

Auxiliar 3

Profesor: Patricio Aceituno Auxiliares: Javier Huenupi, Mauricio Rojas y Edgardo Rosas

27 de agosto de 2021

- P1. Una particula presenta un movimiento circular, de radio R cte., de manera tal que su aceleración tangencial (su módulo), coincide con el modulo de su aceleración normal. Considere que inicialmente la velocidad tangencial de la partícula esta dada por $\vec{v}(0) = v_0 \hat{t}$. Calcule:
 - v(t), v(s)
 - $||\vec{a}||$
- P2. Partícula obligada a moverse sobre una curva. Considere una curva espiral descrita por las ecuaciones (en coordenadas cilíndricas): $\rho = R$ y $z = a\phi$. Suponga que la particula es forzada a moverse de manera que $v_z = e^{-bt}$ y en t = 0 la particula se encuentra en z = 0.
 - Bosqueje la curva sobre la cual se mueve la particula, obtenga la velocidad y aceleracion de esta
 - Encuentre $\vec{r}(t)$ y calcule el numero de vueltas que la particula podria dar a la espiral. Comente como cambia su respuesta en terminos de b, interprete el significado físico de esta constante.
- P3. Una hormiga se mueve sobre un casquete esférico de radio r siguiendo la relación $\phi = \theta$. Si la hormiga se desplaza con rapidez constante v_0 , determine
 - \blacksquare La componente $\dot{\theta}$ como función de θ
 - \blacksquare La componente $\ddot{\theta}$ como función de θ
 - ullet Determine las componentes azimutal y cenital de la aceleración en función de heta
 - Determine el radio de curvatura cuando la hormiga pasa por el ecuador