
Meas. Sci. Technol. 8 (1997) 1379–1392. Printed in the UK PII: S0957-0233(97)84477-3

Fundamentals of digital particle
image velocimetry

J Westerweel

Laboratory for Aero & Hydrodynamics, Delft University of Technology,
Rotterdamseweg 145, 2628 AL Delft, The Netherlands

Received 28 May 1997, accepted for publication 27 August 1997

Abstract. The measurement principle of digital particle image velocimetry (PIV) is
described in terms of linear system theory. The conditions for PIV correlation
analysis as a valid interrogation method are determined. Limitations of the method
arise as consequences of the implementation. The theory is applied to investigate
the statistical properties of the analysis and to optimize and improve the
measurement performance. The theoretical results comply with results from Monte
Carlo simulations and test measurements described in the literature. Examples of
both correct and incorrect implementations are given.

1. Introduction

Optical flow diagnostics are based on the interaction, i.e.
refraction, absorption or scattering, of (visible) light with
inhomogeneous media. In an optically homogeneous fluid
there is no significant interaction of the incident light with
the fluid, such as refraction, by which information of the
flow velocity field can be retrieved. In particle image
velocimetry (PIV) the fluid motion is made visible by
adding small tracer particles and from the positions of these
tracer particles at two instances of time, i.e. the particle
displacement, it is possible to infer the flow velocity field.

The initial groundwork for a PIV theory was laid
down by Adrian (1988) who described the expectation
value of the auto-correlation function for a double-exposure
continuous PIV image. This description provided the
framework for experimental design rules (Keane and Adrian
1990). Later, the theory was generalized to include
multiple-exposure recordings (Keane and Adrian 1991) and
cross-correlation analysis (Keane and Adrian 1993). The
theory provided an adequate description for the analysis of
highly resolved PIV photographs, which was the common
mode of operation for a considerable time. However,
nowadays PIV has developed towards the use of electronic
cameras for direct recording of the particle images (Willert
and Gharib 1991). As the resolution and image format
of electronic cameras is several orders of magnitude lower
than that of a photographic medium, digitization cannot be
ignored. The theory was further extended by Westerweel
(1993a) to include digital PIV images and the estimation of
the displacement at sub-pixel level.

This paper summarizes the fundamental aspects of PIV
signal analysis. The measurement principle is described in
terms of (linear) system theory, in which the tracer particles
are viewed as an observable pattern that is tied to the fluid;
the observed tracer patterns at two subsequent instances

are considered as the input and output of the system, and
the velocity field is inferred from the analysis of the input
and output signals. The tracer pattern is then related to
the observed (digital) image. The statistical description of
discrete PIV images is subsequently applied to evaluate the
estimation of the particle-image displacement as a function
of the spatial resolution.

The development of the theory is based on descriptions
of random processes and random fields given by e.g.
Priestley (1992) and Rosenfeld and Kak (1982). This
work only presents the main results; for detailed derivations
the reader is also advised to consult Westerweel (1993a).
A summary of the statistical properties of sub-pixel
interpolation for images with low pixel resolution is also
available as a conference paper (Westerweel 1993b).

2. Acquisition

2.1. The displacement field

In PIV the fluid velocity is inferred from the motion of
tracer particles. The tracer particles are considered asideal
when they (1) exactly follow the motion of the fluid, (2)
do not alter the flow or the fluid properties and (3) do
not interact with each other. The velocity is measured
indirectly, as a displacementD(X; t ′, t ′′) of the tracer
particles in a finite time interval1t = t ′′ − t ′, i.e.

D(X; t ′, t ′′) =
∫ t ′′

t ′
v[X(t), t ] dt (1)

where v[X(t)] is the velocity of the tracer particle.
For ideal tracer particles the tracer velocityv is equal
to the local fluid velocity u(X, t). However, in a
practical situation the concept of ideal tracers can only
be approximated. In addition, equation (1) implies that
the displacement field only provides information about the
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Figure 1. The displacement of the tracer particles is an
approximation of the fluid velocity (after Adrian 1995).

average velocity along the trajectory over a time1t . This
is illustrated in figure 1.

Thus,D cannot lead to an exact representation ofu,
but approximates it within a finite errorε:

‖D − u ·1t‖ < ε. (2)

The associated error is often negligible, provided that the
spatial and temporal scales of the flow are large with respect
to the spatial resolution and the exposure time delay, and
the dynamics of the tracer particles. A further analysis of
these aspects is given by Adrian (1995).

