

IN4402: Aplicaciones de Probabilidades y Estadística CAUSAL RANDOM FOREST - APPLICATION

ANDRÉS FERNÁNDEZ

- Energy conservation is essential for environment protection
- What works better on changing people's behaviour?
 - Higher pricing in peak hours?

Rebate?

Non-monetary? (feedback)

EXPERIMENTAL DESIGN

- From November 2019 to February 2020 field experiment in Japan
- Sample of 954 households
- Random assignment:

EXPERIMENT DESIGN

Figure 1. Timeline and procedures of the experiment

EXPERIMENTAL DESIGN BALANCE CHECK

	Control	Reba	Rebate		Nudge	
	(N=327) (N=313)		(N=314)			
-	Average	Difference	p-value	Difference	p-value	
Early Winter						
(December 1–14)						
Electricity use (kWh /day)	13.818	0.084	0.909	-0.114	0.877	
Electricity use (kWh /peak-time)	2.761	0.010	0.941	0.006	0.967	
Pre-Event Period			·			
(January 1–23)						
Electricity use (kWh /day)	16.876	0.091	0.920	0.009	0.992	
Electricity use (kWh /peak-time)	3.343	-0.009	0.957	0.051	0.770	
Rebate Baseline						
(January 17–23)						
Electricity use (kWh /day)	17.029	0.082	0.929	0.018	0.984	
Electricity use (kWh /peak-time)	3.383	-0.054	0.750	0.072	0.688	
Demographic Characteristics		•	· ·	•		
Household size (persons)	2.700	0.012	0.898	-0.028	0.772	
Number of A/Cs	2.994	0.143	0.294	0.025	0.855	
Home size (Square meter)	116.667	-2.242	0.551	-0.297	0.938	
Household income (JPY/million)	6.343	-0.366	0.232	-0.070	0.828	
All electric house (Dummy)	0.440	-0.054	0.168	-0.039	0.317	

RESULTS ATE ESTIMATION BY DIFFERENCE IN DIFFERENCE

Table 2. ATEs of rebate and nudge

	All household		Subgroup		
	N=954		Less (N=5	81)	More (N=355)
Rebate	-0.043	***	-0.056	***	-0.025
	(0.013)		(0.016)		(0.023)
Nudge	-0.007		-0.038	**	0.036
	(0.013)		(0.015)		(0.024)
Observations	214,173		126,598		83,372
			•	Predicted	by RF

Note: **p<0.05, ***p<0.01. This table shows the DID estimation results for Equation (2). Standard errors are reported in parentheses. We used the natural logarithm of electricity usage for the dependent variable; hence, the treatment effects may be approximately interpreted in percentage terms.

Generalized Random Forests algorithm:

Results:

Figure 4. Distributions of heterogenous treatment effects

Source: Murakami, K., Shimada, H., Ushifusa, Y., & Ida, T. (2020)

Figure 5. Key variables for growing trees

Key Variables:

Source: Murakami, K., Shimada, H., Ushifusa, Y., & Ida, T. (2020)

Testing heterogeneity in out of sample observations:

Testing heterogeneity in out of sample observations:

	ATE (γ)	Heterogeneity (η)
Rebate	-0.044	1.641
	[-0.073, -0.015]	[0.050, 3.296]
Nudge	-0.008	1.410
	[-0.032, 0.016]	[0.051, 2.793]

Table 4. Results of the slope test

Note: The numbers in brackets represent the 90% confidence interval proposed by Chernozhukov et al. (2019). The number of iterations is 1000.

POLICY OPTIMIZATION BEING MORE EFFECTIVE WITH TREATMENT

- Some formalities:
 - Value of a policy

Improvement of a policy

Source: Estimation of Heterogeneous Treatment Effects prepared for "Machine Learning and Causal Inference" class Susan Athey, Stefan Wager, Vitor Hadad, Sylvia Klosin, Nicolaj Muhelbach, Xinkun Nie, Matt Schaelling May 07, 2020 -> <u>https://gsbdbi.github.io/ml_tutorial/hte_tutorial/hte_tutorial.html</u>

POLICY OPTIMIZATION BEING MORE EFFECTIVE WITH TREATMENT

Figure 6. Mean electricity usage in the pre-event period and treatment effects

Table 5. Improvement in treatment effects by targeting

	Net treatment effects		
	Uniform	Targeting	
Rebate	-5.02%	-5.02%	
	(1.49)	(1.49)	
Nudge	-1.25%	-3.29%	
	(5.77)	(3.60)	
Optimum targeting	-5.61%		
	(2.33)		

Source: Murakami, K., Shimada, H., Ushifusa, Y., & Ida, T. (2020)

Designing optimal policy as a function of observables

- Energy conservation is important but it is hard to achieve
- The authors compare Monetary vs. Non.monetary type of treatment
 - Monetary treatment shows positive effect on all sample
 - Non-monetary treatment shows effect on those previously "concious"
- Treatment could be optimized if both treatments are mixed between people:
 - Less costs of expensive treatment (rebate)
 - More effects on less costly treatment (nudge)