strike price are counted as

zero. The strike price is only paid if the stock price is greater than K and as just

mentioned this has a probability of Nðd2Þ. The expected payoff in a risk-neutral world is

therefore

S0Nðd1ÞerT �KNðd2Þ

Present-valuing this from time T to time zero gives the Black–Scholes–Merton equation

for a European call option:

c ¼ S0Nðd1Þ �Ke�rTNðd2Þ

For another interpretation, note that the Black–Scholes–Merton equation for the value

of a European call option can be written as

c ¼ e
�rT

Nðd2Þ½S0erTNðd1Þ=Nðd2Þ �K	

The terms here have the following interpretation:

e
�rT : Present value factor

Nðd2Þ: Probability of exercise

erTNðd1Þ=Nðd2Þ: Expected percentage increase in stock price in a risk-neutral world

if option is exercised

K: Strike price paid if option is exercised.

Properties of the Black–Scholes–Merton Formulas

We now show that the Black–Scholes–Merton formulas have the right general proper-

ties by considering what happens when some of the parameters take extreme values.

When the stock price, S0, becomes very large, a call option is almost certain to be

exercised. It then becomes very similar to a forward contract with delivery price K.
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From equation (5.5), we expect the call price to be

S0 �Ke
�rT

This is, in fact, the call price given by equation (15.20) because, when S0 becomes very

large, both d1 and d2 become very large, and Nðd1Þ and Nðd2Þ become close to 1.0.

When the stock price becomes very large, the price of a European put option, p,

approaches zero. This is consistent with equation (15.21) because Nð�d1Þ and Nð�d2Þ
are both close to zero in this case.

Consider next what happens when the volatility � approaches zero. Because the stock

is virtually riskless, its price will grow at rate r to S0e
rT at time T and the payoff from a

call option is

maxðS0erT �K; 0Þ

Discounting at rate r, the value of the call today is

e
�rT maxðS0erT �K; 0Þ ¼ maxðS0 �Ke

�rT
; 0Þ

To show that this is consistent with equation (15.20), consider first the case where

S0 > Ke�rT . This implies that ln ðS0=KÞ þ rT > 0. As � tends to zero, d1 and d2 tend to

þ1, so that Nðd1Þ and Nðd2Þ tend to 1.0 and equation (15.20) becomes

c ¼ S0 �Ke
�rT

When S0 < Ke�rT , it follows that lnðS0=KÞ þ rT < 0. As � tends to zero, d1 and d2
tend to �1, so that Nðd1Þ and Nðd2Þ tend to zero and equation (15.20) gives a call

price of zero. The call price is therefore always maxðS0 �Ke�rT ; 0Þ as � tends to zero.

Similarly, it can be shown that the put price is always maxðKe�rT � S0; 0Þ as � tends

to zero.

15.9 CUMULATIVE NORMAL DISTRIBUTION FUNCTION

When implementing equations (15.20) and (15.21), it is necessary to evaluate the

cumulative normal distribution function NðxÞ. Tables for NðxÞ are provided at the

end of this book. The NORMSDIST function in Excel also provides a convenient

way of calculating NðxÞ.

Example 15.6

The stock price 6 months from the expiration of an option is $42, the exercise price

of the option is $40, the risk-free interest rate is 10% per annum, and the volatility

is 20% per annum. This means that S0 ¼ 42, K ¼ 40, r ¼ 0:1, � ¼ 0:2, T ¼ 0:5,

d1 ¼
lnð42=40Þ þ ð0:1þ 0:22=2Þ � 0:5

0:2
ffiffiffiffiffiffiffi

0:5
p ¼ 0:7693

d2 ¼
lnð42=40Þ þ ð0:1� 0:22=2Þ � 0:5

0:2
ffiffiffiffiffiffiffi

0:5
p ¼ 0:6278

and

Ke
�rT ¼ 40e�0:05 ¼ 38:049

338 CHAPTER 15



Hence, if the option is a European call, its value c is given by

c ¼ 42Nð0:7693Þ � 38:049Nð0:6278Þ

If the option is a European put, its value p is given by

p ¼ 38:049Nð�0:6278Þ � 42Nð�0:7693Þ

Using the NORMSDIST function in Excel gives

Nð0:7693Þ ¼ 0:7791;

Nð0:6278Þ ¼ 0:7349;

Nð�0:7693Þ ¼ 0:2209

Nð�0:6278Þ ¼ 0:2651

so that
c ¼ 4:76; p ¼ 0:81

Ignoring the time value of money, the stock price has to rise by $2.76 for the

purchaser of the call to break even. Similarly, the stock price has to fall by $2.81

for the purchaser of the put to break even.