The flow information is only obtained from the
locations at which the tracer particles are present.
Since these are distributed randomly over the flow, the
displacement of individual tracer particles constitutes a
random sampling of the displacement field, and different
realizations yield different estimates ofD. Obviously,
these differences can be neglected as long as the
reconstructed displacement field satisfies equation (2). This
implies that the displacement field should be sampled
at a density that matches the smallest length scale of
the spatial variations inD. SinceD can be regarded
as a low-pass filtered representation ofu, with a cut-
off filter length that is equal to‖D‖, the displacement
field should be sampled with an average distance that is
smaller than the particle displacement. This implies that
a measurement in which the average distance between
distinct particle images islarger than the displacement
(as is the case in conventional particle tracking; see
figure 2(a)) cannot resolve the full displacement field.
However, when the seeding concentration is high (so that
the mean spacing between tracer particles is smaller than
the displacement) it is not possible to identify matching
particle pairs unambiguously; see figure 2(b). It is therefore

(a) individual tracer (b) tracer pattern

Figure 2. (a) At low seeding density individual tracers yield the fluid motion; (b) at high seeding density the tracers constitute
a pattern that is advected by the flow.

more convenient to describe the tracer particles in terms of
a pattern.

2.2. The tracer pattern

The tracer particles constitute a random pattern that is ‘tied’
to the fluid and the fluid motion is visible through changes
of the tracer pattern. The tracer pattern inX at time t is
defined as:

G(X, t) =
N∑
i=1

δ[X −Xi (t)] (3)

whereN is the total number of particles in the flow,δ(X) is
the Diracδ-function andXi (t) the position vector of the
particle with indexi at timet . Integration ofG(X, t) over
a volume yields the number of particles in that volume.

The tracer pattern at timet ′ can be viewed as a spatial
signal G′(X) = G(X, t ′) at the input of a ‘black-box’
system (representing the flow) that acts on the input signal,
and returns a new signalG′′(X) = G(X, t ′′) at the output;
see figure 3. For ideal tracer particles the addition of a new
particle does not affect the action of the system on the other
tracer particles, i.e. the system is linear. Consequently, the
output signal can be written as a convolution of the input
signal with the impulse responseH of the system:

G′′(X) =
∫
H(X,X ′)G′(X ′) dX ′. (4)

The impulse response is a shift of the input by the local
displacementD in equation (1):

H(X ′,X ′′) = δ[X ′′ −X ′ −D]. (5)

The shift formally depends onX, but under equation (2) it
can be assumed thatD is locally uniform, so thatH can be
regarded as shift invariant, i.e.H(X ′,X ′′) = H(X ′′−X ′).

According to linear system theory, the impulse response
of a black-box system can be obtained from the cross-
covarianceRG′G′′ of a random input signal with the
corresponding output signal:

RG′G′′(s) = H ∗ RG′(s) (6)

(Priestley 1992), where∗ denotes a convolution integral,
andRG′ is the auto-covariance of the input signal. For the
special case where the input signal is a homogeneous white
process (i.e.RG′(s) ∝ δ(s)), the cross-correlation directly
yields the impulse response.
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Figure 3. The velocity field v(X, t) is viewed as a
black-box system that acts on the tracer pattern G(X, t ′) at
the input to yield the tracer pattern G(X, t ′′) at the output.

2.3. The tracer ensemble

Following Adrian (1988), the statistical properties of the
tracers are evaluated by considering the ensemble of all
possible realizations ofG(X, t) for a given (fixed) flow
field u(X, t). The ensemble cross-covariance is defined
as:

RG′G′′(X
′,X ′′) = 〈G′(X ′)G′′(X ′′)〉 − 〈G′(X ′)〉〈G′′(X ′′)〉

(7)
where〈· · ·〉 denotes the ensemble average.

To evaluate the terms in (7), the tracer pattern defined
in (3) is represented as a single vector in a 3N -dimensional
phase space:

Γ(t) =


X1(t)

X2(t)

...

