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C H A P T E R

The simple regression model can be used to study the relationship between two 
variables. For reasons we will see, the simple regression model has limitations as a 
general tool for empirical analysis. Nevertheless, it is sometimes appropriate as an 

empirical tool. Learning how to interpret the simple regression model is good practice for 
studying multiple regression, which we will do in subsequent chapters.

2.1 Defi nition of the Simple 
Regression Model
Much of applied econometric analysis begins with the following premise: y and x are two 
variables, representing some population, and we are interested in “explaining y in terms 
of x,” or in “studying how y varies with changes in x.” We discussed some examples in 
Chapter 1, including: y is soybean crop yield and x is amount of fertilizer; y is hourly wage 
and x is years of education; and y is a community crime rate and x is number of police 
officers.
 In writing down a model that will “explain y in terms of x,” we must confront three 
issues. First, since there is never an exact relationship between two variables, how do we 
allow for other factors to affect y? Second, what is the functional relationship between 
y and x? And third, how can we be sure we are capturing a ceteris paribus relationship 
between y and x (if that is a desired goal)?
 We can resolve these ambiguities by writing down an equation relating y to x. A simple 
equation is 

 y � �
0 
� �

1
x � u. 2.1

Equation (2.1), which is assumed to hold in the population of interest, defines the simple 
linear regression model. It is also called the two-variable linear regression model or 
bivariate linear regression model because it relates the two variables x and y. We now 
discuss the meaning of each of the quantities in (2.1). [Incidentally, the term “regression” 
has origins that are not especially important for most modern econometric applications, 
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so we will not explain it here. See Stigler (1986) for an engaging history of regression 
analysis.]
 When related by (2.1), the variables y and x have several different names used interchange-
ably, as follows: y is called the dependent variable, the explained variable, the response 
variable, the predicted variable, or the regressand; x is called the independent variable, the 
explanatory variable, the control variable, the predictor variable, or the regressor. (The 
term covariate is also used for x.) The terms “dependent variable” and “independent variable” 
are frequently used in econometrics. But be aware that the label “independent” here does not 
refer to the statistical notion of independence between random variables (see Appendix B).
 The terms “explained” and “explanatory” variables are probably the most descriptive. 
“Response” and “control” are used mostly in the experimental sciences, where the variable 
x is under the experimenter’s control. We will not use the terms “predicted variable” and 
“predictor,” although you sometimes see these in applications that are purely about predic-
tion and not causality. Our terminology for simple regression is summarized in Table 2.1.
 The variable u, called the error term or disturbance in the relationship, represents factors 
other than x that affect y. A simple regression analysis effectively treats all factors affecting y 
other than x as being unobserved. You can usefully think of u as standing for “unobserved.”
 Equation (2.1) also addresses the issue of the functional relationship between y and x. 
If the other factors in u are held fixed, so that the change in u is zero, �u � 0, then x has 
a linear effect on y:

 �y � �
1
�x if �u � 0. 2.2

Thus, the change in y is simply �
1 
multiplied by the change in x. This means that �

1 
is the 

slope parameter in the relationship between y and x, holding the other factors in u fixed; 
it is of primary interest in applied economics. The intercept parameter �

0
,
 
sometimes 

called the constant term, also has its uses, although it is rarely central to an analysis.

TABLE  2 . 1

Terminology for Simple Regression

y x

Dependent variable Independent variable

Explained variable Explanatory variable

Response variable Control variable

Predicted variable Predictor variable

Regressand Regressor
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E x a m p l e  2 . 1

[Soybean Yield and Fertilizer]

Suppose that soybean yield is determined by the model

 yield � �
0 
� �

1
fertilizer � u, 2.3

so that y � yield and x � fertilizer. The agricultural researcher is interested in the effect of fertilizer 
on yield, holding other factors fixed. This effect is given by �

1
. The error term u contains factors 

such as land quality, rainfall, and so on. The coefficient �
1
 measures the effect of fertilizer on yield, 

holding other factors fixed: �yield � �
1
� fertilizer.

 

E x a m p l e  2 . 2

[A Simple Wage Equation]

A model relating a person’s wage to observed education and other unobserved factors is

 wage � �
0 
� �

1
educ � u. 2.4

If wage is measured in dollars per hour and educ is years of education, then �
1
 measures the change 

in hourly wage given another year of education, holding all other factors fixed. Some of those fac-
tors include labor force experience, innate ability, tenure with current employer, work ethic, and 
innumerable other things.

 

 The linearity of (2.1) implies that a one-unit change in x has the same effect on y, 
regardless of the initial value of x. This is unrealistic for many economic applications. For 
 example, in the wage-education example, we might want to allow for increasing returns: 
the next year of education has a larger effect on wages than did the previous year. We will 
see how to allow for such possibilities in Section 2.4.
 The most difficult issue to address is whether model (2.1) really allows us to draw ceteris 
paribus conclusions about how x affects y. We just saw in equation (2.2) that �

1 
does measure 

the effect of x on y, holding all other factors (in u) fixed. Is this the end of the causality issue? 
Unfortunately, no. How can we hope to learn in general about the ceteris paribus effect of x 
on y, holding other factors fixed, when we are ignoring all those other factors?
 Section 2.5 will show that we are only able to get reliable estimators of �

0 
and �

1 
from 

a random sample of data when we make an assumption restricting how the unobservable 
u is related to the explanatory variable x. Without such a restriction, we will not be able 
to estimate the ceteris paribus effect, �

1
. Because u and x are random variables, we need a 

concept grounded in probability.
 Before we state the key assumption about how x and u are related, we can always make 
one assumption about u. As long as the intercept �

0 
is included in the equation, nothing is 

lost by assuming that the average value of u in the population is zero. Mathematically,

 E(u) � 0. 2.5
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Assumption (2.5) says nothing about the relationship between u and x, but simply makes 
a statement about the distribution of the unobservables in the population. Using the previ-
ous examples for illustration, we can see that assumption (2.5) is not very restrictive. In 
Example 2.1, we lose nothing by normalizing the unobserved factors affecting soybean 
yield, such as land quality, to have an average of zero in the population of all cultivated 
plots. The same is true of the unobserved factors in Example 2.2. Without loss of gener-
ality, we can assume that things such as average ability are zero in the population of all 
working people. If you are not convinced, you should work through Problem 2.2 to see that 
we can always redefine the intercept in equation (2.1) to make (2.5) true.
 We now turn to the crucial assumption regarding how u and x are related. A natural 
measure of the association between two random variables is the correlation coefficient. 
(See Appendix B for definition and properties.) If u and x are uncorrelated, then, as ran-
dom variables, they are not linearly related. Assuming that u and x are uncorrelated goes 
a long way toward defining the sense in which u and x should be unrelated in equation 
(2.1). But it does not go far enough, because correlation measures only linear dependence 
between u and x. Correlation has a somewhat counterintuitive feature: it is possible for u to 
be uncorrelated with x while being correlated with functions of x, such as x2. (See Section B.4 
for further discussion.) This possibility is not acceptable for most regression purposes, as it 
causes problems for interpreting the model and for deriving statistical properties. A better 
assumption involves the expected value of u given x.
 Because u and x are random variables, we can define the conditional distribution of u 
given any value of x. In particular, for any x, we can obtain the expected (or average) value 
of u for that slice of the population described by the value of x. The crucial assumption is that 
the average value of u does not depend on the value of x. We can write this assumption as

 E(u�x) � E(u). 2.6

Equation (2.6) says that the average value of the unobservables is the same across all slices 
of the population determined by the value of x and that the common average is necessar-
ily equal to the average of u over the entire population. When assumption (2.6) holds, we 
say that u is mean independent of x. (Of course, mean independence is implied by full 
independence between u and x, an assumption often used in basic probability and statis-
tics.) When we combine mean independence with assumption (2.5), we obtain the zero 
conditional mean assumption, E(u�x) � 0. It is critical to remember that equation (2.6) is 
the assumption with impact; assumption (2.5) essentially defines the intercept, �

0
.

 Let us see what (2.6) entails in the wage example. To simplify the discussion, 
assume that u is the same as innate ability. Then (2.6) requires that the average level of 
ability is the same regardless of years of education. For example, if E(abil�8) denotes the 
average ability for the group of all people with eight years of education, and E(abil�16) 
denotes the average ability among people in the population with sixteen years of educa-
tion, then (2.6) implies that these must be the same. In fact, the average ability level 
must be the same for all education levels. If, for example, we think that average ability 
increases with years of education, then (2.6) is false. (This would happen if, on aver-
age, people with more ability choose to become more educated.) As we cannot observe 
innate ability, we have no way of knowing whether or not average ability is the same for 
all education levels. But this is an issue that we must address before relying on simple 
regression analysis.
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 In the fertilizer example, if fertilizer 
amounts are chosen independently of 
other features of the plots, then (2.6) 
will hold: the average land quality will 
not depend on the amount of fertilizer. 
However, if more fertilizer is put on 
the higher-quality plots of land, then the 
expected value of u changes with the 
level of fertilizer, and (2.6) fails.

 The zero conditional mean assumption gives �
1 

another interpretation that is often 
useful. Taking the expected value of (2.1) conditional on x and using E(u�x) � 0 gives

 E(y�x) � �
0 
� �

1
x. 2.8

Equation (2.8) shows that the population regression function (PRF), E(y�x), is a  linear 
function of x. The linearity means that a one-unit increase in x changes the expected 
value of y by the amount �

1
. For any given value of x, the distribution of y is centered 

about E(y�x), as illustrated in Figure 2.1.

Q u e s t i o n  2 . 1

Suppose that a score on a final exam, score, depends on classes 
attended (attend) and unobserved factors that affect exam per-
formance (such as student ability). Then

score � �
0
 � �

1
attend � u. 2.7

When would you expect this model to satisfy (2.6)?

y

x1

E(y�x) � b0 � b1x

x2 x3

F I GURE  2 . 1

E(y�x) as a linear function of x.
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 It is important to understand that equation (2.8) tells us how the average value of y 
changes with x; it does not say that y equals �

0
 � �

1
x for all units in the population. For 

example, suppose that x is the high school grade point average and y is the college GPA, and 
we happen to know that E(colGPA�hsGPA) � 1.5 � 0.5 hsGPA. [Of course, in practice, we 
never know the population intercept and slope, but it is useful to pretend momentarily that we 
do to understand the nature of equation (2.8).] This GPA equation tells us the average col-
lege GPA among all students who have a given high school GPA. So suppose that hsGPA � 
3.6. Then the average colGPA for all high school graduates who attend college with 
hsGPA � 3.6 is 1.5 � 0.5(3.6) � 3.3. We are certainly not saying that every student 
with hsGPA � 3.6 will have a 3.3 college GPA; this is clearly false. The PRF gives us 
a relationship between the average level of y at different levels of x. Some students with 
hsGPA � 3.6 will have a college GPA higher than 3.3, and some will have a lower col-
lege GPA. Whether the actual colGPA is above or below 3.3 depends on the unobserv-
able factors in u, and those differ among students even within the slice of the population 
with hsGPA � 3.6.
 Given the zero conditional mean assumption E(u�x) � 0, it is useful to view equation 
(2.1) as breaking y into two components. The piece �

0
 � �

1
x, which represents E(y�x), is 

called the systematic part of y—that is, the part of y explained by x—and u is called the 
unsystematic part, or the part of y not explained by x. In Chapter 3, when we introduce 
more than one explanatory variable, we will discuss how to determine how large the sys-
tematic part is relative to the unsystematic part.
 In the next section, we will use assumptions (2.5) and (2.6) to motivate estimators of �

0
 

and �
1
 given a random sample of data. The zero conditional mean assumption also plays 

a crucial role in the statistical analysis in Section 2.6.