15.10 WARRANTS AND EMPLOYEE STOCK OPTIONS

The exercise of a regular call option on a company has no effect on the number of the

company’s shares outstanding. If the writer of the option does not own the company’s

shares, he or she must buy them in the market in the usual way and then sell them to the

option holder for the strike price. As explained in Chapter 10, warrants and employee

stock options are different from regular call options in that exercise leads to the

company issuing more shares and then selling them to the option holder for the strike

price. As the strike price is less than the market price, this dilutes the interest of the

existing shareholders.

How should potential dilution affect the way we value outstanding warrants and

employee stock options? The answer is that it should not! Assuming markets are

efficient the stock price will reflect potential dilution from all outstanding warrants

and employee stock options. This is explained in Business Snapshot 15.3.7

Consider next the situation a company is in when it is contemplating a new issue of

warrants (or employee stock options). We suppose that the company is interested in

calculating the cost of the issue assuming that there are no compensating benefits. We

assume that the company has N shares worth S0 each and the number of new options

contemplated is M, with each option giving the holder the right to buy one share for K.

The value of the company today is NS0. This value does not change as a result of the

warrant issue. Suppose that without the warrant issue the share price will be ST at the

warrant’s maturity. This means that (with or without the warrant issue) the total value

of the equity and the warrants at time T will NST . If the warrants are exercised, there is a

cash inflow from the strike price increasing this to NST þMK. This value is distributed

7 Analysts sometimes assume that the sum of the values of the warrants and the equity (rather than just the

value of the equity) is lognormal. The result is a Black–Scholes type of equation for the value of the warrant in

terms of the value of the warrant. See Technical Note 3 at www.rotman.utoronto.ca/�hull/TechnicalNotes
for an explanation of this model.
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among N þM shares, so that the share price immediately after exercise becomes

NST þMK

N þM

Therefore the payoff to an option holder if the option is exercised is

NST þMK

N þM
�K

or
N

N þM
ðST �KÞ

This shows that the value of each option is the value of

N

N þM

regular call options on the company’s stock. Therefore the total cost of the options is

M times this. Since we are assuming that there are no benefits to the company from the

warrant issue, the total value of the company’s equity will decline by the total cost of

the options as soon as the decision to issue the warrants becomes generally known. This

means that the reduction in the stock price is

M

N þM

times the value of a regular call option with strike price K and maturity T .

Business Snapshot 15.3 Warrants, Employee Stock Options, and Dilution

Consider a company with 100,000 shares each worth $50. It surprises the market with

an announcement that it is granting 100,000 stock options to its employees with a

strike price of $50. If the market sees little benefit to the shareholders from the

employee stock options in the form of reduced salaries and more highly motivated

managers, the stock price will decline immediately after the announcement of the

employee stock options. If the stock price declines to $45, the dilution cost to the

current shareholders is $5 per share or $500,000 in total.

Suppose that the company does well so that by the end of three years the share

price is $100. Suppose further that all the options are exercised at this point. The

payoff to the employees is $50 per option. It is tempting to argue that there will be

further dilution in that 100,000 shares worth $100 per share are now merged with

100,000 shares for which only $50 is paid, so that (a) the share price reduces to $75

and (b) the payoff to the option holders is only $25 per option. However, this

argument is flawed. The exercise of the options is anticipated by the market and

already reflected in the share price. The payoff from each option exercised is $50.

This example illustrates the general point that when markets are efficient the

impact of dilution from executive stock options or warrants is reflected in the stock

price as soon as they are announced and does not need to be taken into account

again when the options are valued.
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Example 15.7

A company with 1 million shares worth $40 each is considering issuing 200,000

warrants each giving the holder the right to buy one share with a strike price of

$60 in 5 years. It wants to know the cost of this. The interest rate is 3% per

annum, and the volatility is 30% per annum. The company pays no dividends.

From equation (15.20), the value of a 5-year European call option on the stock is

$7.04. In this case, N ¼ 1,000,000 and M ¼ 200,000, so that the value of each

warrant is

1,000,000

1,000,000 þ 200,000
� 7:04 ¼ 5:87

or $5.87. The total cost of the warrant issue is 200,000 � 5:87 ¼ $1:17 million.

Assuming the market perceives no benefits from the warrant issue, we expect the

stock price to decline by $1.17 to $38.83.

