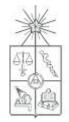


IN4402: Aplicaciones de Probabilidades y Estadística Classification and Regression Trees (CART)

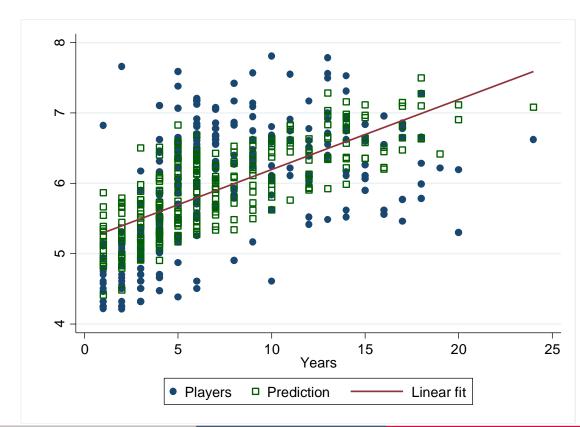
ANDRÉS FERNÁNDEZ



- ML algorithms split data into subregions in order to classify or predict
- Trees are the graphical expression of this process
 - They are built following a question-answer structure over a database
 - It is clear and easy to interpret

- Let's try to predict a baseball player salary from some characteristics
- In **Linear regression (OLS)** we estimate the parameters (β_0, β_k) that minimizes the residual sum of squares (RSS)

	lsalary
hits	0.009
	(0.001)**
years	0.098
	(0.008)**
_cons	4.275
	(0.118)**
R2	0.48
N	263

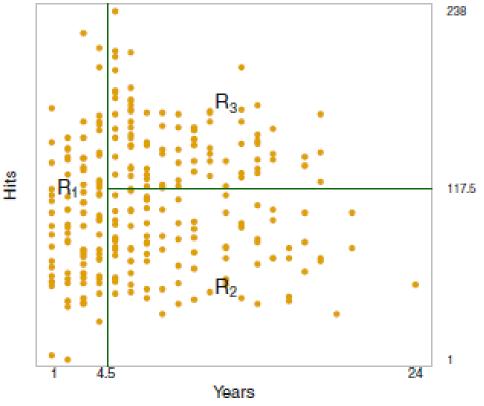


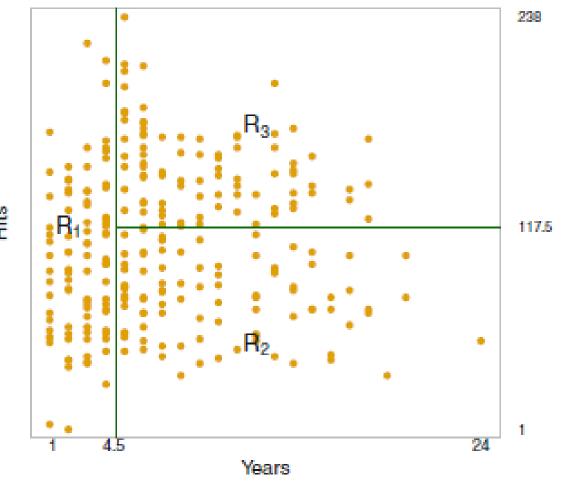
Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer

CLASSIFICATION AND REGRESSION TREES

- Let's try to predict a baseball player salary from some characteristics
- In tree-based algorithms we split data into regions, and then every region is averaged to predict the outcome variable

Region	Predicted LogSalary	Predicted Salary
R1	5.11	\$165,174
R2	6.00	\$402,834
R3	6.74	\$845,346