2.2 Deriving the Ordinary Least 
Squares Estimates
Now that we have discussed the basic ingredients of the simple regression model, we will 
address the important issue of how to estimate the parameters �

0 
and �

1 
in equation (2.1). To 

do this, we need a sample from the population. Let {(x
i
,y

i
): i � 1, …, n} denote a random 

sample of size n from the population. Because these data come from (2.1), we can write

 y
i 
� �

0 
� �

1
x

i 
� u

i 
2.9

for each i. Here, u
i 
is the error term for observation i because it contains all factors affect-

ing y
i 
other than x

i
.

 As an example, x
i 
might be the annual income and y

i 
the annual savings for family 

i during a particular year. If we have collected data on fifteen families, then n � 15. A 
scatterplot of such a data set is given in Figure 2.2, along with the (necessarily fictitious) 
 population regression function.
 We must decide how to use these data to obtain estimates of the intercept and slope in 
the population regression of savings on income.
 There are several ways to motivate the following estimation procedure. We will use 
(2.5) and an important implication of assumption (2.6): in the population, u is uncorrelated 
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with x. Therefore, we see that u has zero expected value and that the covariance between 
x and u is zero:

 E(u) � 0 2.10

and

 Cov(x,u) � E(xu) � 0, 2.11

where the first equality in (2.11) follows from (2.10). (See Section B.4 for the defini-
tion and properties of covariance.) In terms of the observable variables x and y and the 
unknown parameters �

0 
and �

1
, equations (2.10) and (2.11) can be written as

 E(y � �
0 
� �

1
x) � 0 2.12

and

 E[x(y � �
0 
� �

1
x)] � 0, 2.13

respectively. Equations (2.12) and (2.13) imply two restrictions on the joint probability 
distribution of (x,y) in the population. Since there are two unknown parameters to estimate, 
we might hope that equations (2.12) and (2.13) can be used to obtain good estimators of 

F I GURE  2 . 2

Scatterplot of savings and income for 15 families, and the population regression 

E(savings�income) � �
0
 � �

1
income.

E(savings�income) � b0 � b1income

savings

0
income

0
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�
0 
and �

1
. In fact, they can be. Given a sample of data, we choose estimates �̂ 

0 and �̂
1 
to 

solve the sample counterparts of (2.12) and (2.13):

 n�1 ∑ 
i�1

   
n

    (y
i 
� �̂

0 
� �̂

1
x

i
) � 0 2.14

and

 n�1 ∑ 
i�1

   
n

    x
i
(y

i 
� �̂

0 
� �̂

1
x

i
) � 0. 2.15

This is an example of the method of moments approach to estimation. (See Section C.4 for a 
discussion of different estimation approaches.) These equations can be solved for �̂

0 
and �̂

1
.

 Using the basic properties of the summation operator from Appendix A, equation (2.14) 
can be rewritten as

 ȳ � �̂
0 
� �̂

1
x̄, 2.16

where ȳ � n�1  ∑ 
i�1

  
n
    y

i 
is the sample average of the y

i 
and likewise for x̄. This equation allows 

us to write �̂
0 
in terms of �̂

1
, ȳ, and x̄:

 �̂
0 
� ȳ � �̂

1
x̄. 2.17

Therefore, once we have the slope estimate �̂
1
, it is straightforward to obtain the intercept 

estimate �̂
0
,
 
given ȳ and x̄.

 Dropping the n�1 in (2.15) (since it does not affect the solution) and plugging (2.17) 
into (2.15) yields

 ∑ 
i�1

   
n

    x
i
 [y

i 
� (ȳ � �̂

1
x̄) � �̂

1
x

i
] � 0,

which, upon rearrangement, gives

 ∑ 
i�1

   
n

    x
i
(y

i 
� ȳ) � �̂

1
  ∑ 

i�1

   
n

    x
i
(x

i 
� x̄).

From basic properties of the summation operator [see (A.7) and (A.8)],

 ∑ 
i�1

   
n

    x
i
(x

i 
� x̄) �  ∑ 

i�1

   
n

    (x
i 
� x̄)2 and  ∑ 

i�1

   
n

    x
i
(y

i 
� ȳ) �  ∑ 

i�1

   
n

    (x
i 
� x̄)(y

i 
� ȳ).

Therefore, provided that

 ∑ 
i�1

   
n

    (x
i 
� x̄)2 � 0, 2.18

the estimated slope is

 �̂
1 
� 

 ∑ 
i�1

   
n

    (x
i 
� x̄) (y

i 
� ȳ)

 ∑ 
i�1

   
n

    (x
i 
� x̄)2 

. 2.19
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Equation (2.19) is simply the sample covariance between x and y divided by the sample 
variance of x. (See Appendix C. Dividing both the numerator and the denominator by 
n � 1 changes nothing.) This makes sense because �

1 
equals the population covariance 

divided by the variance of x when E(u) � 0 and Cov(x,u) � 0. An immediate implication 
is that if x and y are positively correlated in the sample, then �̂

1 
is positive; if x and y are 

negatively correlated, then �̂
1 
is negative.

 Although the method for obtaining (2.17) and (2.19) is motivated by (2.6), the only 
assumption needed to compute the estimates for a particular sample is (2.18). This is 
hardly an assumption at all: (2.18) is true provided the x

i
 in the sample are not all equal to 

the same value. If (2.18) fails, then we have either been unlucky in obtaining our sample 
from the population or we have not specified an interesting problem (x does not vary in 
the population). For example, if y � wage and x � educ, then (2.18) fails only if everyone 
in the sample has the same amount of education (for example, if everyone is a high school 
graduate; see Figure 2.3). If just one person has a different amount of education, then 
(2.18) holds, and the estimates can be computed.
 The estimates given in (2.17) and (2.19) are called the ordinary least squares (OLS) 
estimates of �

0 
and �

1
. To justify this name, for any �̂

0 
and �̂

1
 define a fitted value for y 

when x � x
i
 as

  ̂  y 
i 
� �̂

0
 � �̂

1
x

i
. 2.20

wage

12 educ0

F I GURE  2 . 3

A scatterplot of wage against education when educi � 12 for all i.



 Chapter 2   The Simple Regression Model 31

This is the value we predict for y when x � x
i
 for the given intercept and slope. There is 

a fitted value for each observation in the sample. The residual for observation i is the dif-
ference between the actual y

i 
and its fitted value:

 û
i 
� y

i 
�  ̂  y 

i 
� y

i 
� �̂

0 
� �̂

1
x

i
. 2.21

Again, there are n such residuals. [These are not the same as the errors in (2.9), a point we 
return to in Section 2.5.] The fitted values and residuals are indicated in Figure 2.4.
 Now, suppose we choose �̂

0 
and �̂

1 
to make the sum of squared residuals,

  ∑ 
i�1

   
n

    û
i
2 �  ∑ 

i�1

   
n

    (y
i 
� �̂

0 
� �̂

1
x

i
)2, 2.22

as small as possible. The appendix to this chapter shows that the conditions necessary 
for (�̂

0
,�̂

1
) to minimize (2.22) are given exactly by equations (2.14) and (2.15), without 

n�1. Equations (2.14) and (2.15) are often called the first order conditions for the OLS 
estimates, a term that comes from optimization using calculus (see Appendix A). From 
our previous calculations, we know that the solutions to the OLS first order conditions are 
given by (2.17) and (2.19). The name “ordinary least squares” comes from the fact that 
these estimates minimize the sum of squared residuals.

F I GURE  2 . 4

Fitted values and residuals.

y � b0 � b1x

y

ˆ ˆˆ

x1 xi x

yi

yi � fitted value

y1

ûi � residual

ˆ
y1ˆ
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 When we view ordinary least squares as minimizing the sum of squared residuals, it is 
natural to ask: Why not minimize some other function of the residuals, such as the abso-
lute values of the residuals? In fact, as we will discuss in the more advanced Section 9.4, 
minimizing the sum of the absolute values of the residuals is sometimes very useful. But it 
does have some drawbacks. First, we cannot obtain formulas for the resulting estimators; 
given a data set, the estimates must be obtained by numerical optimization routines. As 
a consequence, the statistical theory for estimators that minimize the sum of the absolute 
residuals is very complicated. Minimizing other functions of the residuals, say, the sum 
of the residuals each raised to the fourth power, has similar drawbacks. (We would never 
choose our estimates to minimize, say, the sum of the residuals themselves, as residuals 
large in magnitude but with opposite signs would tend to cancel out.) With OLS, we will 
be able to derive unbiasedness, consistency, and other important statistical properties rela-
tively easily. Plus, as the motivation in equations (2.13) and (2.14) suggests, and as we will 
see in Section 2.5, OLS is suited for estimating the parameters appearing in the conditional 
mean function (2.8).
 Once we have determined the OLS intercept and slope estimates, we form the OLS 
regression line:

  ̂  y  � �̂
0 
� �̂

1
x, 2.23

where it is understood that �̂
0 

and �̂
1 

have been obtained using equations (2.17) and 
(2.19). The notation  ̂  y , read as “y hat,” emphasizes that the predicted values from equa-
tion (2.23) are estimates. The intercept, �̂

0
, is the predicted value of y when x � 0, 

although in some cases it will not make sense to set x � 0. In those situations, �̂
0 
is not, 

in itself, very interesting. When using (2.23) to compute predicted values of y for various 
values of x, we must account for the intercept in the calculations. Equation (2.23) is also 
called the sample regression function (SRF) because it is the estimated version of the 
population regression function E(y�x) � �

0 
� �

1
x. It is important to remember that the 

PRF is something fixed, but unknown, in the population. Because the SRF is obtained 
for a given sample of data, a new sample will generate a different slope and intercept 
in equation (2.23).
 In most cases, the slope estimate, which we can write as

 �̂
1
 � � ̂  y /�x, 2.24

is of primary interest. It tells us the amount by which  ̂  y  changes when x increases by one 
unit. Equivalently,

 � ̂  y  � �̂
1
�x, 2.25

so that given any change in x (whether positive or negative), we can compute the predicted 
change in y.
 We now present several examples of simple regression obtained by using real data. In 
other words, we find the intercept and slope estimates with equations (2.17) and (2.19). 
Since these examples involve many observations, the calculations were done using an 
 econometrics software package. At this point, you should be careful not to read too much 
into these regressions; they are not necessarily uncovering a causal relationship. We 



 Chapter 2   The Simple Regression Model 33

have said nothing so far about the statistical properties of OLS. In Section 2.5, we con-
sider  statistical properties after we explicitly impose assumptions on the population model 
 equation (2.1).

