

CENTRO DE SISTEMAS PÚBLICOS

IN4402: Applied statistics for management and economics Regression Discontinuity – Model estimation

ANDRÉS FERNÁNDEZ

www.sistemaspublicos.cl

INTRODUCTION I CUASI AND NON EXPERIMENTAL METHODS

Requisitos

Los requisitos de acceso al bono funcionan de acuerdo a tres casos separados:

Caso A. Ingresos entre \$326.500 y \$408.125. No requiere caída de ingresos.

- Tus ingresos mensuales promedio del segundo semestre 2020 deben estar dentro del rango de \$326.500 y \$408.000.
- Recibirás un monto de \$500.000.

INTRODUCTION II CUASI AND NON EXPERIMENTAL METHODS

- In other words:
 - If we call $Z^* = 408.000$ it's a *cut-off* value for participation

$$D_i = RecibeBono_i = \begin{cases} 1 \ if \ Ptje_i \le 408.000\\ 0 \ if \ Ptje_i > 408.000 \end{cases}$$

- The selection point is somewhat arbitrary (why not 407.000, 409.000?)
- Intuition says that subjects close to the cutoff would be similar

ASSUMPTIONS: DISCONTINUITY ON PARTICIPATION CUASI AND NON EXPERIMENTAL METHODS

- (Sharp definition):
 - The discontinity comes from the probability to receive treatment (*D_i*):

ASSUMPTIONS: POTENTIAL OUTCOMES CUASI AND NON EXPERIMENTAL METHODS

- We *expect potential outcomes* to be **continuous** in Z
 - $\lim_{z \uparrow Z^*} \mathbb{E}[Y_i | Z = z] = \lim_{z \downarrow Z^*} \mathbb{E}[Y_i | Z = z]$

ASSUMPTIONS: POTENTIAL OUTCOMES CUASI AND NON EXPERIMENTAL METHODS

- Everything but the "running variable" is the same between groups.
- After controlling for the *running variable*, potential results should be **independent** of assignment:

 $Y_0, Y_1 \perp D_i \mid Z_i$

- We expect that:
 - Potential results variable are *continuous* in the cut-off point.
 - Observables are *continuous* in the cut-off point

ESTIMATING ATE CUASI AND NON EXPERIMENTAL METHODS

So, given the assumptions the ATE would be:

$$ATE = \lim_{z \uparrow Z^*} \mathbb{E}[Y_i | Z_i = z] - \lim_{z \downarrow Z^*} \mathbb{E}[Y_i | Z_i = z]$$

It is estimated by a regression:

- This effect
 - Is a local average for subjects close to the cut-off
 - Internal validity: closer to the cut-off the groups are more similar
 - External validity: closer to the cut-off we lose sample

CENTRO DE SISTEMAS PÚBLICOS

IN4402: Applied statistics for management and economics Regression Discontinuity – Assumptions and Checks

ANDRÉS FERNÁNDEZ

www.sistemaspublicos.cl

ASSUMPTIONS: POTENTIAL OUTCOMES CUASI AND NON EXPERIMENTAL METHODS

- We assume the cut-off point is somewhat *arbitrary*
- Everything **but** the "running variable" is the same between groups (near the cut-off).
- After controlling for the *running variable*, potential results should be **independent** of assignment:

 $Y_0, Y_1 \perp D_i \mid Z_i$

- And we expect that:
 - Potential results variable are *continuous* in the cut-off point.
 - Observables are *continuous* in the cut-off point

ASSUMPTIONS: CONTINUITY ON OBSERVABLES CUASI AND NON EXPERIMENTAL METHODS

- In order to compare groups, we expect that X are continuous (balance)
- We can observe those variables and <u>check</u> their continuity

Not continuous means cut-off is not "random" and groups won't be comparable in those variables

ASSUMPTIONS: NO MANIPULATION CUASI AND NON EXPERIMENTAL METHODS

- Is important that the running variable cannot be manipulated by subjects
 - Otherwise a selection problem could arise.
- We check **density** of subjects by the running variable:
 - Left means continuous and without manipulation
 - Right means a "self-selection" to try to get the scores.