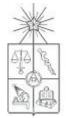




Region	Prediction
R1	\$165,174
R2	\$402,834
R3	\$845,346

Prediction
\$165,174
\$402,834

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer



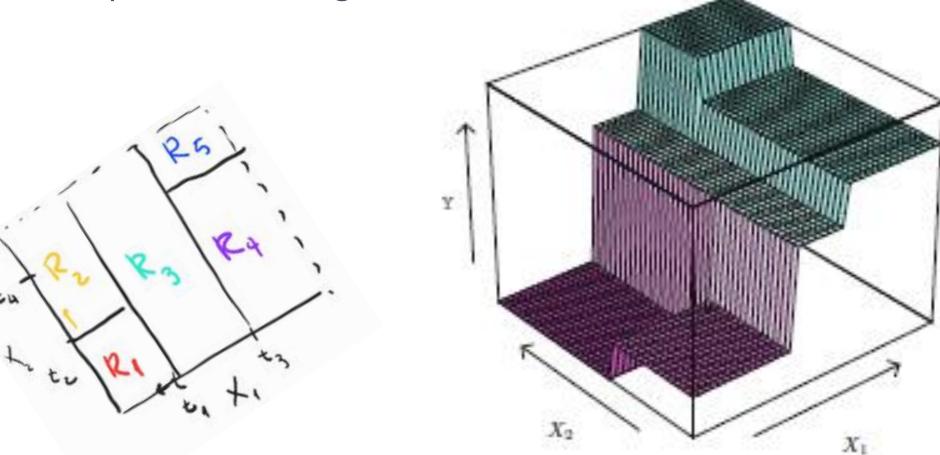
Another example with five regions

EU

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer

CLASSIFICATION AND REGRESSION TREES

Another example with five regions

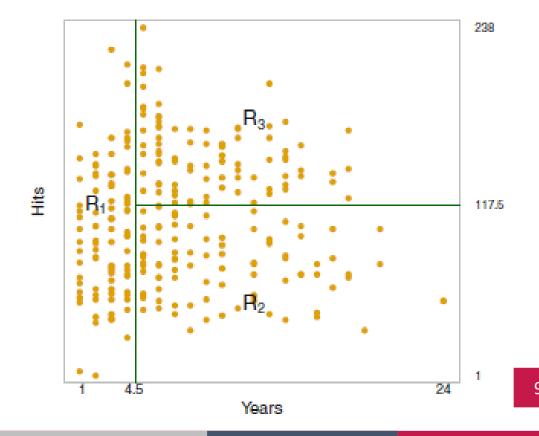


IN4402: Aplicaciones de Probabilidades y Estadística SPLITTING AND PRUNING TREES

ANDRÉS FERNÁNDEZ

- Let's try to predict a baseball player salary from some characteristics
- In tree-based algorithms we split data into regions, and then every region is averaged to predict the outcome variable

Region	Predicted LogSalary	Predicted Salary
R1	5.11	\$165,174
R2	6.00	\$402,834
R3	6.74	\$845,346



- How does the machine know...
 - That years = 4.5 and hits = 117.5 are the best splitting points?
 - Goal is to find regions R₁,..., R_J, generated by cut-points x₁,..., x_J that minimize residual sum of squares (RSS)

$$\sum_{j=i}^{J} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2$$

We take a top-down greedy approach for recursive binary splitting

How does the machine know... (CLASSIFICATION)

- Purity of nodes (if in a certain group division all observations are yes or no)
- Gini index of impurity of region *m* for variables *k*:

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

- The algorithm chooses the variable that provides the lowest impurity
- If a new node gives higher impurity, then the tree stops
- "A variable giving 50/50 split in groups does not give information at all."

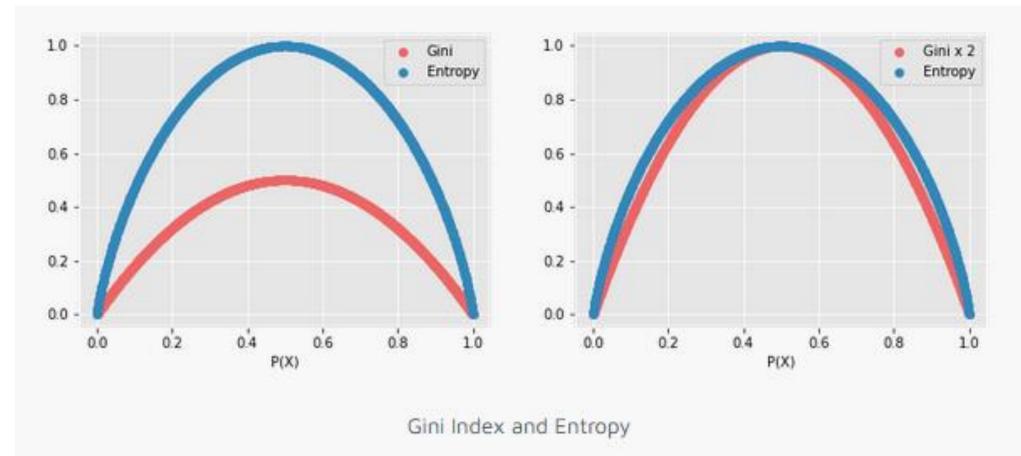
How does the machine know... (CLASSIFICATION)

- Purity of nodes (if in a certain group division all observations are yes or no)
- Entropy measure of region m for variables k

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \cdot \log(\hat{p}_{mk})$$

- The algorithm chooses the variable that provides the lowest impurity
- If a new node gives higher impurity, then the tree stops
- "A variable giving 50/50 split in groups does not give information at all."