E x a m p l e  2 . 3

[CEO Salary and Return on Equity]

For the population of chief executive officers, let y be annual salary (salary) in thousands of dol-
lars. Thus, y � 856.3 indicates an annual salary of $856,300, and y � 1,452.6 indicates a salary of 
$1,452,600. Let x be the average return on equity (roe) for the CEO’s firm for the previous three 
years. (Return on equity is defined in terms of net income as a  percentage of common equity.) For 
example, if roe � 10, then average return on equity is 10%.
 To study the relationship between this measure of firm performance and CEO compensation, we 
postulate the simple model

salary � �
0 
� �

1
roe � u.

The slope parameter �
1
 measures the change in annual salary, in thousands of dollars, when return 

on equity increases by one percentage point. Because a higher roe is good for the company, we 
think �

1
 � 0.

 The data set CEOSAL1.RAW contains information on 209 CEOs for the year 1990; these data 
were obtained from Business Week (5/6/91). In this sample, the average annual salary is $1,281,120, 
with the smallest and largest being $223,000 and $14,822,000, respectively. The average return on 
equity for the years 1988, 1989, and 1990 is 17.18%, with the smallest and largest values being 0.5 
and 56.3%, respectively.
 Using the data in CEOSAL1.RAW, the OLS regression line relating salary to roe is

 2salary � 963.191 � 18.501 roe, 2.26

where the intercept and slope estimates have been rounded to three decimal places; we use “salary 
hat” to indicate that this is an estimated equation. How do we interpret the equation? First, if the 
return on equity is zero, roe � 0, then the predicted salary is the intercept, 963.191, which equals 
$963,191 since salary is measured in thousands. Next, we can write the predicted change in sal-
ary as a function of the change in roe: � 2salary � 18.501 (�roe). This means that if the return on 
equity increases by one percentage point, �roe � 1, then salary is predicted to change by about 
18.5, or $18,500. Because (2.26) is a linear equation, this is the estimated change regardless of the 
initial salary.
 We can easily use (2.26) to compare predicted salaries at different values of roe. Suppose 
roe � 30. Then 2salary � 963.191 � 18.501(30) � 1,518,221, which is just over $1.5 million. 
However, this does not mean that a particular CEO whose firm had a roe � 30 earns $1,518,221. 
Many other factors affect salary. This is just our prediction from the OLS regression line (2.26). The 
estimated line is graphed in Figure 2.5, along with the population regression function E(salary�roe). 
We will never know the PRF, so we cannot tell how close the SRF is to the PRF. Another sample of 
data will give a different regression line, which may or may not be closer to the population regression 
line.
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E x a m p l e  2 . 4

[Wage and Education]

For the population of people in the workforce in 1976, let y � wage, where wage is measured in dol-
lars per hour. Thus, for a particular person, if wage � 6.75, the hourly wage is $6.75. Let x � educ 
denote years of schooling; for example, educ � 12 corresponds to a complete high school education. 
Since the average wage in the sample is $5.90, the Consumer Price Index indicates that this amount 
is equivalent to $19.06 in 2003 dollars.
 Using the data in WAGE1.RAW where n � 526 individuals, we obtain the following OLS 
regression line (or sample regression function):

 2wage � �0.90 � 0.54 educ. 2.27

We must interpret this equation with caution. The intercept of �0.90 literally means that a person 
with no education has a predicted hourly wage of �90¢ an hour. This, of course, is silly. It turns out 
that only 18 people in the sample of 526 have less than eight years of  education. Consequently, it 

F I GURE  2 . 5

The OLS regression line 2salary � 963.191 � 18.501 roe and the (unknown) 

population regression function.

salary

963.191

salary � 963.191 � 18.501 roe

E(salary�roe) � b0 � b1roe

roe
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is not surprising that the regression line does 
poorly at very low levels of education. For a 
person with eight years of education, the pre-
dicted wage is 2wage � �0.90 � 0.54(8) � 
3.42, or $3.42 per hour (in 1976 dollars).
 The slope estimate in (2.27) implies that 
one more year of education increases hourly wage by 54 ¢ an hour. Therefore, four more years of 
education increase the predicted wage by 4(0.54) � 2.16, or $2.16 per hour. These are fairly large 
effects. Because of the linear nature of (2.27), another year of education increases the wage by the 
same amount, regardless of the initial level of education. In Section 2.4, we discuss some methods 
that allow for nonconstant marginal effects of our explanatory variables.

 

E x a m p l e  2 . 5

[Voting Outcomes and Campaign Expenditures]

The file VOTE1.RAW contains data on election outcomes and campaign expenditures for 173 two-
party races for the U.S. House of Representatives in 1988. There are two candidates in each race, 
A and B. Let voteA be the percentage of the vote received by Candidate A and shareA be the percent-
age of total campaign expenditures accounted for by Candidate A. Many factors other than shareA 
affect the election outcome (including the quality of the candidates and possibly the dollar amounts 
spent by A and B). Nevertheless, we can estimate a simple regression model to find out whether 
spending more relative to one’s challenger implies a higher percentage of the vote.
 The estimated equation using the 173 observations is

 2voteA � 26.81 � 0.464 shareA. 2.28

This means that if Candidate A’s share of spending increases by one percentage point, Candidate A 
receives almost one-half a percentage point (0.464) more of the total vote. Whether or not this is 
a causal effect is unclear, but it is not unbelievable. If shareA � 50, voteA is predicted to be about 
50, or half the vote.

 

 In some cases, regression analysis 
is not used to determine causality but to 
simply look at whether two variables are 
positively or negatively related, much 
like a standard correlation analysis. An 
example of this occurs in Computer 
Exercise C2.3, where you are asked to use data from Biddle and Hamermesh (1990) on 
time spent sleeping and working to investigate the tradeoff between these two factors.

A Note on Terminology
In most cases, we will indicate the estimation of a relationship through OLS by writing an 
equation such as (2.26), (2.27), or (2.28). Sometimes, for the sake of brevity, it is useful 
to indicate that an OLS regression has been run without actually writing out the equation. 

Q u e s t i o n  2 . 2

The estimated wage from (2.27), when educ � 8, is $3.42 in 1976 
dollars. What is this value in 2003 dollars? (Hint: You have enough 
information in Example 2.4 to answer this question.)

Q u e s t i o n  2 . 3

In Example 2.5, what is the predicted vote for Candidate A if 
shareA � 60 (which means 60 percent)? Does this answer seem 
reasonable?
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We will often indicate that equation (2.23) has been obtained by OLS in saying that we 
run the regression of

 y on x, 2.29

or simply that we regress y on x. The positions of y and x in (2.29) indicate which is the 
dependent variable and which is the independent variable: we always regress the depen-
dent variable on the independent variable. For specific applications, we replace y and x 
with their names. Thus, to obtain (2.26), we regress salary on roe, or to obtain (2.28), we 
regress voteA on shareA.
 When we use such terminology in (2.29), we will always mean that we plan to  estimate 
the intercept, �̂

0
, along with the slope, �̂

1
. This case is appropriate for the vast majority 

of applications. Occasionally, we may want to estimate the relationship between y and x 
assuming that the intercept is zero (so that x � 0 implies that  ̂  y  � 0); we cover this case 
briefly in Section 2.6. Unless explicitly stated otherwise, we always estimate an intercept 
along with a slope.

2.3 Properties of OLS on Any 
Sample of Data
In the previous section, we went through the algebra of deriving the formulas for the OLS 
intercept and slope estimates.  In this section, we cover some further algebraic properties of the 
fitted OLS regression line. The best way to think about these properties is to remember that 
they hold, by construction, for any sample of data.  The harder task—considering the properties 
of OLS across all possible random samples of data—is postponed until Section 2.5.
 Several of the algebraic properties we are going to derive will appear mundane. Never-
theless, having a grasp of these properties helps us to figure out what happens to the OLS 
estimates and related statistics when the data are manipulated in certain ways, such as 
when the measurement units of the dependent and independent variables change.

Fitted Values and Residuals
We assume that the intercept and slope estimates, �̂

0 
and �̂

1
, have been obtained for the 

given sample of data. Given �̂
0 
and �̂

1
, we can obtain the fitted value  ̂  y 

i 
for each observa-

tion. [This is given by equation (2.20).] By definition, each fitted value of  ̂  y 
i 
is on the 

OLS regression line. The OLS residual associated with observation i, û
i
, is the difference 

between y
i 
and its fitted value, as given in equation (2.21). If û

i 
is positive, the line under-

predicts y
i
; if û

i 
is negative, the line overpredicts y

i
. The ideal case for observation i is when 

û
i 
� 0, but in most cases, every residual is not equal to zero. In other words, none of the 

data points must actually lie on the OLS line.

E x a m p l e  2 . 6

[CEO Salary and Return on Equity]

Table 2.2 contains a listing of the first 15 observations in the CEO data set, along with the fitted 
values, called salaryhat, and the residuals, called uhat.
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TABLE  2 . 2

Fitted Values and Residuals for the First 15 CEOs

obsno roe salary salaryhat uhat

1 14.1 1095 1224.058 �129.0581

2 10.9 1001 1164.854 �163.8542

3 23.5 1122 1397.969 �275.9692

4 5.9 578 1072.348 �494.3484

5 13.8 1368 1218.508 149.4923

6 20.0 1145 1333.215 �188.2151

7 16.4 1078 1266.611 �188.6108

8 16.3 1094 1264.761 �170.7606

9 10.5 1237 1157.454 79.54626

10 26.3 833 1449.773 �616.7726

11 25.9 567 1442.372 �875.3721

12 26.8 933 1459.023 �526.0231

13 14.8 1339 1237.009 101.9911

14 22.3 937 1375.768 �438.7678

15 56.3 2011 2004.808 6.191895

 The first four CEOs have lower salaries than what we predicted from the OLS regression line 
(2.26); in other words, given only the firm’s roe, these CEOs make less than what we predicted. As 
can be seen from the positive uhat, the fifth CEO makes more than predicted from the OLS regres-
sion line.

 

Algebraic Properties of OLS Statistics
There are several useful algebraic properties of OLS estimates and their associated statis-
tics. We now cover the three most important of these.
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 (1) The sum, and therefore the sample average of the OLS residuals, is zero.
Mathematically,

  ∑ 
i�1

   
n

     ̂  u 
i 
� 0. 2.30

This property needs no proof; it follows immediately from the OLS first order condition 
(2.14), when we remember that the residuals are defined by û

i 
� y

i 
� �̂

0 
� �̂

1
x

i
. In other 

words, the OLS estimates �̂
0 
and �̂

1 
are chosen to make the residuals add up to zero (for any 

data set). This says nothing about the residual for any particular observation i.
 (2) The sample covariance between the regressors and the OLS residuals is zero. 
This follows from the first order condition (2.15), which can be written in terms of the 
residuals as

  ∑ 
i�1

   
n

    x
i
û

i 
� 0. 2.31

The sample average of the OLS residuals is zero, so the left-hand side of (2.31) is 
 proportional to the sample covariance between x

i 
and û

i
.