XN (t)

 . (8)

For ideal tracer particles the trajectory ofΓ is prescribed
by the velocity field at the positions of the tracer particles:

dΓ
dt
= U(Γ, t) with U(Γ, t) =


u(X1, t)

u(X2, t)

...

u(XN , t)

 . (9)

The ensemble mean ofG(X) is given by:

〈G〉 =
∫
G(Γ)%(Γ) dΓ (10)

(for brevity of notation the coordinatesX andt are omitted)
where%(Γ) is the probability density function (PDF) forΓ.
The second-order statistic〈G′G′′〉 is given by:

〈G′G′′〉 =
∫ ∫

G(Γ′)G(Γ′′)%(Γ′′|Γ′)%(Γ) dΓ′ dΓ′′ (11)

where%(Γ′′|Γ′) is the conditional PDF forΓ′′ given the
initial state Γ′. For a given flow fieldΓ′′ is uniquely
determined by (9), and therefore

%(Γ′′|Γ′) = δ[Γ′′−Γ′−D] with D =
∫ t ′′

t ′
U [Γ(t)] dt

(12)
(cf equation (1)). As a direct consequence (11) reduces to:

〈G′G′′〉 =
∫
G(Γ)G(Γ+D)%(Γ) dΓ. (13)

Thus, both first- and second-order ensemble statistics are
determined by%(Γ) (for ideal tracer particles).

(a) inhomogeneous seeding

(b) homogeneous seeding

Figure 4. Seeding of a jet flow for (a) flow visualization and
(b) PIV.

Since there are no particles that appear into or disappear
from the ensemble,% satisfies a continuity equation:

∂%

∂t
+ U · grad% + % divU = 0 (14)

(this is essentially a formulation of Liouville’s theorem).
Consider the special case of an incompressible flow with
spatially homogeneous seeding, i.e.

grad% = 0 and divU = 0. (15)

Inserting this into (14) immediately yields:

∂%

∂t
= 0 (16)

which implies that%(, t) is constant and does not depend
on the flow field. Hence, a homogeneous tracer pattern
can only be maintained for ideal tracer particles in an
incompressible flow field.

In the limit for V →∞ andN →∞, with N /V = C
is constant, whereC is the number density of the seeding,
the first- and second-order statistics are given by{ 〈G′(X)〉 = 〈G′′(X)〉 = C
〈G′(X ′)G′′(X ′′)〉 = Cδ[X ′′ −X ′ −D] + C2

(17)
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Figure 5. Schematic representation of the imaging set-up
in PIV.

(a) I0(Z ) (b) FO (w1t)

Figure 6. The loss-of-correlation FO due to out-of-plane
motion (w1t) for a light sheet Io(Z ) with a uniform intensity
profile.

(Westerweel 1993a). So, (7) yields:

RG′G′′(X
′,X ′′) = Cδ[X ′′ −X ′ −D]. (18)

This implies that an interpretation of the cross-covariance in
terms of the tracer displacement is only appropriate for an
incompressible flow with a homogeneous seeding of ideal
tracers. In other cases the location of the correlation peak is
not purely determined by the flow field, but is biased with
respect to the distribution of the seeding over the flow. For
those cases where the correlation analysis is not appropriate,
the analysis could be made using a different method, for
example by a particle tracking algorithm (Keaneet al
1995).

This analysis also demonstrates the difference between
seeding for flow visualization and for PIV. For flow
visualization, the aim is to make certain flow structures
or flow regions visible. This can be accomplished
by introducing the seeding at a particular location
(i.e. inhomogeneous seeding). By contrast, a single-
exposure PIV recording of an incompressible flow with
(ideal) homogeneous seeding appears featureless; any flow
structure only becomes visible when the velocity field is
evaluated.

This is illustrated in figure 4, which shows two (single-
exposure) images of the same jet flow. In one case only the
ambient fluid was seeded, which clearly visualizes the jet,
but which is unsuitable for PIV measurement. If both the
jet and the ambient fluid are seeded correctly it is no longer

possible to distinguish between the ambient fluid and the
jet fluid.

2.4. Imaging

In planar domain PIV, a cross section of the flow is
illuminated with a thin light sheet, and the tracer particles
in the light sheet are projected onto a recording medium in
the image plane of a lens, as illustrated in figure 5. The
intensity of the light sheet thickness1Z0 is assumed to
change only in theZ-direction It is assumed that the optics
consist of an aberration-free circular lens with a numerical
aperturef #, and that all observed particles are in focus
(which is satisfied when1Z0 is less than the object focal
depth (Adrian 1991)).

