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NEED FOR BAGGING
INTRODUCTION AND MAIN CONCEPTS

▪ Trees performs badly:

▪ Simulation:

▪ When splitting 50/50 train and test, the

difference between MSE train and test

is larger for Trees than Linear Models
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TAKING TREES OUT OF A BAG
INTRODUCTION AND MAIN CONCEPTS

▪ “Averaging reduces variance”: we average the result of many trees in bagging

▪ In the train sample we take out of the bag 𝑚 < 𝑁𝑡𝑟𝑎𝑖𝑛 for B times

▪ In classification problems we use “majority vote” instead of “average”
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BAGGING AND OUT OF THE BAG ERROR
INTRODUCTION AND MAIN CONCEPTS

▪ How do we measure the performance? 

▪ Out of the Bag (OOB) Error: the ones
left out of the bag are used to test

▪ Each observation will be left ~1/3 of
the times out of the bag.

▪ For every observation we can 
average all the predictions

▪ It’s an approximate cross-validation
error

▪ Higher number of tres bagged does
not overfit
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VARIABLE IMPORTANCE
INTRODUCTION AND MAIN CONCEPTS

▪ Trees are easily interpreted: but what
about the average of many of them?

▪ We loose interpretability with bagging
performance.

▪ (regression) how much each variable 
decreases RSS in average

▪ (classification) hoy much each
variable decreases impurity in 
average
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BAGGING
INTRODUCTION AND MAIN CONCEPTS

▪ In Summary:

▪ Bagging is a method that repeats B times the following:
▪ Takes a subsample of the training sample

▪ Applies Decision Trees to the subsample

▪ We average errors for the observations Out Of the Bag (OOB)

▪ We average error for the predicted trained observations

▪ We can sort the variables according to their “importance” in building
the trees on average
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BAGGING DECISION TREES
INTRODUCTION AND MAIN CONCEPTS

▪ Bagging many trees might not change anything:

▪ If there’s an important predictor in will always be the root

▪ Then let’s also sample the number of predictors we choose: random forests
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RANDOM FORESTS
INTRODUCTION AND MAIN CONCEPTS

▪ Random Forests decorrelate trees by 
restrincting the number of predictors:

▪ How much? 𝑚 ≈ 𝑝

▪ Since trees are independent the
averaging is more robust to whatever
randomness occurs, the opposite of
trees wich are highly dependent on the
sample they are used for.



10

GENERALIZED RANDOM FORESTS
INTRODUCTION AND MAIN CONCEPTS

▪ Finally, one could argue that particular trees estimated are more 
informative tan other ones:

▪ We use a weighting function when averaging trees: generalized
random forests.

▪ Because trees (and forests) estimate a conditional results function (how
much of Y has the group that X=x)

▪ It can be use to estimate conditional treatment effects

▪ Effect heterogeneity

▪ Many policy applications: causal trees and random forests
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CAUSAL TREES
INTRODUCTION AND MAIN CONCEPTS

▪ A regular decisión tree (DT) or classification and regression trees (CART)
predicts a results for a certain group of subjects given a set of values of X

𝑓 𝑋 = 𝑥 = ෍

𝑚=1

𝑝

𝑐𝑚 ⋅ 1 𝑥∈𝑅𝑚

▪ In a way, the decision tree acts like a matching procedure: conditional on
covariables, within a terminal leaf the observations are very similar

▪ Between leaves, the characteristics are different.

▪ If we use 𝑌 as the result of a treatment, and within each leaf we compare
treated and untreated observations, we could estimate an ATE conditional
on observables: CATE
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CAUSAL TREES
INTRODUCTION AND MAIN CONCEPTS

▪ Heterogeneity in treatment effect

𝑪𝑨𝑻𝑬 ≡ 𝝉𝒊 𝒙 = 𝑬 𝒀𝒊 𝟏 − 𝒀𝒊 𝟎 𝑿 = 𝒙)

▪ We assume
▪ Unconfoundness 𝑌𝑖 𝟏 , 𝒀𝒊 𝟎 ⊥ 𝑻𝒊| 𝑿𝒊
▪ Overlap or common support 𝟎 < 𝑷𝒓 𝑻𝒊 = 𝟏 𝑿𝒊 = 𝒙) < 𝟏, ∀𝒙

▪ But minimizing RSS is not a good approach for CATE estimation
▪ It produce not consistent estimations
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CAUSAL TREES
INTRODUCTION AND MAIN CONCEPTS

▪ New splitting criterion: we need a term to address heterogeneity
▪ We want treatment heterogeneity to be maximum between leaves
▪ We want balance between treated and untreated observations

▪ Athey & Imbens (2016) proove that this can be achieved with a certain estimator
called

Expected Mean Square Error for Treatment Effects (𝑬𝑴𝑺𝑬𝝉)

▪ Maintain balance between treated and untreated observations

▪ Maximizes accuracy of the treatment estimation in each leaf

▪ CATE this way:
▪ Can be estimated via Generalized Random Forests (GRF)
▪ Has asymptotic behaviour so CI can be computed
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CAUSAL RANDOM FORESTS
INTRODUCTION AND MAIN CONCEPTS

▪ Because trees are unstable, we use random forest of causal trees

▪ Causal Random Forests

▪ But, if we use the data to build the forest that maximized heterogeneity, and
then also to estimate the CATE, then there should be bias.

▪ We take an honest approach and split the sample in splitting/estimate samples

▪ Very much likely train/test approach

▪ We use first sample to build the tree and the second one to estimate

▪ We will use honest causal random forests
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CAUSAL RANDOM FORESTS
INTRODUCTION AND MAIN CONCEPTS

Source: https://www.causalflows.com/causal-tree-learning/

▪ Honest Causal Random Forests improves perfomance on estimation

▪ For example, against the common K-Nearest Neighbour procedure
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CAUSAL RANDOM FORESTS
INTRODUCTION AND MAIN CONCEPTS

▪ In summary:

▪ When there is need for a treatment estimation, we can use Trees to
estimate a Conditional Average Treatment Effect (CATE)
▪ Because leaves provide a good similarity in conditional covariables

▪ We modify the splitting criterion to maximize heterogeneity
▪ Decision Trees produce biased and not consistent estimators

▪ We use 𝑬𝑴𝑺𝑬𝝉 as the criterion to maximize heterogeneity and balance

▪ We estimate many causal trees to produce a causal random forest

▪ We use splitting and estimate samples to produce an honest result

▪ We estimate an ATE that is a function of covariables