 (3) The point (x̄,ȳ) is always on the OLS regression line. In other words, if we take 
equation (2.23) and plug in x̄ for x, then the predicted value is ȳ. This is exactly what 
 equation (2.16) showed us.

E x a m p l e  2 . 7

[Wage and Education]

For the data in WAGE1.RAW, the average hourly wage in the sample is 5.90, rounded to two deci-
mal places, and the average education is 12.56. If we plug educ � 12.56 into the OLS regression 
line (2.27), we get 1wage � �0.90 � 0.54(12.56) � 5.8824, which equals 5.9 when rounded to the 
first decimal place. These figures do not exactly agree because we have rounded the average wage 
and education, as well as the intercept and slope estimates. If we did not initially round any of the 
values, we would get the answers to agree more closely, but to little useful effect.

 

 Writing each y
i
 as its fitted value, plus its residual, provides another way to interpret 

an OLS regression. For each i, write

 y
i 
�  ̂  y 

i 
� û

i
. 2.32

From property (1), the average of the residuals is zero; equivalently, the sample aver-
age of the fitted values,  ̂  y 

i
, is the same as the sample average of the y

i
, or  ̂  y ̄  � ȳ. Further, 

properties (1) and (2) can be used to show that the sample covariance between  ̂  y 
i 
and û

i 
is 

zero. Thus, we can view OLS as decomposing each y
i 
into two parts, a fitted value and a 

residual. The fitted values and residuals are uncorrelated in the sample.
 Define the total sum of squares (SST), the explained sum of squares (SSE), and 
the residual sum of squares (SSR) (also known as the sum of squared residuals), as 
 follows:

 SST �  ∑ 
i�1

   
n

    (y
i 
� ȳ)2. 2.33
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SSE �  ∑ 
i�1

   
n

    (  ̂  y 
i 
� ȳ)2. 2.34

SSR �  ∑ 
i�1

   
n

    û
i
2. 2.35

SST is a measure of the total sample variation in the y
i
; that is, it measures how spread 

out the y
i 
are in the sample. If we divide SST by n � 1, we obtain the sample variance 

of y, as discussed in Appendix C. Similarly, SSE measures the sample variation in the  ̂  y 
i 

(where we use the fact that ȳ̂ � ȳ), and SSR measures the sample variation in the û
i 
. The 

total variation in y can always be expressed as the sum of the explained variation and the 
unexplained variation SSR. Thus,

SST � SSE � SSR. 2.36

Proving (2.36) is not difficult, but it requires us to use all of the properties of the summa-
tion operator covered in Appendix A. Write

  ∑ 
i�1

   
n

   (y
i 
� ȳ)2 �  ∑ 

i�1

   
n

    [(y
i 
�  ̂  y 

i
) � (  ̂  y 

i 
� ȳ)]2

  �  ∑ 
i�1

   
n

    [û
i 
� (  ̂  y 

i 
� ȳ)]2

  �  ∑ 
i�1

   
n

    û
i
2 � 2  ∑ 

i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) �  ∑ 

i�1

   
n

    (  ̂  y 
i 
� ȳ)2

  � SSR � 2 ∑ 
i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) � SSE.

Now, (2.36) holds if we show that

  ∑ 
i�1

   
n

    û
i
(  ̂  y 

i 
� ȳ) � 0. 2.37

But we have already claimed that the sample covariance between the residuals and the 
fitted values is zero, and this covariance is just (2.37) divided by n�1. Thus, we have 
established (2.36).
 Some words of caution about SST, SSE, and SSR are in order. There is no uniform 
agreement on the names or abbreviations for the three quantities defined in equations (2.33), 
(2.34), and (2.35). The total sum of squares is called either SST or TSS, so there is little con-
fusion here. Unfortunately, the explained sum of squares is sometimes called the “regression 
sum of squares.” If this term is given its natural abbreviation, it can  easily be confused with 
the term “residual sum of squares.” Some regression packages refer to the explained sum of 
squares as the “model sum of squares.”
 To make matters even worse, the residual sum of squares is often called the “error sum 
of squares.” This is especially unfortunate because, as we will see in Section 2.5, the errors 
and the residuals are different quantities. Thus, we will always call (2.35) the residual sum 
of squares or the sum of squared residuals. We prefer to use the abbreviation SSR to denote 
the sum of squared residuals, because it is more common in  econometric packages.
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Goodness-of-Fit
So far, we have no way of measuring how well the explanatory or independent variable, x, 
explains the dependent variable, y. It is often useful to compute a number that summarizes 
how well the OLS regression line fits the data. In the following  discussion, be sure to 
remember that we assume that an intercept is estimated along with the slope.
 Assuming that the total sum of squares, SST, is not equal to zero—which is true except 
in the very unlikely event that all the y

i
 equal the same value—we can divide (2.36) by 

SST to get 1 � SSE/SST � SSR/SST. The R-squared of the regression, sometimes called 
the coefficient of determination, is defined as

 R2 � SSE/SST � 1 � SSR/SST. 2.38

R2 is the ratio of the explained variation compared to the total variation; thus, it is 
 interpreted as the fraction of the sample variation in y that is explained by x. The second 
equality in (2.38) provides another way for computing R2.
 From (2.36), the value of R2 is always between zero and one, because SSE can be 
no greater than SST. When interpreting R2, we usually multiply it by 100 to change it 
into a percent: 100 �R2 is the percentage of the sample variation in y that is explained 
by x.
 If the data points all lie on the same line, OLS provides a perfect fit to the data. 
In this case, R2 � 1. A value of R2 that is nearly equal to zero indicates a poor fit of 
the OLS line: very little of the variation in the y

i
 is captured by the variation in the  ̂  y 

i 

(which all lie on the OLS regression line). In fact, it can be shown that R2 is equal to 
the square of the sample correlation coefficient between y

i 
and  ̂  y 

i
. This is where the 

term “R-squared” came from. (The letter R was traditionally used to denote an esti-
mate of a population correlation coefficient, and its usage has survived in regression 
analysis.)

E x a m p l e  2 . 8

[CEO Salary and Return on Equity]

In the CEO salary regression, we obtain the following:

 2salary � 963.191 � 18.501 roe 2.39

n � 209, R2 � 0.0132.

We have reproduced the OLS regression line and the number of observations for clarity. Using the 
R-squared (rounded to four decimal places) reported for this equation, we can see how much of 
the variation in salary is actually explained by the return on equity. The answer is: not much. The 
firm’s return on equity explains only about 1.3 percent of the variation in salaries for this sample of 
209 CEOs. That means that 98.7 percent of the salary variations for these CEOs is left unexplained! 
This lack of explanatory power may not be too surprising because many other characteristics of both 
the firm and the individual CEO should influence salary; these factors are necessarily included in the 
errors in a simple regression analysis.
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 In the social sciences, low R-squareds in regression equations are not uncommon, 
 especially for cross-sectional analysis. We will discuss this issue more generally under 
multiple regression analysis, but it is worth emphasizing now that a seemingly low 
R-squared does not necessarily mean that an OLS regression equation is useless. It is 
still possible that (2.39) is a good estimate of the ceteris paribus relationship between 
salary and roe; whether or not this is true does not depend directly on the size of 
R-squared.  Students who are first learning econometrics tend to put too much weight 
on the size of the R-squared in evaluating regression equations. For now, be aware that 
using R-squared as the main gauge of success for an econometric analysis can lead to 
trouble.
 Sometimes, the explanatory variable explains a substantial part of the sample variation 
in the dependent variable.

E x a m p l e  2 . 9

[Voting Outcomes and Campaign Expenditures]

In the voting outcome equation in (2.28), R2 � 0.856. Thus, the share of campaign expenditures 
explains over 85% of the variation in the election outcomes for this sample. This is a sizable 
portion.

 

2.4 Units of Measurement 
and Functional Form
Two important issues in applied economics are (1) understanding how changing the units 
of measurement of the dependent and/or independent variables affects OLS estimates and 
(2) knowing how to incorporate popular functional forms used in economics into regres-
sion analysis. The mathematics needed for a full understanding of functional form issues 
is reviewed in Appendix A.

The Effects of Changing Units 
of Measurement on OLS Statistics
In Example 2.3, we chose to measure annual salary in thousands of dollars, and the return 
on equity was measured as a percentage (rather than as a decimal). It is crucial to know 
how salary and roe are measured in this example in order to make sense of the estimates 
in equation (2.39).
 We must also know that OLS estimates change in entirely expected ways when the 
units of measurement of the dependent and independent variables change. In Example 2.3, 
suppose that, rather than measuring salary in thousands of dollars, we measure it in  dollars. 
Let salardol be salary in dollars (salardol � 845,761 would be interpreted as $845,761). 
Of course, salardol has a simple relationship to the salary measured in thousands of 
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 dollars: salardol � 1,000�salary. We do not need to actually run the regression of salardol 
on roe to know that the estimated equation is:

2salardol � 963,191 � 18,501 roe. 2.40

We obtain the intercept and slope in (2.40) simply by multiplying the intercept and 
the slope in (2.39) by 1,000. This gives equations (2.39) and (2.40) the same interpretation. 
Looking at (2.40), if roe � 0, then 2salardol � 963,191, so the predicted salary is $963,191 
[the same value we obtained from equation (2.39)]. Furthermore, if roe increases by one, 
then the predicted salary increases by $18,501; again, this is what we concluded from our 
earlier analysis of equation (2.39).
 Generally, it is easy to figure out what happens to the intercept and slope estimates 
when the dependent variable changes units of measurement. If the dependent variable is 
multiplied by the constant c—which means each value in the sample is multiplied by 
c—then the OLS intercept and slope estimates are also multiplied by c. (This assumes 
nothing has changed about the independent variable.) In the CEO salary example, c � 
1,000 in moving from salary to salardol.
 We can also use the CEO salary example to see what happens when we change the 

units of measurement of the indepen-
dent variable. Define roedec � 
roe/100 to be the decimal equivalent 
of roe; thus, roedec � 0.23 means 
a return on equity of 23 percent. To 
focus on changing the units of mea-
surement of the independent variable, 
we return to our original dependent 

variable, salary, which is measured in thousands of  dollars. When we regress salary 
on roedec, we obtain

 2salary � 963.191 � 1,850.1 roedec. 2.41

The coefficient on roedec is 100 times the coefficient on roe in (2.39). This is as it should 
be. Changing roe by one percentage point is equivalent to �roedec � 0.01. From (2.41), 
if �roedec � 0.01, then �2salary � 1,850.1(0.01) � 18.501, which is what is obtained 
by using (2.39). Note that, in moving from (2.39) to (2.41), the independent variable was 
divided by 100, and so the OLS slope estimate was multiplied by 100, preserving the inter-
pretation of the equation. Generally, if the independent variable is divided or multiplied 
by some nonzero constant, c, then the OLS slope coefficient is multiplied or divided by 
c, respectively.
 The intercept has not changed in (2.41) because roedec � 0 still corresponds to a zero 
return on equity. In general, changing the units of measurement of only the independent 
variable does not affect the intercept.
 In the previous section, we defined R-squared as a goodness-of-fit measure for OLS 
regression. We can also ask what happens to R2 when the unit of measurement of either 
the independent or the dependent variable changes. Without doing any algebra, we should 
know the result: the goodness-of-fit of the model should not depend on the units of 
 measurement of our variables. For example, the amount of variation in salary explained 

Q u e s t i o n  2 . 4

Suppose that salary is measured in hundreds of dollars, rather than 
in thousands of dollars, say, salarhun. What will be the OLS inter-
cept and slope estimates in the regression of salarhun on roe?
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by the return on equity should not depend on whether salary is measured in dollars or in 
thousands of dollars or on whether return on equity is a percentage or a decimal. This 
 intuition can be verified mathematically: using the definition of R2, it can be shown that 
R2 is, in fact, invariant to changes in the units of y or x.