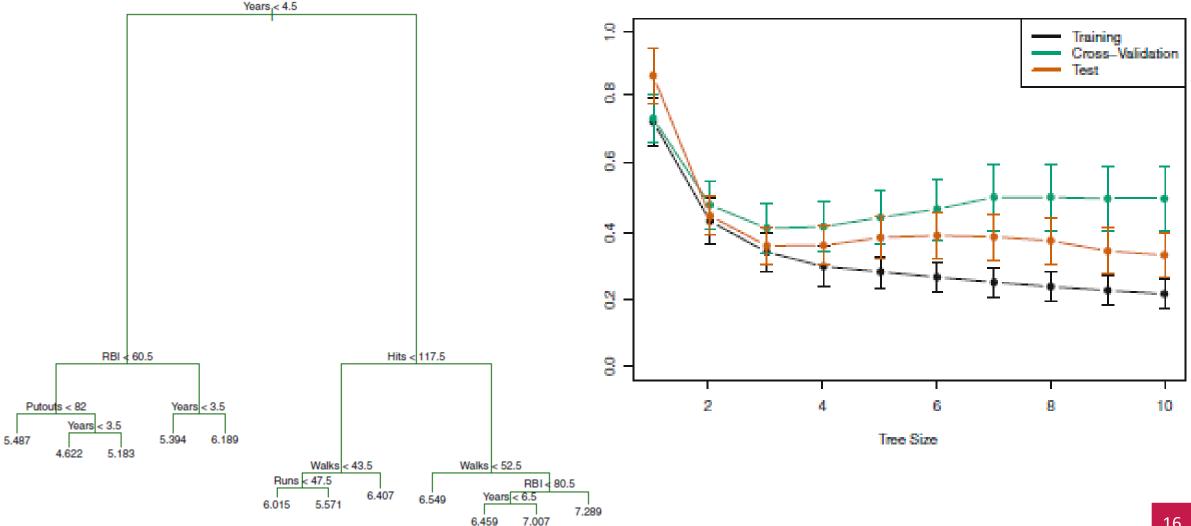
CLASSIFICATION



- How does the machine know...
 - When to stop splitting?
 - Stopping criterion are defined *a priori*, according to some dimension:
 - That every subregion contains more than five observations
 - If we stop too "along the way" we might overfit the data
 - If we stop too "early" we might underfit the data
 - Stopping criterions or "tree pruning" that each gain on RSS decrease is above some threshold (ie. The marginal gain for splitting overcomes the loose on overfitting risk)
 - What if we are loosing a "very good deal" after some splitting?

Tree Pruning strategies

- We could elaborate very large trees and **prune it back** to obtain adequate *subtree*
 - Evaluation of every subtree might be too much
- Cost complexity pruning (weakest link pruning)
 - Let's use a *tuning* parameter. Subtree T has |T| number of terminal nodes (leaves) $\sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T| \quad \operatorname{con} \alpha \ge 0$



Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer

CLASSIFICATION AND REGRESSION TREES

16

K-fold cross-validation (or k-fold CV)

- It approximates the test MSE.
- Divide the training sample in K groups of similar size
- We use all but Kth sample to train and the K sample to evaluate
- We average the results

Commonly used K= 5 or K= 10

K-fold CV is an approximation to test MSE. But it might be more useful for pointing out some parameters

2 ã 64 Mean Squared Error Ē Mean Squared Error 2 a Mean Squared e) 2 2 ð 3 2 ÷. 20 20 20 Flexibility Flexibility Flexibility

K-fold is better tan leaving one point out of sample (overfitting)

CLASSIFICATION AND REGRESSION TREES

Algorithm

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α.
- 3. Use K-fold cross-validation to choose α and number of leaves.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

IN4402: Aplicaciones de Probabilidades y Estadística COMPARING TREES VS LINEAR MODELS

ANDRÉS FERNÁNDEZ

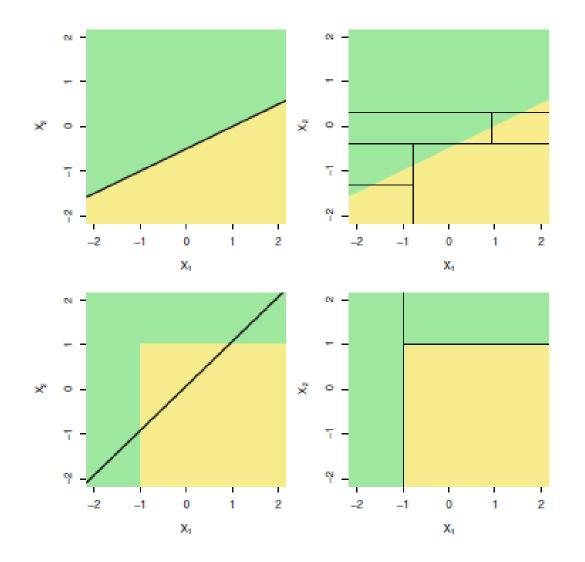
- Comparing
- Linear

$$f(X) = \beta_0 + \sum_{k=1}^p X_k \beta_k$$

Trees

$$f(X) = \sum_{m=1}^{p} c_m \cdot \mathbf{1}_{(X \in R_m)}$$

Comparing



Advantages of Trees

- Easy to interpret and explain
- Might be closer to human decisión-making approach than other methods
- Graphical explanation
- Easy to use on qualitative predictions (binary outcomes)

Disadvantages

- Lower level of predictive accuracy than other ML methods
- Non-robust: small changes in data can cause large change in final estimations
- Another advantage: they can be aggregated between them to improve performance: we say hello to random forests