15.11 IMPLIED VOLATILITIES

The one parameter in the Black–Scholes–Merton pricing formulas that cannot be

directly observed is the volatility of the stock price. In Section 15.4, we discussed

how this can be estimated from a history of the stock price. In practice, traders usually

work with what are known as implied volatilities. These are the volatilities implied by

option prices observed in the market.8

To illustrate how implied volatilities are calculated, suppose that the value of a

European call option on a non-dividend-paying stock is 1.875 when S0 ¼ 21; K ¼ 20,

r ¼ 0:1, and T ¼ 0:25. The implied volatility is the value of � that, when substituted

into equation (15.20), gives c ¼ 1:875. Unfortunately, it is not possible to invert equa-

tion (15.20) so that � is expressed as a function of S0, K, r, T , and c. However, an

iterative search procedure can be used to find the implied �. For example, we can start

by trying � ¼ 0:20. This gives a value of c equal to 1.76, which is too low. Because c is

an increasing function of �, a higher value of � is required. We can next try a value of

0.30 for �. This gives a value of c equal to 2.10, which is too high and means that �

must lie between 0.20 and 0.30. Next, a value of 0.25 can be tried for �. This also proves

to be too high, showing that � lies between 0.20 and 0.25. Proceeding in this way, we

can halve the range for � at each iteration and the correct value of � can be calculated

to any required accuracy.9 In this example, the implied volatility is 0.235, or 23.5%, per

annum. A similar procedure can be used in conjunction with binomial trees to find

implied volatilities for American options.

Implied volatilities are used to monitor the market’s opinion about the volatility of a

particular stock. Whereas historical volatilities (see Section 15.4) are backward looking,

implied volatilities are forward looking. Traders often quote the implied volatility of an

option rather than its price. This is convenient because the implied volatility tends to be

less variable than the option price. As will be explained in Chapter 20, the implied

8 Implied volatilities for European and American options can be calculated using DerivaGem.

9 This method is presented for illustration. Other more powerful methods, such as the Newton–Raphson

method, are often used in practice (see footnote 3 of Chapter 4).
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volatilities of actively traded options are used by traders to estimate appropriate implied

volatilities for other options.

The VIX Index

The CBOE publishes indices of implied volatility. The most popular index, the SPX

VIX, is an index of the implied volatility of 30-day options on the S&P 500 calculated

from a wide range of calls and puts.10 It is sometimes referred to as the ‘‘fear factor.’’

An index value of 15 indicates that the implied volatility of 30-day options on the

S&P 500 is estimated as 15%. Information on the way the index is calculated is in

Section 26.15. Trading in futures on the VIX started in 2004 and trading in options on

the VIX started in 2006. One contract is on 1,000 times the index.

Example 15.8

Suppose that a trader buys an April futures contract on the VIX when the futures

price is 18.5 (corresponding to a 30-day S&P 500 volatility of 18.5%) and closes

out the contract when the futures price is 19.3 (corresponding to an S&P 500

volatility of 19.3%). The trader makes a gain of $800.

A trade involving futures or options on the S&P 500 is a bet on both the future level of

the S&P 500 and the volatility of the S&P 500. By contrast, a futures or options contract

on the VIX is a bet only on volatility. Figure 15.4 shows the VIX index between January

2004 and June 2013. Between 2004 and mid-2007 it tended to stay between 10 and 20. It

reached 30 during the second half of 2007 and a record 80 in October and November

2008 after Lehman’s bankruptcy. By early 2010, it had declined to a more normal

levels, but it spiked again in May 2010 and the second half of 2011 because of stresses

and uncertainties in financial markets.
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Figure 15.4 The VIX index, January 2004 to June 2013.

10 Similarly, the VXN is an index of the volatility of the NASDAQ 100 index and the VXD is an index of the

volatility of the Dow Jones Industrial Average.
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15.12 DIVIDENDS

Up to now, we have assumed that the stock on which the option is written pays no

dividends. In this section, we modify the Black–Scholes–Merton model to take account

of dividends. We assume that the amount and timing of the dividends during the life of

an option can be predicted with certainty. When options last for relatively short periods

of time, this assumption is not too unreasonable. (For long-life options it is usual to

assume that the dividend yield rather the dollar dividend payments are known. Options

can then be valued as will be described in the Chapter 17.) The date on which the

dividend is paid should be assumed to be the ex-dividend date. On this date the stock

price declines by the amount of the dividend.11

European Options

European options can be analyzed by assuming that the stock price is the sum of two

components: a riskless component that corresponds to the known dividends during

the life of the option and a risky component. The riskless component, at any given

time, is the present value of all the dividends during the life of the option discounted

from the ex-dividend dates to the present at the risk-free rate. By the time the option

matures, the dividends will have been paid and the riskless component will no longer

exist. The Black–Scholes–Merton formula is therefore correct if S0 is equal to the

risky component of the stock price and � is the volatility of the process followed by

the risky component.12

Operationally, this means that the Black–Scholes–Merton formulas can be used

provided that the stock price is reduced by the present value of all the dividends during

the life of the option, the discounting being done from the ex-dividend dates at the risk-

free rate. As already mentioned, a dividend is counted as being during the life of the

option only if its ex-dividend date occurs during the life of the option.