Incorporating Nonlinearities in Simple Regression
So far, we have focused on linear relationships between the dependent and indepen- 
dent variables. As we mentioned in Chapter 1, linear relationships are not nearly general 
enough for all economic applications. Fortunately, it is rather easy to incorporate many 
nonlinearities into simple regression analysis by appropriately defining the dependent 
and independent variables. Here, we will cover two possibilities that often appear in 
applied work.
 In reading applied work in the social sciences, you will often encounter regression 
equations where the dependent variable appears in logarithmic form. Why is this done? 
Recall the wage-education example, where we regressed hourly wage on years of educa-
tion. We obtained a slope estimate of 0.54 [see equation (2.27)], which means that each 
additional year of education is predicted to increase hourly wage by 54 cents. Because of 
the linear nature of (2.27), 54 cents is the increase for either the first year of education or 
the twentieth year; this may not be reasonable.
 Probably a better characterization of how wage changes with education is that each 
year of education increases wage by a constant percentage. For example, an increase in 
education from 5 years to 6 years increases wage by, say, 8% (ceteris paribus), and an 
increase in education from 11 to 12 years also increases wage by 8%. A model that gives 
(approximately) a constant percentage effect is

 log(wage) � �
0 
� �

1
educ � u, 2.42

where log(�) denotes the natural logarithm. (See Appendix A for a review of logarithms.) 
In particular, if �u � 0, then

 %�wage � (100 ��
1
)�educ. 2.43

Notice how we multiply �
1 

by 100 to get the percentage change in wage given one 
additional year of education. Since the percentage change in wage is the same for 
each additional year of education, the change in wage for an extra year of education 
increases as education increases; in other words, (2.42) implies an increasing return to 
education. By exponentiating (2.42), we can write wage � exp(�

0 
� �

1
educ � u). This 

equation is graphed in Figure 2.6, with u � 0.
 Estimating a model such as (2.42) is straightforward when using simple regression. 
Just define the dependent variable, y, to be y � log(wage). The independent variable is 
represented by x � educ. The mechanics of OLS are the same as before: the intercept and 
slope estimates are given by the formulas (2.17) and (2.19). In other words, we obtain �̂

0 

and �̂
1 
from the OLS regression of log(wage) on educ.
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E x a m p l e  2 . 1 0

[A Log Wage Equation]

Using the same data as in Example 2.4, but using log(wage) as the dependent variable, we obtain 
the following relationship:

2log(wage) � 0.584 � 0.083 educ 2.44

n � 526, R2 � 0.186. 

The coefficient on educ has a percentage interpretation when it is multiplied by 100:  
�

 wage  increases 
by 8.3% for every additional year of education. This is what economists mean when they refer to 
the “return to another year of education.”
 It is important to remember that the main reason for using the log of wage in (2.42) is to impose 
a constant percentage effect of education on wage. Once equation (2.42) is obtained, the natural 
log of wage is rarely mentioned. In particular, it is not correct to say that another year of education 
increases log(wage) by 8.3%.
 The intercept in (2.42) is not very meaningful, because it gives the predicted log(wage), when 
educ � 0. The R-squared shows that educ explains about 18.6% of the variation in log(wage) (not 
wage). Finally, equation (2.44) might not capture all of the nonlinearity in the relationship between 
wage and schooling. If there are “diploma effects,” then the twelfth year of education—graduation 
from high school—could be worth much more than the eleventh year. We will learn how to allow 
for this kind of nonlinearity in Chapter 7.

 

F I GURE  2 . 6

wage � exp(�
0
 � �

1
educ), with �

1
 > 0.

wage

educ0
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Another important use of the natural log is in obtaining a constant elasticity model.

E x a m p l e  2 . 1 1

[CEO Salary and Firm Sales]

We can estimate a constant elasticity model relating CEO salary to firm sales. The data set is the 
same one used in Example 2.3, except we now relate salary to sales. Let sales be annual firm sales, 
measured in millions of dollars. A constant elasticity model is

 log(salary) � �
0 
� �

1
log(sales) � u, 2.45

where �
1
 is the elasticity of salary with respect to sales. This model falls under the simple regression 

model by defining the dependent variable to be y � log(salary) and the independent variable to be 
x � log(sales). Estimating this equation by OLS gives

 2log(salary) � 4.822 � 0.257 log(sales) 2.46

n � 209, R2 � 0.211.

The coefficient of log(sales) is the estimated elasticity of salary with respect to sales. It implies that a 1% 
increase in firm sales increases CEO salary by about 0.257%—the usual interpretation of an elasticity.

 

 The two functional forms covered in this section will often arise in the remainder of 
this text. We have covered models containing natural logarithms here because they appear 
so frequently in applied work. The interpretation of such models will not be much different 
in the multiple regression case.
 It is also useful to note what happens to the intercept and slope estimates if we change 
the units of measurement of the dependent variable when it appears in logarithmic form. 
Because the change to logarithmic form approximates a proportionate change, it makes 
sense that nothing happens to the slope. We can see this by writing the rescaled variable 
as c

1
y

i 
for each observation i. The original equation is log(y

i
) � �

0 
� �

1
x

i 
� u

i
. If we add 

log(c
1
) to both sides, we get log(c

1
) � log(y

i
) � [log(c

1
) � �

0
] � �

1
x

i 
� u

i
, or log(c

1
y

i
) �

[log(c
1
) � �

0
] � �

1
x

i 
� u

i
.
 
(Remember that the sum of the logs is equal to the log of their 

product, as shown in Appendix A.) Therefore, the slope is still �
1
, but the intercept is 

now log(c
1
) � �

0
. Similarly, if the independent variable is log(x), and we change the units 

of measurement of x before taking the log, the slope remains the same, but the intercept 
changes. You will be asked to verify these claims in Problem 2.9.
 We end this subsection by summarizing four combinations of functional forms available 
from using either the original variable or its natural log. In Table 2.3, x and y stand for the 
variables in their original form. The model with y as the dependent variable and x as the inde-
pendent variable is called the level-level model because each variable appears in its level form. 
The model with log(y) as the dependent variable and x as the independent variable is called 
the log-level model. We will not explicitly discuss the level-log model here, because it arises 
less often in practice. In any case, we will see examples of this model in later chapters.
 The last column in Table 2.3 gives the interpretation of �

1
. In the log-level model, 

100 ��
1 
is sometimes called the semi-elasticity of y with respect to x. As we mentioned in 
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Example 2.11, in the log-log model, �
1 
is the elasticity of y with respect to x. Table 2.3 

warrants careful study, as we will refer to it often in the remainder of the text.

The Meaning of “Linear” Regression
The simple regression model that we have studied in this chapter is also called the simple 
linear regression model. Yet, as we have just seen, the general model also allows for certain 
nonlinear relationships. So what does “linear” mean here? You can see by looking at equa-
tion (2.1) that y � �

0 
� �

1
x � u. The key is that this equation is linear in the param e ters �

0 

and �
1
. There are no restrictions on how y and x relate to the original explained and explana-

tory variables of interest. As we saw in Examples 2.10 and 2.11, y and x can be natural 
logs of variables, and this is quite common in applications. But we need not stop there. For 
example, nothing prevents us from using simple regression to estimate a model such as 
cons � �

0 
� �

1
 √

___
 inc   � u, where cons is annual consumption and inc is annual income.

 Whereas the mechanics of simple regression do not depend on how y and x are defined, 
the interpretation of the coefficients does depend on their definitions. For successful empiri-
cal work, it is much more important to become proficient at interpreting coefficients than to 
become efficient at computing formulas such as (2.19). We will get much more practice with 
interpreting the estimates in OLS regression lines when we study multiple regression.
 Plenty of models cannot be cast as a linear regression model because they are not 
linear in their parameters; an example is cons � 1/(�

0 
� �

1
inc) � u. Estimation of such 

models takes us into the realm of the nonlinear regression model, which is beyond the 
scope of this text. For most applications, choosing a model that can be put into the linear 
regression framework is sufficient.

2.5 Expected Values and Variances 
of the OLS Estimators
In Section 2.1, we defined the population model y � �

0 
� �

1
x � u, and we claimed that 

the key assumption for simple regression analysis to be useful is that the expected value 
of u given any value of x is zero. In Sections 2.2, 2.3, and 2.4, we discussed the algebraic 

TABLE  2 . 3

Summary of Functional Forms Involving Logarithms

Model
Dependent
Variable

Independent
Variable

Interpretation
of �1

Level-level y x �y � �
1
�x

Level-log y log(x) �y � (�
1
/100)%�x

Log-level log(y) x %�y � (100�
1
)�x

Log-log log(y) log(x) %�y � �
1
%�x
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properties of OLS estimation. We now return to the population model and study the  statistical 
properties of OLS. In other words, we now view �̂

0 
and �̂

1 
as estimators for the parameters �

0 

and �
1 
that appear in the population model. This means that we will study properties of the 

distributions of �̂
0 
and �̂

1 
over different random samples from the population. (Appendix C 

contains definitions of estimators and reviews some of their important properties.)

Unbiasedness of OLS
We begin by establishing the unbiasedness of OLS under a simple set of assumptions. 
For future reference, it is useful to number these assumptions using the prefix “SLR” for 
simple linear regression. The first assumption defines the population model.

Assumption SLR.1   (Linear in Parameters)

In the population model, the dependent variable, y, is related to the independent variable, x, 
and the error (or disturbance), u, as

 y � �
0 
� �

1
x � u, 2.47

where �0 and �1 are the population intercept and slope parameters, respectively.

To be realistic, y, x, and u are all viewed as random variables in stating the population 
model. We discussed the interpretation of this model at some length in Section 2.1 and 
gave several examples. In the previous section, we learned that equation (2.47) is not as 
restrictive as it initially seems; by choosing y and x appropriately, we can obtain interesting 
nonlinear relationships (such as constant elasticity models).
 We are interested in using data on y and x to estimate the parameters �

0 
and, especially, 

�
1
. We assume that our data were obtained as a random sample. (See Appendix C for a 

review of random sampling.)

Assumption SLR.2   (Random Sampling)

We have a random sample of size n, {(xi,yi): i � 1, 2, …, n}, following the population model 
in equation (2.47).

