

IN4402: Aplicaciones de Probabilidades y Estadística Machine Learning Methods

ANDRÉS FERNÁNDEZ

MACHINE LEARNING INTRODUCTION AND MAIN CONCEPTOS

Tech

Google achieves AI 'breakthrough' by beating Go champion

() 27 January 2016

The New York Times

How Many Computers to Identify a Cat? 16,000

Top Stories

3 hours ago

Netanyahu out as new Israeli

Benjamin Netanyahu loses his 12-year hold on power as a new Israeli government is approved.

government approved

1

y 🛛 🖈

f

Statistics draws population inferences from a sample, and machine learning finds generalizable predictive patterns (Bzdok, Altman & Krzywinski, 2018)

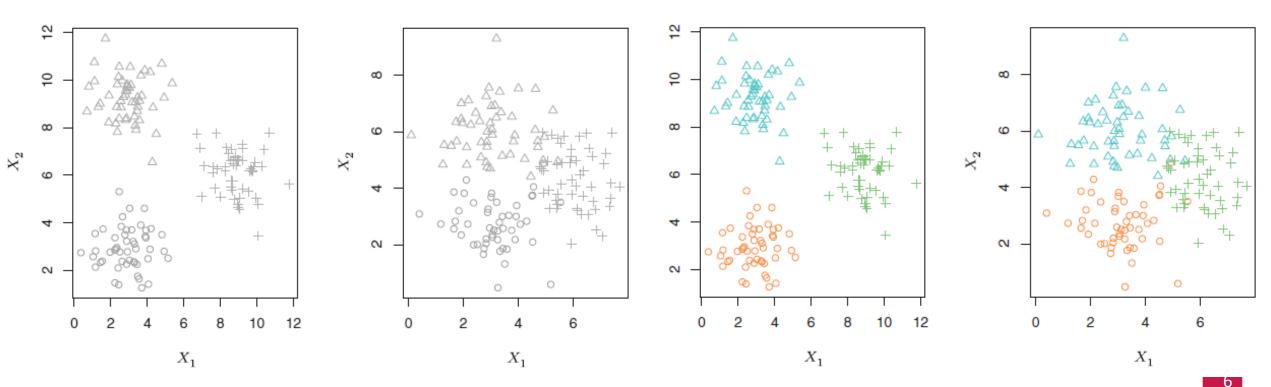
- We'll understand *learning* as "generalizing from experiences"
 - We'll feed data-centered experiences to the machine
 - We'll set an *algorithm* so the machine can use the data
 - We'll set a set of *parameters*, so the machine knows how to contrasts the experiences
 - We'll set some <u>performance</u> <u>measures</u>, so we know if the machine is improving
 - We'll generalize the learning procedure to new data in order to use the patterns learned

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer

MACHINE LEARNING INTRODUCTION AND MAIN CONCEPTS

- When using ML approaches, there is a wide range of uses
- By the structure of the algorithm
 - Supervised
 - Unsupervised

(we input a model knowing the response) (we ask the model to show inner patterns)



MACHINE LEARNING

When using ML approaches, there is a wide range of uses

0.4

0.2

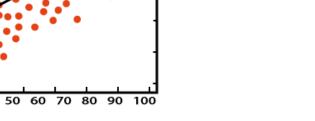
-0.2

-0.4

-0.6

- By the prediction variable's nature
 - Classification
 - Regression

(would this subject be treated/control?)
(how much will this subject spend?)



0.1 0.2

20 30

40

-0.5 -0.4 -0.3 -0.2 -0.1 0

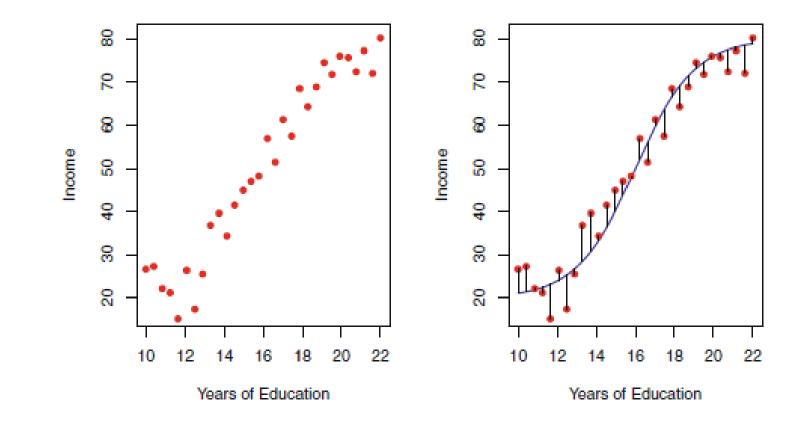
- When using ML approaches, there is a wide range of uses because we want to replicate the data-production process or function according to its patterns
- Which method is the best one? It depends
 - Some predict better, other classify better, other work better (un)supervised, etc.
 - Sometimes we can ensamble methods to work optimally
- To assess the models' performance:
 - Evaluate the model fit in training samples
 - Evaluate the model's prediction in test samples
- What happens with interpretation?
 - Trade-off between flexibility and interpretation

There is a trade-off between interpretation and flexibility

- In order to understand variable relations we assume simpler forms (i.e. linear models)
- More flexible models tend to be highly data-centered and are more difficult to understand

MACHINE LEARNING INTRODUCTION AND MAIN CONCEPTS

- What happens with **interpretation**?
- What happens with generalization?