Example 15.9

Consider a European call option on a stock when there are ex-dividend dates in

two months and five months. The dividend on each ex-dividend date is expected

to be $0.50. The current share price is $40, the exercise price is $40, the stock price

volatility is 30% per annum, the risk-free rate of interest is 9% per annum, and

the time to maturity is six months. The present value of the dividends is

0:5e�0:09�2=12 þ 0:5e�0:09�5=12 ¼ 0:9742

The option price can therefore be calculated from the Black–Scholes–Merton

11 For tax reasons the stock price may go down by somewhat less than the cash amount of the dividend. To

take account of this phenomenon, we need to interpret the word ‘dividend’ in the context of option pricing as

the reduction in the stock price on the ex-dividend date caused by the dividend. Thus, if a dividend of $1 per

share is anticipated and the share price normally goes down by 80% of the dividend on the ex-dividend date,

the dividend should be assumed to be $0.80 for the purpose of the analysis.

12 This is not quite the same as the volatility of the whole stock price. (In theory, they cannot both follow

geometric Brownian motion.) At time zero, the volatility of the risky component is approximately equal to

the volatility of the whole stock price multiplied by S0=ðS0 �DÞ, where D is the present value of the

dividends.
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formula, with S0 ¼ 40� 0:9742 ¼ 39:0258, K ¼ 40, r ¼ 0:09, � ¼ 0:3, and

T ¼ 0:5:

d1 ¼
lnð39:0258=40Þ þ ð0:09þ 0:32=2Þ � 0:5

0:3
ffiffiffiffiffiffiffi

0:5
p ¼ 0:2020

d2 ¼
lnð39:0258=40Þ þ ð0:09� 0:32=2Þ � 0:5

0:3
ffiffiffiffiffiffiffi

0:5
p ¼ �0:0102

Using the NORMSDIST function in Excel gives

Nðd1Þ ¼ 0:5800; Nðd2Þ ¼ 0:4959

and, from equation (15.20), the call price is

39:0258 � 0:5800 � 40e�0:09�0:5 � 0:4959 ¼ 3:67
or $3.67.

Some researchers have criticized the approach just described for calculating the value

of a European option on a dividend-paying stock. They argue that volatility should be

applied to the stock price, not to the stock price less the present value of dividends.

A number of different numerical procedures have been suggested for doing this.13 When

volatility is calculated from historical data, it might make sense to use one of these

procedures. However, in practice the volatility used to price an option is nearly always

implied from the prices of other options using procedures we will outline in Chapter 20.

If an analyst uses the same model for both implying and applying volatilities, the

resulting prices should be accurate and not highly model dependent. Another important

point is that in practice, as will be explained in Chapter 18, practitioners usually value a

European option in terms of the forward price of the underlying asset. This avoids the

need to estimate explicitly the income that is expected from the asset. The volatility of

the forward stock price is the same as the volatility of the stock price minus the present

value of dividends.

The model we have proposed where the stock price is divided into two components is

internally consistent and widely used in practice. We will use the same model when

valuing American options in Chapter 21.

American Call Options

Consider next American call options. Chapter 11 showed that in the absence of

dividends American options should never be exercised early. An extension to the

argument shows that, when there are dividends, it can only be optimal to exercise at

a time immediately before the stock goes ex-dividend. We assume that n ex-dividend

dates are anticipated and that they are at times t1, t2, . . . , tn, with t1 < t2 < � � � < tn.

The dividends corresponding to these times will be denoted by D1, D2, . . . , Dn,

respectively.

We start by considering the possibility of early exercise just prior to the final

ex-dividend date (i.e., at time tn). If the option is exercised at time tn, the investor

receives
SðtnÞ �K

13 See, for example, N. Areal and A. Rodrigues, ‘‘Fast Trees for Options with Discrete Dividends,’’ Journal

of Derivatives, 21, 1 (Fall 2013), 49–63.
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where SðtÞ denotes the stock price at time t. If the option is not exercised, the stock

price drops to SðtnÞ �Dn. As shown by equation (11.4), the value of the option is then

greater than

SðtnÞ �Dn �Ke
�rðT�tnÞ

It follows that, if

SðtnÞ �Dn �Ke
�rðT�tnÞ > SðtnÞ � K

that is,

Dn 6 K
	

1� e
�rðT�tnÞ
 ð15:24Þ

it cannot be optimal to exercise at time tn. On the other hand, if

Dn > K
	

1� e
�rðT�tnÞ
 ð15:25Þ

for any reasonable assumption about the stochastic process followed by the stock price,

it can be shown that it is always optimal to exercise at time tn for a sufficiently high

value of SðtnÞ. The inequality in (15.25) will tend to be satisfied when the final ex-

dividend date is fairly close to the maturity of the option (i.e., T � tn is small) and the

dividend is large.