We will have to address failure of the random sampling assumption in later chapters that 
deal with time series analysis and sample selection problems. Not all cross-sectional sam-
ples can be viewed as outcomes of random samples, but many can be.
 We can write (2.47) in terms of the random sample as

 y
i 
� �

0 
� �

1
x

i 
� u

i
, i � 1, 2, …, n, 2.48

where u
i 
is the error or disturbance for observation i (for example, person i, firm i, city i, 

and so on). Thus, u
i 
contains the unobservables for observation i that affect y

i
. The u

i 
should 

not be confused with the residuals, û
i
, that we defined in Section 2.3. Later on, we will 
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explore the relationship between the errors and the residuals. For interpreting �
0 
and �

1 
in 

a particular application, (2.47) is most informative, but (2.48) is also needed for some of 
the statistical derivations.
 The relationship (2.48) can be plotted for a particular outcome of data as shown in 
Figure 2.7.
 As we already saw in Section 2.2, the OLS slope and intercept estimates are not 
defined unless we have some sample variation in the explanatory variable. We now add 
variation in the x

i
 to our list of assumptions.

Assumption SLR.3   (Sample Variation in the Explanatory Variable)

The sample outcomes on x, namely, {xi, i � 1, …, n}, are not all the same value.

 This is a very weak assumption—certainly not worth emphasizing, but needed never-
theless. If x varies in the population, random samples on x will typically contain variation, 
unless the population variation is minimal or the sample size is small. Simple inspection 
of summary statistics on x

i
 reveals whether Assumption SLR.3 fails: if the sample standard 

deviation of x
i
 is zero, then Assumption SLR.3 fails; otherwise, it holds.

 Finally, in order to obtain unbiased estimators of �
0 
and �

1
, we need to impose the zero 

conditional mean assumption that we discussed in some detail in Section 2.1. We now 
explicitly add it to our list of assumptions.

y

x1 xi x

yi

u1

y1

ui

E(y�x) � b0 � b1x
PRF

F I GURE  2 . 7

Graph of yi � �
0
 � �

1
xi � ui.
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Assumption SLR.4   (Zero Conditional Mean)

The error u has an expected value of zero given any value of the explanatory variable. In other 
words,

E(u�x) � 0.

For a random sample, this assumption implies that E(u
i
�x

i
) � 0, for all i � 1, 2, …, n.

 In addition to restricting the relationship between u and x in the population, the zero 
conditional mean assumption—coupled with the random sampling assumption—allows 
for a convenient technical simplification. In particular, we can derive the statistical 
 properties of the OLS estimators as conditional on the values of the x

i
 in our sample. 

Technically, in statistical derivations, conditioning on the sample values of the indepen-
dent variable is the same as treating the x

i
 as fixed in repeated samples, which we think 

of as follows. We first choose n sample values for x
1
, x

2
, …, x

n
. (These can be repeated.) 

Given these values, we then obtain a sample on y (effectively by obtaining a random 
sample of the u

i
). Next, another sample of y is obtained, using the same values for 

x
1
, x

2
, …, x

n
. Then another sample of y is obtained, again using the same x

1
, x

2
, …, x

n
. And 

so on.
 The fixed-in-repeated-samples scenario is not very realistic in nonexperimental con-
texts. For instance, in sampling individuals for the wage-education example, it makes little 
sense to think of choosing the values of educ ahead of time and then sampling individuals 
with those particular levels of education. Random sampling, where individuals are chosen 
randomly and their wage and education are both recorded, is representative of how most 
data sets are obtained for empirical analysis in the social sciences. Once we assume that 
E(u�x) � 0, and we have random sampling, nothing is lost in derivations by treating the 
x

i 
as nonrandom. The danger is that the fixed-in-repeated-samples assumption always 

implies that u
i 
and x

i 
are independent. In deciding when simple regression analysis is going 

to produce unbiased estimators, it is critical to think in terms of Assumption SLR.4.
 Now, we are ready to show that the OLS estimators are unbiased. To this end, we use 
the fact that  ∑ 

i�1
  

n
   (x

i
 � x̄)( y

i
 � ȳ) �  ∑ 

i�1
  

n
   (x

i
 � x̄)y

i
 (see Appendix A) to write the OLS slope 

estimator in equation (2.19) as

 �̂
1 
�

 ∑ 
i�1

   
n

   (x
i 
� x̄)y

i 

 ∑ 
i�1

   
n

   (x
i 
� x̄)2 

. 2.49

Because we are now interested in the behavior of �̂
1 
across all possible samples, �̂

1 
is prop-

erly viewed as a random variable.
 We can write �̂

1 
in terms of the population coeffi cients and errors by substituting the 

right-hand side of (2.48) into (2.49). We have

 �̂
1
 � 

 ∑ 
i�1

   
n

   (x
i 
� x̄)y

i

SST
x

 � 

 ∑ 
i�1

   
n

   (x
i 
� x̄)(�

0
 � �

1
x

i
 � u

i
)

SST
x

, 2.50
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where we have defined the total variation in x
i 
as SST

x
�  ∑ 

i�1
  

n
   (x

i 
� x̄)2  to simplify the notation. 

(This is not quite the sample variance of the x
i 
because we do not  divide by n � 1.) Using 

the algebra of the summation operator, write the numerator of �̂
1 
as

 ∑ 
i�1

   
n

   (x
i 
� x̄)�

0 
� ∑ 

i�1

   
n

   (x
i 
� x̄)�

1
x

i 
� ∑ 

i�1

   
n

   (x
i 
� x̄)u

i

� �
0
  ∑ 

i�1

   
n

    (x
i 
� x̄) � �

1
  ∑ 

i�1

   
n

    (x
i 
� x̄)x

i 
� ∑ 

i�1

   
n

   (x
i 
� x̄)u

i
. 

2.51

As shown in Appendix A,  ∑ 
i�1

  
n
   (x

i 
� x̄) � 0 and  ∑ 

i�1
  

n
    (x

i 
� x̄)x

i 
�  ∑ 

i�1
  

n
    (x

i 
� x̄)2 � SST

x
.

Therefore, we can write the numerator of �̂
1 
as �

1
SST

x
 �  ∑ 

i�1
  

n
    (x

i 
� x̄)u

i
. Putting this over 

the denominator gives

 �̂
1
 � �

1 
� 

 ∑ 
i�1

   
n

   (x
i 
� x̄)u

i

SST
x

 � �
1 
� (1/SST

x
) ∑ 

i�1

   
n

    d
i
u

i
, 2.52

where d
i 
� x

i 
� x̄. We now see that the estimator �̂

1 
equals the population slope, �

1
,
 
plus 

a term that is a linear combination in the errors {u
1
, u

2
, …, u

n
}. Conditional on the values 

of x
i
, the randomness in �̂

1 
is due entirely to the errors in the sample. The fact that these 

errors are generally different from zero is what causes �̂
1 
to differ from �

1
.

 Using the representation in (2.52), we can prove the first important statistical property 
of OLS.

Theorem 2.1   (Unbiasedness of OLS)

Using Assumptions SLR.1 through SLR.4,

E(�̂
0
) � �

0
, and E(�̂

1
) � �

1
, 2.53

for any values of �0 and �1. In other words, �̂0 is unbiased for �0, and �̂1 is unbiased for �1.

PROOF: In this proof, the expected values are conditional on the sample values of the inde-
pendent variable. Because SSTx and di are functions only of the xi, they are nonrandom in the 
conditioning. Therefore, from (2.52), and keeping the conditioning on {x1, x2, ..., xn } implicit, 
we have

E(�̂
1
) � �

1 
� E[(1/SST

x
)  ∑ 

i�1

   
n

   d
i
 u

i
] � �

1 
� (1/SST

x
)  ∑ 

i�1

   
n

    E(d
i
 u

i
)

 � �
1 
� (1/SST

x
)  ∑ 

i�1

   
n

   d
i 
E(u

i
) � �

1 
� (1/SST

x
)  ∑ 

i�1

   
n

    d
i
�0 � �

1
,

where we have used the fact that the expected value of each ui (conditional on {x1, x2, ..., xn}) 
is zero under Assumptions SLR.2 and SLR.4. Since unbiasedness holds for any outcome on 
{x1, x2, ..., xn}, unbiasedness also holds without conditioning on {x1, x2, ..., xn}.
 The proof for �̂0 is now straightforward. Average (2.48) across i to get ȳ � �0 � �1x̄ � ū, 
and plug this into the formula for �̂0 :
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 Remember that unbiasedness is a feature of the sampling distributions of �̂
1 

and �̂
0
, 

which says nothing about the estimate that we obtain for a given sample. We hope that, 
if the sample we obtain is somehow “typical,” then our estimate should be “near” the 
population value. Unfortunately, it is always possible that we could obtain an unlucky 
 sample that would give us a point estimate far from �

1
, and we can never know for sure 

whether this is the case. You may want to review the material on unbiased estimators in 
 Appendix C, especially the simulation exercise in Table C.1 that illustrates the concept of 
 unbiasedness.
 Unbiasedness generally fails if any of our four assumptions fail. This means that it 
is important to think about the veracity of each assumption for a particular application. 
Assumption SLR.1 requires that y and x be linearly related, with an additive disturbance. 
This can certainly fail. But we also know that y and x can be chosen to yield interesting 
nonlinear relationships. Dealing with the failure of (2.47) requires more advanced methods 
that are beyond the scope of this text.
 Later, we will have to relax Assumption SLR.2, the random sampling assumption, 
for time series analysis. But what about using it for cross-sectional analysis? Random 
 sampling can fail in a cross section when samples are not representative of the underlying 
population; in fact, some data sets are constructed by intentionally oversampling  different 
parts of the population. We will discuss problems of nonrandom sampling in Chapters 9 
and 17.
 As we have already discussed, Assumption SLR.3 almost always holds in interesting 
regression applications. Without it, we cannot even obtain the OLS estimates.
 The assumption we should concentrate on for now is SLR.4. If SLR.4 holds, the OLS 
estimators are unbiased. Likewise, if SLR.4 fails, the OLS estimators generally will be 
biased. There are ways to determine the likely direction and size of the bias, which we will 
study in Chapter 3.
 The possibility that x is correlated with u is almost always a concern in simple 
 regression analysis with nonexperimental data, as we indicated with several examples in 
 Section 2.1. Using simple regression when u contains factors affecting y that are also cor-
related with x can result in spurious correlation: that is, we find a relationship between 
y and x that is really due to other unobserved factors that affect y and also happen to be 
correlated with x.

�̂
0 
� ȳ � �̂

1
x̄ � �

0 
� �

1
x̄ � ū � �̂

1
x̄ � �

0 
� (�

1 
� �̂

1
)x̄ � ū.