ROBUSTNESS CHECKS CUASI AND NON EXPERIMENTAL METHODS

• It is estimated by the following regression ($\rho = ATE$):

 $Y_i = \alpha + \beta Z_i + \boldsymbol{\rho} D_i + u_i$

- Robustness Checks: local effects and functional forms
 - Use different values of $\delta > 0$ for **neighborhood local** effects $(Z^* \delta < z < Z^* + \delta)$
 - Add quadratic (or other polynomial) terms
 - Add interactions for linear and quadratic terms

CUASI AND NON EXPERIMENTAL METHODS

Because the assumptions is only the continuity, we can check for flexible relations

 $Y_i = f(Z_i) + \rho D_i + u_i$

ROBUSTNESS CHECKS CUASI AND NON EXPERIMENTAL METHODS

- Summary:
 - Regression Discontinuity can be used in situations where treatment is assigned by a *cut-off point in a running variable*
 - Some assumptions must hold:
 - Continuity in potential outcomes and conditional independence
 - Continuity in covariates
 - Some robustness checks should be made
 - Check polinomial relationships
 - Check different neighborhood sizes

CENTRO DE SISTEMAS PÚBLICOS

IN4402: Applied statistics for management and economics Regression Discontinuity – Application

ANDRÉS FERNÁNDEZ

www.sistemaspublicos.cl

HOME / NACIONAL

 \equiv

"Brigadas de menores": La controvertida idea del alcalde Lavín para fiscalizar venta de alcohol en Las Condes

Multan en Las Condes a Uber Eats y Pedidos Ya por no pedir carné de identidad a compradores de alcohol

- Minimum Legal Drinking Age (MLDA) 21 yo in US
- Small change in age (days or months) has a big impact in access to alcohol

RD approach could help examine whether spike in deaths is due to the MDLA

Model estimated:

$$NumDeaths_{i} = \beta_{0} + \beta_{1}Age_{i} + \rho Over21_{i} + u_{i}$$

- Assumptions:
 - Law says NO alcohol under 21 (with compliance)
 - Are potential outcomes and covariates continuos within Age?

A sharp RD estimate of MLDA mortality effects

Notes: This figure plots death rates from all causes against age in months. The lines in the figure show fitted values from a regression of death rates on an over-21 dummy and age in months (the vertical dashed line indicates the minimum legal drinking age (MLDA) cutoff).

 $\rho = 7.7$

- How can be sure? -> Robustness checks
 - Quadratic terms
 - Check other variables

Model estimated:

$$NumDeaths_{i} = \beta_{0} + \beta_{1}Age_{i} + \beta_{2}Age_{i}^{2} + \rho Over21_{i} + u_{i}$$

- This looks more discontinuos than quadratic
- The gap might be caused by the effect

Notes: This figure plots death rates from all causes against age in months. Dashed lines in the figure show fitted values from a regression of death rates on an over-21 dummy and age in months. The solid lines plot fitted values from a regression of mortality on an over-21 dummy and a quadratic in age, interacted with the over-21 dummy (the vertical dashed line indicates the minimum legal drinking age [MLDA] cutoff).

- Results of RD in other outcomes:
 - Which ones are alcohol related?
 - Which ones aren't?

Sharp RD estimates of MLDA effects on mortality			
Dependent variable	A	ges 19-22	
	(1)	(2)	
All deaths	7.66 (1.51)	9.55 (1.83)	
Motor vehicle accidents	4.53 (.72)	4.66 (1.09)	
Suicide	1.79 (.50)	1.81 (.78)	
Homicide	.10 (.45)	.20 (.50)	
Other external causes	.84 (.42)	1.80 (.56)	
All internal causes	.39 (.54)	1.07 (.80)	
Alcohol-related causes	.44 (.21)	.80 (.32)	
Controls	age	age, age ² , interacted with over-21	
Sample size	48	48	

Notes: This table reports coefficients on an over-21 dummy from regressions of month-of-age-specific death rates by cause on an over-21 dummy and linear or interacted quadratic age controls. Standard errors are reported in parentheses.