Consider next time tn�1, the penultimate ex-dividend date. If the option is exercised

immediately prior to time tn�1, the investor receives Sðtn�1Þ �K. If the option is not

exercised at time tn�1, the stock price drops to Sðtn�1Þ �Dn�1 and the earliest

subsequent time at which exercise could take place is tn. Hence, from equation (11.4),

a lower bound to the option price if it is not exercised at time tn�1 is

Sðtn�1Þ �Dn�1 �Ke
�rðtn�tn�1Þ

It follows that if

Sðtn�1Þ �Dn�1 �Ke
�rðtn�tn�1Þ > Sðtn�1Þ �K

or

Dn�1 6 K
	

1� e�rðtn�tn�1Þ



it is not optimal to exercise immediately prior to time tn�1. Similarly, for any i < n, if

Di 6 K
	

1� e
�rðtiþ1�tiÞ
 ð15:26Þ

it is not optimal to exercise immediately prior to time ti.

The inequality in (15.26) is approximately equivalent to

Di 6 Krðtiþ1 � tiÞ

Assuming that K is fairly close to the current stock price, this inequality is satisfied

when the dividend yield on the stock is less than the risk-free rate of interest. This is

often the case.

We can conclude from this analysis that, in many circumstances, the most likely

time for the early exercise of an American call is immediately before the final ex-

dividend date, tn. Furthermore, if inequality (15.26) holds for i ¼ 1, 2, . . . , n � 1 and

inequality (15.24) holds, we can be certain that early exercise is never optimal, and the

American option can be treated as a European option.
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Black’s Approximation

Black suggests an approximate procedure for taking account of early exercise in call

options.14 This involves calculating, as described earlier in this section, the prices of

European options that mature at times T and tn, and then setting the American price

equal to the greater of the two.15 This is an approximation because it in effect assumes

the option holder has to decide at time zero whether the option will be exercised at

time T or tn.

SUMMARY

We started this chapter by examining the properties of the process for stock prices

introduced in Chapter 14. The process implies that the price of a stock at some future

time, given its price today, is lognormal. It also implies that the continuously com-

pounded return from the stock in a period of time is normally distributed. Our

uncertainty about future stock prices increases as we look further ahead. The standard

deviation of the logarithm of the stock price is proportional to the square root of how

far ahead we are looking.

To estimate the volatility � of a stock price empirically, the stock price is observed at

fixed intervals of time (e.g., every day, every week, or every month). For each time

period, the natural logarithm of the ratio of the stock price at the end of the time period

to the stock price at the beginning of the time period is calculated. The volatility is

estimated as the standard deviation of these numbers divided by the square root of the

length of the time period in years. Usually, days when the exchanges are closed are

ignored in measuring time for the purposes of volatility calculations.

The differential equation for the price of any derivative dependent on a stock can be

obtained by creating a riskless portfolio of the derivative and the stock. Because the

derivative’s price and the stock price both depend on the same underlying source of

uncertainty, this can always be done. The portfolio that is created remains riskless for

only a very short period of time. However, the return on a riskless porfolio must always

be the risk-free interest rate if there are to be no arbitrage opportunities.

The expected return on the stock does not enter into the Black–Scholes–Merton

differential equation. This leads to an extremely useful result known as risk-neutral

valuation. This result states that when valuing a derivative dependent on a stock price,

we can assume that the world is risk neutral. This means that we can assume that the

expected return from the stock is the risk-free interest rate, and then discount expected

payoffs at the risk-free interest rate. The Black–Scholes–Merton equations for Eur-

opean call and put options can be derived by either solving their differential equation or

by using risk-neutral valuation.

An implied volatility is the volatility that, when used in conjunction with the Black–

14 See F. Black, ‘‘Fact and Fantasy in the Use of Options,’’ Financial Analysts Journal, 31 (July/August

1975): 36–41, 61–72.

15 For an exact formula, suggested by Roll, Geske, and Whaley, for valuing American calls when there is

only one ex-dividend date, see Technical Note 4 at www.rotman.utoronto.ca/�hull/TechnicalNotes. This
involves the cumulative bivariate normal distribution function. A procedure for calculating this function is

given in Technical Note 5 and a worksheet for calculating the cumulative bivariate normal distribution can be

found on the author’s website.
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Scholes–Merton option pricing formula, gives the market price of the option. Traders

monitor implied volatilities. They often quote the implied volatility of an option rather

than its price. They have developed procedures for using the volatilities implied by the

prices of actively traded options to estimate volatilities for other options.

The Black–Scholes–Merton results can be extended to cover European call and put

options on dividend-paying stocks. The procedure is to use the Black–Scholes–Merton

formula with the stock price reduced by the present value of the dividends anticipated

during the life of the option, and the volatility equal to the volatility of the stock price

net of the present value of these dividends.