The imaging of the tracer pattern is essentially a
projection of the tracer pattern onto the planar domain, i.e.

g(x, y) = 1

IZ

∫
Io(Z)G(X, Y,Z)dZ (19)

with x = MX andy = MY , whereIo(Z) is the light-sheet
intensity profile with a maximumIZ andM is the image
magnification. A paraxial approximation is assumed, so
that the projection ofG ontog only involves an integration
along theZ-coordinate. By analogy withG(X, Y,Z), the
integral ofg(x, y) over a given area yields the (non-integer)
number of particle images in that area. The ensemble cross-
covariance ofg′ andg′′ is given by:

Rg′g′′(s) = FO(1Z) · C1Z0 · δ(s− sD) (20)

(cf (18)), with

FO(1Z) =
∫
Io(Z)Io(Z +1Z) dZ

/∫
I 2
o (Z) dZ (21)

(Adrian 1988), and wheresD = M · (1X,1Y) is the in-
plane displacement of the tracer images. The termFO
represents theloss of correlationdue to tracer particles that
enter or leave the light sheet.

For a uniform light sheet,FO is proportional to the
magnitude of the out-of-plane displacement; see figure 6.
This information can be used to determine the magnitude
of the out-of-plane displacement (Raffelet al 1996).

The image of a single tracer particle is denoted by
t (x, y), which has a finite widthdt (i.e. particle-image
diameter). The appearance of the image depends on the
concentration of tracer particles in the light sheet. The
source density is defined as:

NS = C1Z0M
−2π

4
d2
t (22)

(Adrian 1984). At a low source density (NS � 1) the
average distance between particles is much larger than the
particle-image diameter, and the image consists ofisolated
particle images; at a high source density (NS � 1) particle
images overlap, and for coherent illumination the resultant
image is a random interference pattern, better known as
speckle.

The optical system described in figure 5 can be
considered as a linear, shift-invariant system, witht (x, y)
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the system response to a single tracer particle. Then, for
identical tracer particles, the image intensityI (x, y) at low
source density is given by:

I (x, y) = IZ
∫ ∫

t (s − x, t − y)g(s, t)ds dt. (23)

The corresponding image ensemble cross-covariance is
given by:

RII (s) = FO(1Z) · RI ∗ δ(s− sD) (24)

(cf equation (6)), whereRI (s) is the image auto-correlation:

RI (s) = C1Z0M
−2I 2

Zt
2
0Ft(s) (25)

Ft is the particle-image self-correlation andt20 a
normalization term (t20Ft = t ∗ t). For small particle
images,RII has the shape of a narrow peak with a width
that is proportional todt . The location of this peak is
determined by the in-plane particle-image displacement,
and the peak amplitude is proportional to the number of
tracer particles per unit area that remain within the light
sheet (i.e.FOC1Z0M

−2). In the next section this model
for the image ensemble statistics is applied to describe the
statistical properties of the interrogation of PIV images.

3. Interrogation

3.1. Spatial correlation

So far, an ensemble of all possible realizations of the tracer
pattern has been considered. In practice the flow field is
not reproducible (e.g. turbulent flow) and only a single
realization ofI ′ andI ′′ is available. In that case ensemble
averaging is replaced by spatial averaging, defined as

C(s) =
∫ ∫

W ′(x)I ′(x)W ′′(x+ s)I ′′(x+ s) dx (26)

(Adrian 1988) whereW ′ andW ′′ are window functions that
are associated with the interrogation domains inI ′ and I ′′

respectively.
A necessary condition is that the spatial averaging is

ergodic with respect to the ensemble averaging, which
implies that the spatial average over an interrogation
domain converges to the ensemble average when the
domain area goes to infinity (Rosenfeld and Kak 1982,
Priestley 1992). This condition is satisfied when the tracer
pattern is homogeneous and the impulse response is shift
invariant. Hence, the spatial correlation can be written as
the sum of an ensemble mean value〈C(s)〉 and a fluctuation
C ′(s) with respect to the mean:

C(s) = 〈C(s)〉+C ′(s) = RD(s)+RC(s)+RF (s)+C ′(s)
(27)

(Adrian 1988) whereRD(s) is the so-calleddisplacement-
correlation peak,RC is a constant background correlation
term andRF represents the correlation between the mean
and fluctuating image intensities. The displacement-
correlation peak is given by:

RD(s) = NIFIFO · I 2
Zt

2
0Ft ∗ δ(s− sD) (28)

with the image densityNI given by

NI = C1Z0D
2
I /M

2 (29)

(Adrian 1984) and

FI (s) = 1

D2
I

∫
W ′(x)W ′′(x+ s) dx (30)

(Adrian 1988), whereD2
I is the area associated with the

interrogation domain.
The termsRC andRF can be eliminated by subtracting

the mean image intensity fromI ′ and I ′′. The random
correlation termC ′(s) reflects the fluctuation of a single
realization with respect to the ensemble mean value.