Then, conditional on the values of the xi,

E(�̂
0
) � �

0 
� E[(�

1 
� �̂

1
)x̄] � E(ū) � �

0 
� E[(�

1 
� �̂

1
)]x̄,

since E(ū) � 0 by Assumptions SLR.2 and SLR.4. But, we showed that E(�̂1) � �1, which implies 
that E[(�̂1 � �1)] � 0. Thus, E(�̂0) � �0. Both of these arguments are valid for any values of �0 

and �1, and so we have established unbiasedness.
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E x a m p l e  2 . 1 2

[Student Math Performance and the School Lunch Program]

Let math10 denote the percentage of tenth graders at a high school receiving a passing score on 
a standardized mathematics exam. Suppose we wish to estimate the effect of the federally funded 
school lunch program on student performance. If anything, we expect the lunch program to have a 
positive ceteris paribus effect on performance: all other factors being equal, if a student who is too 
poor to eat regular meals becomes eligible for the school lunch program, his or her performance 
should improve. Let lnchprg denote the percentage of students who are eligible for the lunch pro-
gram. Then, a simple regression model is

 math10 � �
0 
� �

1
lnchprg � u, 2.54

where u contains school and student characteristics that affect overall school performance. Using the 
data in MEAP93.RAW on 408 Michigan high schools for the 1992–1993 school year, we obtain

 2math10 � 32.14 � 0.319 lnchprg

n � 408, R2 � 0.171.

This equation predicts that if student eligibility in the lunch program increases by 10 percentage 
points, the percentage of students passing the math exam falls by about 3.2 percentage points. Do 
we really believe that higher participation in the lunch program actually causes worse performance? 
Almost certainly not. A better explanation is that the error term u in equation (2.54) is correlated with 
lnchprg. In fact, u contains factors such as the poverty rate of children attending school, which affects 
student performance and is highly correlated with eligibility in the lunch program. Variables such as 
school quality and resources are also contained in u, and these are likely correlated with lnchprg. It 
is important to remember that the estimate �0.319 is only for this particular sample, but its sign and 
magnitude make us suspect that u  and x are correlated, so that simple regression is biased.

 

 In addition to omitted variables, there are other reasons for x to be correlated with u in 
the simple regression model. Because the same issues arise in multiple regression analysis, 
we will postpone a systematic treatment of the problem until then.

Variances of the OLS Estimators
In addition to knowing that the sampling distribution of �̂

1 
is centered about �

1 
(�̂

1 
is 

 unbiased), it is important to know how far we can expect �̂
1 
to be away from �

1 
on aver-

age. Among other things, this allows us to choose the best estimator among all, or at least 
a broad class of, unbiased estimators. The measure of spread in the distribution of �̂

1 
(and 

�̂
0
) that is easiest to work with is the variance or its square root, the standard deviation. 

(See Appendix C for a more detailed discussion.)
 It turns out that the variance of the OLS estimators can be computed under  Assumptions 
SLR.1 through SLR.4. However, these expressions would be somewhat  complicated. 
Instead, we add an assumption that is traditional for cross-sectional analysis. This assump-
tion states that the variance of the unobservable, u, conditional on x, is constant. This is 
known as the homoskedasticity or “constant variance” assumption.



Assumption SLR.5   (Homoskedasticity)

The error u has the same variance given any value of the explanatory variable. In other words,

Var(u�x) � � 2.

 We must emphasize that the homoskedasticity assumption is quite distinct from 
the zero conditional mean assumption, E(u�x) � 0. Assumption SLR.4 involves the 
 expected value of u, while Assumption SLR.5 concerns the variance of u (both conditional 
on x). Recall that we established the unbiasedness of OLS without Assumption SLR.5: the 
homoskedasticity assumption plays no role in showing that �̂

0 
and �̂

1 
are unbiased. We add 

Assumption SLR.5 because it simplifi es the variance calculations for �̂
0 
and �̂

1 
and because 

it implies that ordinary least squares has certain effi ciency properties, which we will see 
in Chapter 3. If we were to assume that u and x are independent, then the distribution of u 
given x does not depend on x, and so E(u�x) � E(u) � 0 and Var(u�x) � � 2. But indepen-
dence is sometimes too strong of an assumption.
 Because Var(u�x) � E(u 2�x) � [E(u�x)] 2 and E(u�x) � 0, � 2 � E(u 2�x), which means � 2 is 
also the unconditional expectation of u 2. Therefore, � 2 � E(u2) � Var(u), because E(u) � 0. 
In other words, � 2 is the unconditional variance of u, and so � 2 is often called the error vari-
ance or disturbance variance. The square root of � 2, � , is the standard deviation of the error. 
A larger �  means that the distribution of the unobservables affecting y is more spread out.
 It is often useful to write Assumptions SLR.4 and SLR.5 in terms of the condi-
tional mean and conditional variance of y:

 E(y�x) � �
0 
� �

1
x. 2.55

 Var(y�x) � � 2. 2.56

In other words, the conditional expectation of y given x is linear in x, but the variance of y 
given x is constant. This situation is graphed in Figure 2.8 where �

0 
� 0 and �

1 
� 0.

 When Var(u�x) depends on x, the error term is said to exhibit heteroskedasticity 
(or nonconstant variance). Because Var(u�x) � Var(y�x), heteroskedasticity is present 
whenever Var(y�x) is a function of x.

E x a m p l e  2 . 1 3

[Heteroskedasticity in a Wage Equation]

In order to get an unbiased estimator of the ceteris paribus effect of educ on wage, we must assume 
that E(u�educ) � 0, and this implies E(wage�educ) � �

0
 � �

1
educ. If we also make the homoskedas-

ticity assumption, then Var(u�educ) � � 2 does not depend on the level of education, which is the same 
as assuming Var(wage�educ) � � 2. Thus, while average wage is allowed to increase with education 
level—it is this rate of increase that we are interested in estimating—the variability in wage about its 
mean is assumed to be constant across all education levels. This may not be realistic. It is likely that 
people with more education have a wider variety of interests and job opportunities, which could lead 
to more wage variability at higher levels of education. People with very low levels of education have 
fewer opportunities and often must work at the minimum wage; this serves to reduce wage variability 
at low education levels. This situation is shown in Figure 2.9. Ultimately, whether Assumption SLR.5 
holds is an empirical issue, and in Chapter 8 we will show how to test Assumption SLR.5.
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With the homoskedasticity assumption in place, we are ready to prove the following:

F I GURE  2 . 8

The simple regression model under homoskedasticity.

x1

x2

x

E(y�x) � b0 � b1x

f(y�x)

x3

y

Theorem 2.2   (Sampling Variances of the OLS Estimators)

Under Assumptions SLR.1 through SLR.5,

 Var(  �̂1
) � 

�2

 ∑ 
i�1

   
n

   (x
i 
� x̄)2

 � � 2/SST
x
, 2.57

and

 Var( �̂
0
) � 

�2n�1  ∑ 
i�1

   
n

   x
i
2

 ∑ 
i�1

   
n

   (x
i 
� x̄)2

, 2.58

where these are conditional on the sample values {x1, …, xn}.
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PROOF: We derive the formula for Var(�̂1), leaving the other derivation as Problem 2.10. 
The starting point is equation (2.52): �̂1 � �1 � (1/SSTx)  ∑ i�1  

n
    diui. Because �1 is just a constant, 

and we are conditioning on the xi, SSTx and di � xi � x̄ are also nonrandom. Further more, 
because the ui are independent random variables across i (by random sampling), the variance 
of the sum is the sum of the variances. Using these facts, we have

 Var(�̂
1
) � (1/SST

x
)2Var �  ∑ 

i�1

   
n

   d
i
u

i
 �  � (1/SST

x
)2 �  ∑ 

i�1

   
n

   d
i
2Var(u

i
) � 

  � (1/SST
x
)2  �  ∑ 

i�1

   
n

   d
i
2� 2 �      [since Var(u

i
) � � 2 for all i ]

  � � 2(1/SST
x
)2  �  ∑ 

i�1

   
n

   d
i
2 �   � � 2(1/SST

x
)2SST

x
 � � 2/SST

x
,

which is what we wanted to show.

 Equations (2.57) and (2.58) are the “standard” formulas for simple regression analysis, 
which are invalid in the presence of heteroskedasticity. This will be important when we 
turn to confidence intervals and hypothesis testing in multiple regression analysis.

8
12

educ

E(wage�educ) �
             b0 � b1educ

f(wage�educ)

16

wage

F I GURE  2 . 9

Var(wage�educ) increasing with educ.
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 For most purposes, we are interested in Var(�̂
1
). It is easy to summarize how this variance 

depends on the error variance, �2, and the total variation in {x
1
,  x

2
, …, x

n
}, SST

x
. First, the 

larger the error variance, the larger is Var( �̂
1
). This makes sense since more variation in the 

unobservables affecting y makes it more difficult to precisely estimate �
1
. On the other hand, 

more variability in the independent variable is preferred: as the variability in the x
i
 increases, 

the variance of �̂
1 
decreases. This also makes intuitive sense since the more spread out is the 

sample of independent variables, the easier it is to trace out the relationship between E(y�x) 
and x. That is, the easier it is to estimate �

1
. If there is little variation in the x

i
, then it can be 

hard to pinpoint how E(y�x) varies with x. As the sample size increases, so does the total vari-
ation in the x

i
. Therefore, a larger sample size results in a smaller variance for �̂

1
.

 This analysis shows that, if we are interested in �
1
 and we have a choice, then we 

should choose the x
i 
to be as spread out as 

possible. This is sometimes possible with 
experimental data, but rarely do we have 
this luxury in the social sciences: usually, 
we must take the x

i 
that we obtain via 

random sampling. Sometimes, we have an 
opportunity to obtain larger sample sizes, 
although this can be costly.

 For the purposes of constructing confidence intervals and deriving test statistics, we 
will need to work with the standard deviations of �̂

1 
and �̂

0
, sd(�̂

1
) and sd(�̂

0
). Recall that 

these are obtained by taking the square roots of the variances in (2.57) and (2.58). In 
 particular, sd(�̂

1
) � � � √

_____
 SST

x
  , where �  is the square root of � 2, and  √

_____
 SST

x
   is the square 

root of SST
x
.

Estimating the Error Variance
The formulas in (2.57) and (2.58) allow us to isolate the factors that contribute to Var(�̂

1
) 

and Var(�̂
0
). But these formulas are unknown, except in the extremely rare case that � 2 is 

known. Nevertheless, we can use the data to estimate � 2, which then allows us to estimate 
Var( �̂

1
) and Var( �̂

0
).

 This is a good place to emphasize the difference between the errors (or disturbances) 
and the residuals, since this distinction is crucial for constructing an estimator of � 2. 
Equation (2.48) shows how to write the population model in terms of a randomly sampled 
observation as y

i 
� �

0 
� �

1
x

i 
� u

i
, where u

i 
is the error for observation i. We can also 

express y
i 
in terms of its fitted value and residual as in equation (2.32): y

i
 � �̂

0 
� �̂

1
x

i  
� û

i
. 

Comparing these two equations, we see that the error shows up in the equation contain-
ing the population parameters, �

0 
and �

1
. On the other hand, the residuals show up in the 

estimated equation with �̂
0 
and �̂

1
. The errors are never observable, while the residuals are 

computed from the data.
 We can use equations (2.32) and (2.48) to write the residuals as a function of the errors:

û
i 
� y

i 
� �̂

0 
� �̂

1
x

i 
� (�

0 
� �

1
x

i 
� u

i
) � �̂

0 
� �̂

1
x

i
,

or

 û
i 
� u

i 
� ( �̂

0 
� �

0
) � (�̂

1 
� �

1
)x

i
. 2.59

Q u e s t i o n  2 . 5

Show that, when estimating �0, it is best to have x̄ � 0. What is

Var(�̂0) in this case? [Hint: For any sample of numbers,  ∑ i�1  
n
    x2

i 

	  ∑ i�1  
n
    (xi � x̄ )2, with equality only if x̄ � 0.]
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Although the expected value of �̂
0 
equals �

0
, and similarly for �̂

1
, û

i 
is not the same as u

i
. 