In theory, it can be optimal to exercise American call options immediately before any

ex-dividend date. In practice, it is often only necessary to consider the final ex-dividend

date. Fischer Black has suggested an approximation. This involves setting the American

call option price equal to the greater of two European call option prices. The first

European call option expires at the same time as the American call option; the second

expires immediately prior to the final ex-dividend date.
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Practice Questions (Answers in Solutions Manual)

15.1. What does the Black–Scholes–Merton stock option pricing model assume about the

probability distribution of the stock price in one year? What does it assume about the

probability distribution of the continuously compounded rate of return on the stock

during the year?

15.2. The volatility of a stock price is 30% per annum. What is the standard deviation of the

percentage price change in one trading day?

15.3. Explain the principle of risk-neutral valuation.

15.4. Calculate the price of a 3-month European put option on a non-dividend-paying stock

with a strike price of $50 when the current stock price is $50, the risk-free interest rate is

10% per annum, and the volatility is 30% per annum.

15.5. What difference does it make to your calculations in Problem 15.4 if a dividend of $1.50

is expected in 2 months?

15.6. What is implied volatility ? How can it be calculated?

15.7. A stock price is currently $40. Assume that the expected return from the stock is 15%

and that its volatility is 25%. What is the probability distribution for the rate of return

(with continuous compounding) earned over a 2-year period?

15.8. A stock price follows geometric Brownian motion with an expected return of 16% and a

volatility of 35%. The current price is $38.

(a) What is the probability that a European call option on the stock with an exercise

price of $40 and a maturity date in 6 months will be exercised?

(b) What is the probability that a European put option on the stock with the same

exercise price and maturity will be exercised?

15.9. Using the notation in this chapter, prove that a 95% confidence interval for ST is

between S0e
ð���2=2ÞT�1:96�

ffiffiffi

T
p

and S0e
ð���2=2ÞTþ1:96�

ffiffiffi

T
p

.

15.10. A portfolio manager announces that the average of the returns realized in each year of

the last 10 years is 20% per annum. In what respect is this statement misleading?

15.11. Assume that a non-dividend-paying stock has an expected return of � and a volatility

of �. An innovative financial institution has just announced that it will trade a security

that pays off a dollar amount equal to ln ST at time T , where ST denotes the value of the

stock price at time T .

(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price, S, at time t.

(b) Confirm that your price satisfies the differential equation (15.16).

15.12. Consider a derivative that pays off S
n
T at time T , where ST is the stock price at that time.

When the stock pays no dividends and its price follows geometric Brownian motion, it

can be shown that its price at time t (t 6 T ) has the form hðt; T ÞS n, where S is the stock

price at time t and h is a function only of t and T .

(a) By substituting into the Black–Scholes–Merton partial differential equation, derive

an ordinary differential equation satisfied by hðt; T Þ.
(b) What is the boundary condition for the differential equation for hðt;T Þ?
(c) Show that hðt;T Þ ¼ e½0:5�

2nðn�1Þþrðn�1Þ	ðT�tÞ, where r is the risk-free interest rate and �

is the stock price volatility.
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15.13. What is the price of a European call option on a non-dividend-paying stock when the

stock price is $52, the strike price is $50, the risk-free interest rate is 12% per annum, the

volatility is 30% per annum, and the time to maturity is 3 months?

15.14. What is the price of a European put option on a non-dividend-paying stock when the

stock price is $69, the strike price is $70, the risk-free interest rate is 5% per annum, the

volatility is 35% per annum, and the time to maturity is 6 months?

15.15. Consider an American call option on a stock. The stock price is $70, the time to maturity

is 8 months, the risk-free rate of interest is 10% per annum, the exercise price is $65, and

the volatility is 32%. A dividend of $1 is expected after 3 months and again after

6 months. Show that it can never be optimal to exercise the option on either of the two

dividend dates. Use DerivaGem to calculate the price of the option.

15.16. A call option on a non-dividend-paying stock has a market price of $21
2
. The stock price

is $15, the exercise price is $13, the time to maturity is 3 months, and the risk-free

interest rate is 5% per annum. What is the implied volatility?

15.17. With the notation used in this chapter:

(a) What is N 0ðxÞ?
(b) Show that SN 0ðd1Þ ¼ Ke

�rðT�tÞ
N

0ðd2Þ, where S is the stock price at time t and

d1 ¼
lnðS=KÞ þ ðr þ �

2
=2ÞðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffi

T � t
p ; d2 ¼

lnðS=KÞ þ ðr � �
2
=2ÞðT � tÞ

�
ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

(c) Calculate @d1=@S and @d2=@S.

(d) Show that when c ¼ SNðd1Þ �Ke�rðT�tÞNðd2Þ, it follows that
@c

@t
¼ �rKe�rðT�tÞNðd2Þ � SN 0ðd1Þ

�

2
ffiffiffiffiffiffiffiffiffiffiffi

T � t
p

where c is the price of a call option on a non-dividend-paying stock.