Thus, the expected spatial correlation is essentially
equal to the ensemble correlation, multiplied by a term
that accounts for the in-plane loss of correlation (due to
the tracer particles that enter and leave the interrogation
domain). The amplitude of the correlation peak is
proportional toNIFIFO , whereNI is the so-called image
density that reflects the mean number of particle images in
an interrogation window.

3.2. Velocity gradients

The evaluation of images by a spatial cross-correlation
implies thatRGG is evaluated over a finite measurement
volume, i.e. δV (X ′) = 1Z0D

2
I , which is depicted in

figure 7.
Due to the spatial variations in the displacement over

δV (X ′), the single displacement value that is represented
by the δ-function in (24) is replaced by a displacement
distribution function

RD(s) = NIFIFO · I 2
Zt

2
0Ft ∗ ρ(s− sD) (31)

wheresD is a reference vector with regard to the ‘position’
of the displacement distribution. Hence, the displacement
is no longer uniquely defined:sD may now refer to the
maximum of ρ (i.e. the most probable displacement) or
the first moment ofρ (i.e. the local mean displacement)
or, for that matter, any other convenient parameter that
characterizesρ.

The distribution has a finite width that is proportional to
the local variation|1u| of the velocity. The total volume of
the distribution remains constant, so when the distribution
becomes broader, the peak amplitude decreases. Figure 8
shows the (one-dimensional) displacement distribution over
a finite region for simple shear.

The broadening of the displacement-correlation peak
has a negligible effect onRD when the velocity differences
over the integration volume are small with respect to the
corresponding width ofRI , i.e.

|1u|1t � dt/M (32)

and the displacement field may be considered as locally
uniform. In a practical situationdt/DI is about 3–5%;
for larger gradients, the shape of the correlation peak may
change significantly, and may even split up into several
peaks. However, in the remainder of this paper it is
assumed that equation (32) applies.
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Figure 7. The integration of RG ′G ′′ over a small volume δV (X ′) is replaced by a displacement distribution %. (The horizontal
axes actually represent three-dimensional spaces.)

Figure 8. Velocity gradients broaden the
displacement-correlation peak and reduce the peak
amplitude.

3.3. Velocity bias

The result in equation (28) implies that the expectation
of the spatial correlation estimate is equal to the true
ensemble covariance peak multiplied byFI . If W ′ and
W ′′ are of equal size, thenFI always decreases as a
function of the displacement magnitude. Consequently,
the peak inRD is slightly skewed towards the centre
of the correlation domain, so that the maximum and
first moment of the spatial correlation are biased towards
smaller values (Adrian 1988) as shown in figure 9. The
effect is proportional to the width of the correlation
peak. This implies that the bias increases proportionally
to the particle-image diameter. The bias is enhanced
when there are significant velocity gradients over the
interrogation window, as this further increases the width
of the correlation peak.

In the literature this bias effect is often explained in
terms of the number of particle–image pairs that can be
contained withinW . This is illustrated in figure 10. If
there is a velocity gradient overW then the number of
measurements from the smaller displacements is larger
than that of the larger displacements, so the measured
displacement is biased towards the smaller displacements.
However, this does not explain the fact that the bias also
occurs for uniform displacements, so the explanation of the
bias in terms of particles is incorrect.

Figure 9. The displacement-correlation peak is skewed
towards zero displacement as a result of the finite width of
the peak and the finite size of the interrogation region.

Figure 11 shows the difference between the measured
and actual displacement for a uniformly displaced test
image. The analysis was done with uniform and Gaussian
window functions. The measurements yield a small bias
which is constant for uniformW and proportional to the
displacement for GaussianW (Keane and Adrian 1990).
Note that a bias occurs even when the displacement is
uniform.

A typical value of the bias for a 32× 32 pixel
interrogation region is about 0.1 px (see figure 11). This
can lead to significant errors in the estimation of the flow
velocity statistics, or in the computation of derived flow
quantities (e.g. vorticity), and it is therefore necessary to
compensate for it.

