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MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTOS
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MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

= Statistics draws population inferences from a sample, and machine learning finds
generalizable predictive patterns (Bzdok, Altman & Krzywinski, 2018)

= We’ll understand learning as “generalizing from experiences”
= We'll feed data-centered experiences to the machine
= We’'ll set an algorithm so the machine can use the data
= We'll set a set of parameters, so the machine knows how to contrasts the experiences
= We'll set some performance measures, so we know if the machine is improving
= We’ll generalize the learning procedure to new data in order to use the patterns

learned




MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

= When using ML approaches, there is a wide range of uses

= By the structure of the algorithm

= Supervised (we input a model knowing the response)
= Unsupervised (we ask the model to show inner patterns)
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MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

= When using ML approaches, there is a wide range of uses

= By the prediction variable’s nature

= Classification
= Regression
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MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

= When using ML approaches, there is a wide range of uses because we want to replicate
the data-production process or function according to its patterns

= Which method is the best one? It depends

= Some predict better, other classify better, other work better (un)supervised, etc.
= Sometimes we can ensamble methods to work optimally

" To assess the models’ performance:
= Evaluate the model fit in training samples
= Evaluate the model’s prediction in test samples

= What happens with interpretation?
= Trade-off between flexibility and interpretation




MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

" There is a trade-off between interpretation and flexibility
" [n order to understand variable relations we assume simpler forms (i.e. linear models)

= More flexible models tend to be highly data-centered and are more difficult to
understand
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MACHINE LEARNING

INTRODUCTION AND MAIN CONCEPTS

= What happens with interpretation?

= What happens with generalization?
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MACHINE LEARNING

MODEL PERFORMANCE EVALUATION

= \We want models to effectively predict data using patterns inside the sample
= How to evaluate better models for prediction purposes?
= Let’s start with a common measure: Mean Squared Errors (MSE)

MSE = (%) 27;1 ()’i - f(xi))z

= We don’t need good predictions on known data...
= We split in training and test samples

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer




MACHINE LEARNING

MODEL PERFORMANCE EVALUATION

» Train vs. test data = training MSE and test MSE
= Qverfitting vs. Underfitting
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MACHINE LEARNING

MODEL PERFORMANCE EVALUATION

= Variance vs. Bias

=" The expected value of MSE can be decomposed into three terms:

E(yi—fG) = var (F) + [Bias ()] +var(e

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer
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MACHINE LEARNING

MODEL PERFORMANCE EVALUATION

= Performance evaluation in classification setting:

= Error rate: how many mistakes are made when using a predicting model

= Contingency tables of classification:

Predicted class

— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N*® P*
Name Definition Synonyms
Falze Pos. rate FP/N | Type I error, 1—Specificity
True Pos. rate TP/P | 1-Type 1l error, power, sensitivity, recall
Pos. Pred. value TP/P* | Precision, 1—false discovery proportion
Neg. Pred. value TN/N*®

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer




MACHINE LEARNING

MODEL PERFORMANCE EVALUATION

= Performance evaluation in classification setting:

= ROC:
ROC Curve
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MACHINE LEARNING

MODEL PERFORMANCE EVALUATION
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= Summary

" Machine learning methods are widely used for prediction of binary or
continuous variables

" |n supervised models, fitting the data and predicting new data is to be
balanced
= This is achieved splitting the data in training and test samples
" Some indicators, such as MSE and contingency tables are used to assess
model predictions
= MSE must be low both for training and test samples.
= Contingency tables can be used to build ROC curves to compare models