(e) Show that @c=@S ¼ Nðd1Þ.
(f ) Show that c satisfies the Black–Scholes–Merton differential equation.

(g) Show that c satisfies the boundary condition for a European call option, i.e., that

c ¼ maxðS �K; 0Þ as t ! T .

15.18. Show that the Black–Scholes–Merton formulas for call and put options satisfy put–call

parity.

15.19. A stock price is currently $50 and the risk-free interest rate is 5%. Use the DerivaGem

software to translate the following table of European call options on the stock into a

table of implied volatilities, assuming no dividends. Are the option prices consistent with

the assumptions underlying Black–Scholes–Merton?

Maturity (months)

Strike price ($) 3 6 12

45 7.0 8.3 10.5

50 3.7 5.2 7.5

55 1.6 2.9 5.1

15.20. Explain carefully why Black’s approach to evaluating an American call option on a

dividend-paying stock may give an approximate answer even when only one dividend is

anticipated. Does the answer given by Black’s approach understate or overstate the true

option value? Explain your answer.
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15.21. Consider an American call option on a stock. The stock price is $50, the time to maturity

is 15 months, the risk-free rate of interest is 8% per annum, the exercise price is $55, and

the volatility is 25%. Dividends of $1.50 are expected in 4 months and 10 months. Show

that it can never be optimal to exercise the option on either of the two dividend dates.

Calculate the price of the option.

15.22. Show that the probability that a European call option will be exercised in a risk-neutral

world is, with the notation introduced in this chapter, Nðd2Þ. What is an expression for the

value of a derivative that pays off $100 if the price of a stock at time T is greater than K ?

15.23. Use the result in equation (15.17) to determine the value of a perpetual American put

option on a non-dividend-paying stock with strike price K if it is exercised when the

stock price equals H where H < K. Assume that the current stock price S is greater than

H. What is the value of H that maximizes the option value? Deduce the value of a

perpetual American put with strike price K.

15.24. A company has an issue of executive stock options outstanding. Should dilution be

taken into account when the options are valued? Explain your answer.

15.25. A company’s stock price is $50 and 10 million shares are outstanding. The company is

considering giving its employees 3 million at-the-money 5-year call options. Option

exercises will be handled by issuing more shares. The stock price volatility is 25%, the

5-year risk-free rate is 5%, and the company does not pay dividends. Estimate the cost to

the company of the employee stock option issue.

Further Questions

15.26. If the volatility of a stock is 18% per annum, estimate the standard deviation of the

percentage price change in (a) 1 day, (b) 1 week, and (c) 1 month.

15.27. A stock price is currently $50. Assume that the expected return from the stock is 18%

and its volatility is 30%. What is the probability distribution for the stock price in

2 years? Calculate the mean and standard deviation of the distribution. Determine the

95% confidence interval.

15.28. Suppose that observations on a stock price (in dollars) at the end of each of 15 consecutive

weeks are as follows:

30:2; 32:0; 31:1; 30:1; 30:2; 30:3; 30:6; 33:0; 32:9; 33:0; 33:5; 33:5; 33:7; 33:5; 33:2

Estimate the stock price volatility. What is the standard error of your estimate?

15.29. A financial institution plans to offer a security that pays off a dollar amount equal to S
2
T

at time T , where ST is the price at time T of a stock that pays no dividends.

(a) Use risk-neutral valuation to calculate the price of the security at time t in terms of

the stock price S at time t. (Hint : The expected value of S 2
T can be calculated from

the mean and variance of ST given in Section 15.1.)

(b) Confirm that your price satisfies the differential equation (15.16).

15.30. Consider an option on a non-dividend-paying stock when the stock price is $30, the

exercise price is $29, the risk-free interest rate is 5%, the volatility is 25% per annum,

and the time to maturity is 4 months.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is an American call?
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(c) What is the price of the option if it is a European put?

(d) Verify that put–call parity holds.

15.31. Assume that the stock in Problem 15.30 is due to go ex-dividend in 11
2
months. The

expected dividend is 50 cents.

(a) What is the price of the option if it is a European call?

(b) What is the price of the option if it is a European put?

(c) If the option is an American call, are there any circumstances under which it will be

exercised early?

15.32. Consider an American call option when the stock price is $18, the exercise price is $20,

the time to maturity is 6 months, the volatility is 30% per annum, and the risk-free

interest rate is 10% per annum. Two equal dividends are expected during the life of the

option with ex-dividend dates at the end of 2 months and 5 months. Assume the

dividends are 40 cents. Use Black’s approximation and the DerivaGem software to

value the option. How high can the dividends be without the American option being

worth more than the corresponding European option?
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APPENDIX

PROOF OF THE BLACK–SCHOLES–MERTON FORMULA USING
RISK-NEUTRAL VALUATION

We will prove the Black–Scholes result by first proving another key result that will also

be useful in future chapters.

