

IN4402: Aplicaciones de Probabilidades y Estadística CAUSAL RANDOM FOREST - APPLICATION

- In summary:
 - When there is need for a treatment estimation, we can use Trees to estimate a Conditional Average Treatment Effect (CATE)
 - Because leaves provide a good similarity in conditional covariables
 - We modify the splitting criterion to maximize heterogeneity
 - Decision Trees produce biased and not consistent estimators
 - We use $EMSE_{\tau}$ as the criterion to maximize heterogeneity and balance
 - We estimate many causal trees to produce a causal random forest
 - We use splitting and estimate samples to produce an honest result
 - We estimate an ATE that is a function of covariables

- Why study heterogeneity? -> Target of treatment more efficiently
- Application to Summer Jobs randomly assigned
 - For crime prevention, Chicago offers a part-time job during the summer to 14-22 aged vulnerable young people
 - Data of criminal records, employment and school attendance is followed
 - Outcome: (1) violent-crime arrests, (2) employment
 - Covariates: 14 (demographics, neighborhood, educational, criminal history)
 - N = 6850

- Does CRF identify correctly heterogeneous effects?
- Data randomly split in two (in sample and out of sample)
 - They use in-sample data to train HCRF and out-of-sample for testing
 - They use bagging procedure sampling 20% of the observations
 - They estimate $\hat{\tau}_i$ (CATE) for every individual
 - They split each sample in two groups: $(\hat{\tau}_i > 0)$ & $(\hat{\tau}_i < 0)$
 - For every group, they estimate the regression

$$Y_i = \beta_0 + \beta_1 \, 1_{(\hat{\tau}_i > 0)} + \beta_2 \, T \cdot \, 1_{(\hat{\tau}_i > 0)} + \beta_3 T \cdot (1 - 1_{(\hat{\tau}_i > 0)}) + \Phi X^k + a_b + \varepsilon_i$$

$$\bullet \text{ Is } \beta_2 = \beta_3?$$

Does CRF identify correctly heterogeneous effects?

Does CRF identify correctly heterogeneous effects?

TABLE 1—TREATMENT EFFECTS BY PREDICTED RESPONSE

	No. of violent	
Subgroup	crime arrests	Any formal employment
Panel A. In sample		
$\hat{\tau}_i^{CF}(x) > 0$	0.22 (0.05)	0.19 (0.03)
$\hat{\tau}_i^{CF}(x) < 0$	-0.05 (0.02)	-0.14 (0.03)
H_0 : subgroups equal, $p =$	0.00	0.00
Panel B. Out of sample		
$\hat{\tau}_i^{CF}(x) > 0$	-0.01 (0.05)	0.08 (0.03)
$\hat{\tau}_i^{CF}(x) < 0$	-0.02 (0.02)	-0.01 (0.03)
H_0 : subgroups equal, $p =$	0.77	0.02

- Does CRF identify correctly heterogeneous effects?
- Even more honest estimation:

- Does CRF identify correctly heterogeneous effects?
- Even more honest estimation of in sample estimation:

There were some overfitting in violent-crime outcome

	No. of	
	violent	Any formal
	crime	
Subgroup	arrests	employment
Panel B. Out of sample		
$\hat{\tau}_i^{CF}(x) > 0$	-0.01	0.08
	(0.05)	(0.03)
$\hat{\tau}_i^{CF}(x) < 0$	-0.02	-0.01
/	(0.02)	(0.03)
H_0 : subgroups equal, $p =$	0.77	0.02
Panel C. Adjusted in sample		
$\hat{\tau}_i^{CF}(x) > 0$	-0.06	0.05
	(0.04)	(0.03)
$\hat{\tau}_i^{CF}(x) < 0$	-0.02	-0.04
	(0.02)	(0.03)
H_0 : subgroups equal, $p =$	0.41	0.02

- Summary:
 - HCRF are more successful in identifying different subgroups than linear regression
 - There are heterogeneity in effect in future employment but not in violent-crime reduction
 - HCRF are still subject to overfitting
- By characterizing the young people more affected by summer jobs we can be more efficient in
 - Sending more targeted invitations
 - Change the purpose of the program