IN4402: Aplicaciones de Probabilidades y Estadística Machine Learning Performance Evaluation

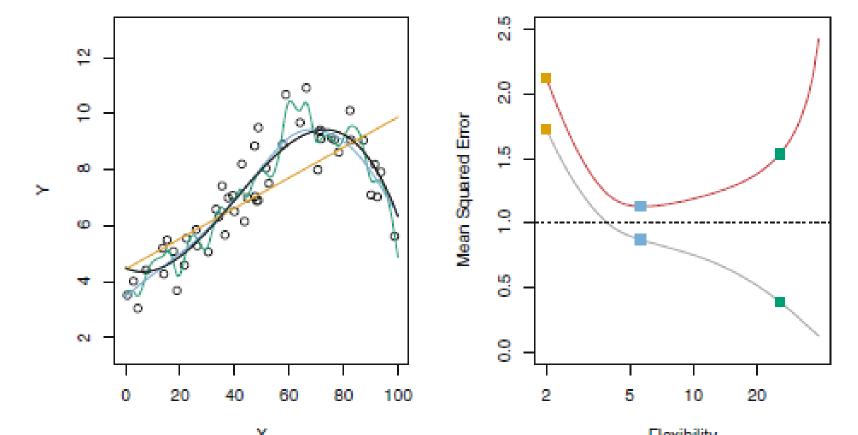
ANDRÉS FERNÁNDEZ

- We want models to effectively predict data using patterns inside the sample
 - How to evaluate better models for prediction purposes?
 - Let's start with a common measure: Mean Squared Errors (MSE)

$$MSE = \left(\frac{1}{n}\right) \sum_{i=1}^{n} \left(y_i - \hat{f}(x_i)\right)^2$$

- We don't need good predictions on known data...
 - We split in *training* and *test* samples

- Train vs. test data \rightarrow training MSE and test MSE
- Overfitting vs. Underfitting



Variance vs. Bias

The expected value of MSE can be decomposed into three terms:

$$E\left(y_{i}-\hat{f}(x_{i})\right)^{2} = Var\left(\hat{f}(x_{i})\right) + \left[Bias\left(\hat{f}(x_{i})\right)\right]^{2} + Var(\varepsilon_{i})$$

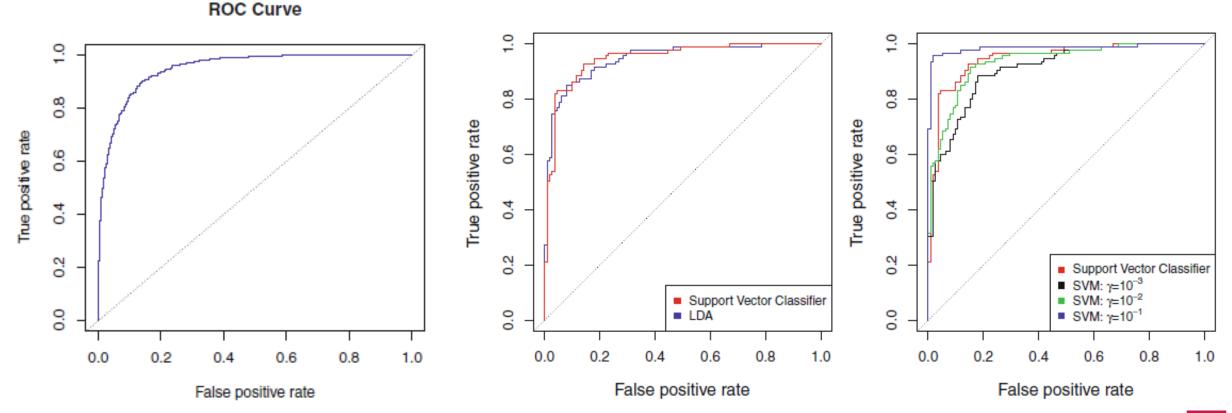
- Performance evaluation in classification setting:
- Error rate: how many mistakes are made when using a predicting model
- **Contingency tables** of classification:

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	Ν
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	Р
	Total	N*	P*	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1–Specificity
True Pos. rate	TP/P	1–Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1-false discovery proportion
Neg. Pred. value	TN/N*	

MACHINE LEARNING MODEL PERFORMANCE EVALUATION

ROC:



Summary

- Machine learning methods are widely used for prediction of binary or continuous variables
- In supervised models, fitting the data and predicting new data is to be balanced
 - This is achieved splitting the data in training and test samples
- Some indicators, such as MSE and contingency tables are used to assess model predictions
 - MSE must be low both for training and test samples.
 - Contingency tables can be used to build ROC curves to compare models