Key Result

If V is lognormally distributed and the standard deviation of lnV is w, then

E½maxðV �K; 0Þ	 ¼ EðV ÞNðd1Þ �KNðd2Þ ð15A:1Þ
where

d1 ¼
ln½EðV Þ=K	 þ w

2
=2

w

d2 ¼
ln½EðV Þ=K	 � w2=2

w

and E denotes the expected value.

Proof of Key Result

Define gðV Þ as the probability density function of V . It follows that

E½maxðV �K; 0Þ	 ¼
ð1

K

ðV �KÞgðV Þ dV ð15A:2Þ

The variable lnV is normally distributed with standard deviation w. From the proper-

ties of the lognormal distribution, the mean of lnV is m, where16

m ¼ ln½EðV Þ	 � w
2
=2 ð15A:3Þ

Define a new variable

Q ¼ lnV �m

w
ð15A:4Þ

This variable is normally distributed with a mean of zero and a standard deviation

of 1.0. Denote the density function for Q by hðQÞ so that

hðQÞ ¼ 1
ffiffiffiffiffiffi

2

p e�Q

2
=2

Using equation (15A.4) to convert the expression on the right-hand side of equa-

tion (15A.2) from an integral over V to an integral over Q, we get

E½maxðV �K; 0Þ	 ¼
ð1

ðlnK�mÞ=w
ðeQwþm �KÞhðQÞ dQ

or

E½maxðV �K; 0Þ	 ¼
ð1

ðlnK�mÞ=w
e
Qwþm

hðQÞdQ �K

ð1

ðlnK�mÞ=w
hðQÞdQ ð15A:5Þ

16 For a proof of this, see Technical Note 2 at www.rotman.utoronto.ca/�hull/TechnicalNotes.
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Now

eQwþmhðQÞ ¼ 1
ffiffiffiffiffiffi

2

p eð�Q

2þ2Qwþ2mÞ=2 ¼ 1
ffiffiffiffiffiffi

2

p e½�ðQ�wÞ2þ2mþw

2 	=2

¼ e
mþw2=2

ffiffiffiffiffiffi

2

p e½�ðQ�wÞ2 	=2 ¼ emþw

2
=2hðQ� wÞ

This means that equation (15A.5) becomes

E½maxðV �K; 0Þ	 ¼ e
mþw

2
=2

ð1

ðlnK�mÞ=w
hðQ � wÞdQ �K

ð1

ðlnK�mÞ=w
hðQÞdQ ð15A:6Þ

If we define NðxÞ as the probability that a variable with a mean of zero and a standard

deviation of 1.0 is less than x, the first integral in equation (15A.6) is

1�N½ðlnK�mÞ=w� w	 ¼ N½ð� lnKþmÞ=wþ w	

Substituting for m from equation (15A.3) leads to

N

�

ln½EðV Þ=K	 þ w
2
=2

w

�

¼ Nðd1Þ

Similarly the second integral in equation (15A.6) is Nðd2Þ. Equation (15A.6), therefore,

becomes

E½maxðV �K; 0Þ	 ¼ e
mþw

2
=2
Nðd1Þ �KNðd2Þ

Substituting for m from equation (15A.3) gives the key result.

The Black–Scholes–Merton Result

We now consider a call option on a non-dividend-paying stock maturing at time T . The

strike price is K, the risk-free rate is r, the current stock price is S0, and the volatility

is �. As shown in equation (15.22), the call price c is given by

c ¼ e�rT Ê½maxðST �K; 0Þ	 ð15A:7Þ

where ST is the stock price at time T and Ê denotes the expectation in a risk-neutral

world. Under the stochastic process assumed by Black–Scholes–Merton, ST is log-

normal. Also, from equations (15.3) and (15.4), ÊðST Þ ¼ S0e
rT and the standard

deviation of ln ST is �
ffiffiffiffi

T
p

.

From the key result just proved, equation (15A.7) implies

c ¼ e�rT ½S0erTNðd1Þ �KNðd2Þ	 ¼ S0Nðd1Þ �Ke�rTNðd2Þ
where

d1 ¼
ln½ÊðST Þ=K	 þ �

2
T=2

�
ffiffiffiffi

T
p ¼ lnðS0=KÞ þ ðrþ �

2
=2ÞT

�
ffiffiffiffi

T
p

d2 ¼
ln½ÊðST Þ=K	 � �

2
T=2

�
ffiffiffiffi

T
p ¼ lnðS0=KÞ þ ðr� �

2
=2ÞT

�
ffiffiffiffi

T
p

This is the Black–Scholes–Merton result.
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