The difference between them does have an expected value of zero.
 Now that we understand the difference between the errors and the residuals, we can 
return to estimating �2. First, �2 � E(u2), so an unbiased “estimator” of �2 is n�1 ∑ 

i�1
  

n
    u

i
2. 

Unfortunately, this is not a true estimator, because we do not observe the errors u
i
. But, 

we do have estimates of the u
i
, namely, the OLS residuals û

i
. If we replace the errors with 

the OLS residuals, we have n�1 ∑ 
i�1

  
n
   û

i
2 � SSR/n. This is a true estimator, because it gives a 

computable rule for any sample of data on x and y. One slight drawback to this estimator 
is that it turns out to be biased (although for large n the bias is small). Because it is easy 
to compute an unbiased estimator, we use that instead.
 The estimator SSR/n is biased essentially because it does not account for two restric-
tions that must be satisfied by the OLS residuals. These restrictions are given by the two 
OLS first order conditions:

 ∑ 
i�1

   
n

   û
i 
� 0,  ∑ 

i�1

   
n

   x
i
û

i 
� 0. 2.60

One way to view these restrictions is this: if we know n � 2 of the residuals, we can always 
get the other two residuals by using the restrictions implied by the first order conditions in 
(2.60). Thus, there are only n � 2 degrees of freedom in the OLS residuals, as opposed 
to n degrees of freedom in the errors. If we replace û

i 
with u

i 
in (2.60), the restrictions 

would no longer hold. The unbiased estimator of � 2 that we will use makes a degrees of 
freedom adjustment:

�̂ 2 � 
1

(n � 2)
 ∑ 
i�1

   
n

   û
i
2

 
� SSR/(n � 2). 2.61

(This estimator is sometimes denoted as s2, but we continue to use the convention of 
putting “hats” over estimators.)

Theorem 2.3   (Unbiased Estimation of � 2)

Under Assumptions SLR.1 through SLR.5,

 E(�̂2) � � 2.

PROOF: If we average equation (2.59) across all i and use the fact that the OLS residuals 
average out to zero, we have 0 � ū � (�̂0 � �0) � (�̂1 � �1)x̄; subtracting this from (2.59) 
gives ûi � (ui � ū) � (�̂1 � �1)(xi � x̄). Therefore, ûi

2 � (ui � ū)2 � (�̂1 � �1)
2 (xi � x̄)2 � 

2(ui � ū)(�̂1 � �1)(xi � x̄). Summing across all i gives  ∑ i�1  
n
     û i

2 �  ∑ i�1  
n
     (ui � ū)2 � 

(�̂1 � �1)
2  ∑ i�1  

n
    (xi � x̄)2 � 2(�̂1 � �1)  ∑ i�1  

n
     ui(xi � x̄). Now, the expected value of the first 

term is (n � 1)� 2, something that is shown in Appendix C. The expected value of the second 

term is simply � 2  because E[(�̂1 � �1)
2] � Var(�̂1) � � 2/sx

2. Finally, the third term can be written 

as 2(�̂1 � �1)
2s2

x; taking expectations gives 2�2. Putting these three terms together gives 
E �  ∑ i�1  

n
    ûi

2 	 � (n � 1)�2 � � 2 � 2� 2 � (n � 2)� 2, so that E[SSR/(n � 2)] � � 2.
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 If �̂ 2 is plugged into the variance formulas (2.57) and (2.58), then we have unbiased 
estimators of Var(�̂

1
) and Var(�̂

0
). Later on, we will need estimators of the standard devia-

tions of �̂
1 
and �̂

0
, and this requires estimating � . The natural estimator of �  is

 �̂ �  √
___

 �̂ 2    2.62

and is called the standard error of the regression (SER). (Other names for �̂ are the 
standard error of the estimate and the root mean squared error, but we will not use these.) 
Although �̂  is not an unbiased estimator of � , we can show that it is a consistent estimator 
of �  (see Appendix C), and it will serve our purposes well.
 The estimate �̂  is interesting because it is an estimate of the standard deviation in the 
unobservables affecting y; equivalently, it estimates the standard deviation in y after the 
effect of x has been taken out. Most regression packages report the value of �̂  along with 
the R-squared, intercept, slope, and other OLS statistics (under one of the several names 
listed above). For now, our primary interest is in using �̂  to estimate the standard devia-
tions of �̂

0 
and �̂

1
. Since sd( �̂

1
) � � � √

_____
 SST

x
  , the natural estimator of sd(�̂

1
) is

se(�̂
1
) � �̂� √

_____
 SST

x
  
 
� �̂/�  ∑ 

i�1

   
n

   (x
i 
� x̄)2 	 1/2

;

this is called the standard error of �̂1. Note that se(�̂
1
) is viewed as a random variable 

when we think of running OLS over different samples of y; this is true because �̂ var-
ies with different samples. For a given sample, se(�̂

1
) is a number, just as �̂

1 
is simply a 

number when we compute it from the given data.
 Similarly, se(�̂

0
) is obtained from sd(�̂

0
) by replacing �  with �̂ . The standard error of 

any estimate gives us an idea of how precise the estimator is. Standard errors play a cen-
tral role throughout this text; we will use them to construct test statistics and confidence 
intervals for every econometric procedure we cover, starting in Chapter 4.

2.6 Regression through the Origin
In rare cases, we wish to impose the restriction that, when x � 0, the expected value of y 
is zero. There are certain relationships for which this is reasonable. For example, if income 
(x) is zero, then income tax revenues (y) must also be zero. In addition, there are settings 
where a model that originally has a nonzero intercept is transformed into a model without 
an intercept.
 Formally, we now choose a slope estimator, which we call �̃

1
, and a line of the form

 ỹ � �̃
1
x, 2.63

where the tildes over �̃
1 
and ỹ are used to distinguish this problem from the much more 

common problem of estimating an intercept along with a slope. Obtaining (2.63) is called 
regression through the origin because the line (2.63) passes through the point x � 0, 
ỹ � 0. To obtain the slope estimate in (2.63), we still rely on the method of ordinary least 
squares, which in this case minimizes the sum of squared residuals:

  ∑ 
i�1

   
n

   (y
i 
� �̃

1
x

i
)2. 2.64
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Using one-variable calculus, it can be shown that �̃
1 
must solve the fi rst order condition:

 ∑ 
i�1

   
n

    x
i
(y

i 
� �̃

1
x

i
) � 0. 2.65

From this, we can solve for �̃
1
:

�̃
1 
� 

 ∑ 
i�1

   
n

    x
i
y

i

 ∑ 
i�1

   
n

    x
i
2

, 2.66

provided that not all the x
i 
are zero, a case we rule out.

 Note how �̃
1 

compares with the slope estimate when we also estimate the intercept 
(rather than set it equal to zero). These two estimates are the same if, and only if, x̄ � 0. 
[See equation (2.49) for �̂

1
.] Obtaining an estimate of �

1 
using regression through the ori-

gin is not done very often in applied work, and for good reason: if the intercept �
0 

 0, 

then �̃
1 
is a biased estimator of �

1
. You will be asked to prove this in Problem 2.8.

S U M M A R Y

We have introduced the simple linear regression model in this chapter, and we have  covered 
its basic properties. Given a random sample, the method of ordinary least squares is used to 
estimate the slope and intercept parameters in the population model. We have demonstrated the 
algebra of the OLS regression line, including computation of fitted  values and residuals, and 
the obtaining of predicted changes in the dependent variable for a given change in the indepen-
dent variable. In Section 2.4, we discussed two issues of practical importance: (1) the behavior 
of the OLS estimates when we change the units of measurement of the dependent variable or 
the independent variable and (2) the use of the natural log to allow for constant elasticity and 
constant semi-elasticity models.
 In Section 2.5, we showed that, under the four Assumptions SLR.1 through SLR.4, the 
OLS estimators are unbiased. The key assumption is that the error term u has zero mean given 
any value of the independent variable x. Unfortunately, there are reasons to think this is false 
in many social science applications of simple regression, where the omitted factors in u are 
often correlated with x. When we add the assumption that the variance of the error given x is 
constant, we get simple formulas for the sampling variances of the OLS estimators. As we saw, 
the variance of the slope estimator �̂

1 
increases as the error variance increases, and it decreases 

when there is more sample variation in the independent  variable. We also derived an unbiased 
estimator for � 2 � Var(u).
 In Section 2.6, we briefly discussed regression through the origin, where the slope  estimator 
is obtained under the assumption that the intercept is zero. Sometimes, this is useful, but it 
appears infrequently in applied work.
 Much work is left to be done. For example, we still do not know how to test hypotheses 
about the population parameters, �

0 
and �

1
. Thus, although we know that OLS is unbiased for 

the population parameters under Assumptions SLR.1 through SLR.4, we have no way of draw-
ing inference about the population. Other topics, such as the efficiency of OLS relative to other 
possible procedures, have also been omitted.
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 The issues of confidence intervals, hypothesis testing, and efficiency are central to multiple 
regression analysis as well. Since the way we construct confidence intervals and test  statistics 
is very similar for multiple regression—and because simple regression is a special case of 
multiple regression—our time is better spent moving on to multiple regression, which is much 
more widely applicable than simple regression. Our purpose in Chapter 2 was to get you think-
ing about the issues that arise in econometric analysis in a fairly simple setting.

The Gauss-Markov Assumptions 

for Simple Regression

For convenience, we summarize the Gauss-Markov assumptions that we used in this chapter.  
It is important to remember that only SLR.1 through SLR.4 are needed to show �̂

0
 and �̂

1
 are 

unbiased. We added the homoskedasticity assumption, SLR.5, to obtain the usual OLS vari-
ance formulas (2.57) and (2.58).

Assumption SLR.1 (Linear in Parameters)

In the population model, the dependent variable, y, is related to the independent variable, 
x, and the error (or disturbance), u, as

y � �
0 
� �

1
x � u,

where �
0 
and �

1 
are the population intercept and slope parameters, respectively.

Assumption SLR.2 (Random Sampling)

We have a random sample of size n, {(x
i
,y

i
): i � 1, 2, …, n}, following the population 

model in Assumption SLR.1.

Assumption SLR.3 (Sample Variation in the Explanatory Variable)

The sample outcomes on x, namely, {x
i
, i � 1, …, n}, are not all the same value.

Assumption SLR.4 (Zero Conditional Mean)

The error u has an expected value of zero given any value of the explanatory variable. In 
other words,

E(u�x) � 0.

Assumption SLR.5 (Homoskedasticity)

The error u has the same variance given any value of the explanatory variable. In other 
words,

Var(u�x) � � 2.
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