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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= ML algorithms split data into subregions in order to classify or predict

" Trees are the graphical expression of this process
" They are built following a question-answer structure over a database
" |t is clear and easy to interpret




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" Let’s try to predict a baseball player salary from some characteristics

" In Linear regression (OLS) we estimate the parameters (f,, ;) that
minimizes the residual sum of squares (RSS)
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" Let’s try to predict a baseball player salary from some characteristics

" [n tree-based algorithms we split data into regions, and then every region is
averaged to predict the outcome variable

& 234
e .
.
Region Predicted | Predicted 15 : e oFla, -
LogSalary | Salary ittty o
o N ¥ ' il ? i : ¥ ) §
R1 5.11 $165,174 IR | S L s
R2 6.00 $402,834 Egifé::,ﬁz L
il § 1L -5 R -
R3 6.74 $845,346 pitae: .o :
g i e ¥ a ¥ - B
:* 4.5 24 1

o

Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer
GRS




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS
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Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning:
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= Another example with five regions
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS
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Source: James, Witten, Hastie & Tibshirani (2013) An Introduction to Statistical Learning: with applications in R. New York: Springer

=" Another example with five regions
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" Let’s try to predict a baseball player salary from some characteristics

" [n tree-based algorithms we split data into regions, and then every region is
averaged to predict the outcome variable
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" How does the machine know...
" That years = 4.5 and hits = 117.5 are the best splitting points?

" Goal is to find regions R4, ..., R;, generated by cut-points xy, ..., x; that minimize
residual sum of squares (RSS)

>3 (n-50)

j= llERJ

= We take a top-down greedy approach for recursive binary splitting




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

Al T

" How does the machine know... (CLASSIFICATION)
" Purity of nodes (if in a certain group division all observations are yes or no)
" Gini index of impurity of region m for variables k:

K
G = 2 ﬁmk(l - ﬁmk)
k=1

" The algorithm chooses the variable that provides the lowest impurity
" |f a new node gives higher impurity, then the tree stops
= “A variable giving 50/50 split in groups does not give information at all.”




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" How does the machine know... (CLASSIFICATION)
" Purity of nodes (if in a certain group division all observations are yes or no)
" Entropy measure of region m for variables k

K
D= — Z ﬁmk ' log(ﬁmk)
k=1

" The algorithm chooses the variable that provides the lowest impurity
" |f a new node gives higher impurity, then the tree stops
= “A variable giving 50/50 split in groups does not give information at all.”




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= CLASSIFICATION
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" How does the machine know...
= When to stop splitting?
" Stopping criterion are defined a priori, according to some dimension:
" That every subregion contains more than five observations

" |f we stop too “along the way” we might overfit the data
" |f we stop too “early” we might underfit the data

= Stopping criterions or “tree pruning” — that each gain on RSS decrease is above
some threshold (ie. The marginal gain for splitting overcomes the loose on
overfitting risk)

* What if we are loosing a “very good dea

|II

after some splitting?




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

" Tree Pruning strategies

= We could elaborate very large trees and prune it back to obtain adequate subtree
= Evaluation of every subtree might be too much

» Cost complexity pruning (weakest link pruning)

" Let’s use a tuning parameter. Subtree T has |T'| number of terminal nodes (leaves)

T ~ 2
ln|=1 Zi:xiERm(yi o :VRm) + alTl cona =0




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= K-fold cross-validation (or k-fold CV)
" |t approximates the test MSE.

" Divide the training sample in K groups of similar size
= We use all but Kth sample to train and the K sample to evaluate
= \We average the results

Commonly used K=5 or K= 10




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

K-fold CV is an approximation to test MSE. But it might be more useful for pointing
out some parameters

Mean Squaned Emor

K-fold is better tan leaving one point out of sample (overfitting)
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= Algorithm

= 1. Use recursive binary splitting to grow a large tree on the training data,

stopping only when each terminal node has fewer than some minimum
number of observations.

m 2. Apply cost complexity pruning to the large tree in order to obtain a sequence
of best subtrees, as a function of a.

= 3. Use K-fold cross-validation to choose a and number of leaves.

= 4, Return the subtree from Step 2 that corresponds to the chosen value of a.
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CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

=* Comparing
" Linear

" Trees

p
FOO =B+ ) X
k=1

p
fX) = z Cm - 1(XERm)

m=1




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= Comparing




CLASSIFICATION AND REGRESSION TREES

INTRODUCTION AND MAIN CONCEPTOS

= Advantages of Trees
= Easy to interpret and explain
= Might be closer to human decision-making approach than other methods
= Graphical explanation
= Easy to use on qualitative predictions (binary outcomes)

" Disadvantages
= Lower level of predictive accuracy than other ML methods
=" Non-robust: small changes in data can cause large change in final estimations

" Another advantage: they can be aggregated between them to improve performance:
we say hello to random forests .
23