The bias can be eliminated by dividing the spatial
correlation byFI (Westerweel 1993a, b); see figure 11.
Another method that can be used to eliminate the bias is
to use uniform interrogation windows with different sizes
(Keane and Adrian 1993). In that case, part ofFI is
constant (see figure 12) so that the displacement peak is
not skewed.

Note that it does not make any difference with respect to
the spatial correlation defined in (26) which of the windows
is made larger, as is shown in figure 12. However, the
common explanation is thatW ′′ must be larger thanW ′,
so that all particles present inW ′ also appear inW ′′. This
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Figure 10. The number of particle–image pairs that can be contained in an interrogation region is reduced for increasing
displacements.

(a) uniform

(b) Gaussian

Figure 11. The difference between the measured and
actual displacement as a function of the displacement for
uniform and Gaussian window functions (◦ without bias
correction; • with bias correction; —— theoretical bias
value).

intuitive explanation is incorrect as it implies that whenW ′′

is smaller thanW ′, the loss of particles is increased, which
would enhance bias effects. However, whenW ′ andW ′′

in (26) are interchanged (which essentially corresponds to
a time reversal in the measurement) the outcome does not
change. Again, an interpretation in terms of particles yields
an incorrect description.

3.4. Implementation

To evaluate the spatial cross-correlation it is necessary
that each image is recorded separately. It is not always
possible or practical to do this, for example in high-speed
applications. Therefore the two images are often super-
imposed in one recording, and the image is analysed with
a spatial auto-correlation. In that case three dominant
peaks appear (Adrian 1988): apart from the displacement-
correlation peak (due to the correlation ofI ′ with I ′′),
a mirror peak appears (due to the correlation ofI ′′ with
I ′) on the opposite side of a central self-correlation peak

Figure 12. The effect of using differently sized
interrogation windows.

(due to the correlation ofI ′ with I ′, and I ′′ with I ′′);
see figure 13(b). Since it is not possible to make a
distinction between the two displacement-correlation peaks,
there exists an 180◦ directional ambiguity for the direction
of the displacement. Hence, the directional ambiguity
should not be considered as a limitation of the method,
but rather as a consequence of the particular choice for the
implementation of the correlation estimator.

The Fourier transform of the spatial auto-correlation
yields a fringe pattern where the fringe orientation is
perpendicular to the direction of the displacement and the
fringe spacing is inversely proportional to the magnitude
of the displacement; see figure 13(c). The Fourier
transformation can be implemented optically, which makes
it possible to perform the analysis instantaneously. In the
past this was a common implementation, but nowadays the
images are digitized (either directly, or from photographic
records) and processed numerically.

3.5. Optimization

Successful interrogation depends on the ability to identify
the displacement-correlation peakRD with respect to the
random correlationC ′ (RC andRF are trivial terms). This
implies that the amplitude ofRD has to be maximized, i.e.
the termNIFIFO . This has been investigated extensively
by Keane and Adrian (1990, 1991, 1993) who specified
‘design rules’ for high image density PIV measurements:

NIFIFO > 7 and

M|1u|1t/DI < dt/DI ≈ 0.03–5. (33)
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(a) cross-correlation

(b) auto-correlation

(c) fringe analysis

Figure 13. Different implementations for estimation of the
displacement-correlation term.

Figure 14. The probability that the displacement-correlation
peak is larger than the random noise in the spatial
cross-correlation. The symbols represent results from
Monte Carlo simulation; the full curve corresponds to the
probability that the interrogation window contains two or
more particle images (after Keane and Adrian 1993).

For example, at an image densityNI = 12 the in-plane
and out-of-plane displacements should be less than one-
quarter ofDI and1Z0 respectively (i.e.FI , FO ≥ 0.75).
To these rules should be added the requirement of using
tracer particles that can be considered as ideal, and that are
distributed homogeneously in the flow.

Figure 14 shows the probability thatRD is larger
than the maximum ofC ′ as a function ofNIFIFO
for 32×32 pixel cross-correlation withdt/dr = 2. The
full curve represents the probability that the interrogation
window contains at least two particle images.

4. Pixelization

This section discusses the aspects related to analysis of
digital PIV images. Pixelization consists of sampling a
signal in small image elements (pixels) and the subsequent
quantization of the signal amplitude; see figure 15.

4.1. Bandwidth

An important aspect of digitization is the choice of the
sampling rate that is required for the digital image to
yield a ‘correct’ representation of the original continuous
image. The sampling theorem (figure 16) states that a
bandlimited signal can be reconstructed from its discrete
samples without losses when the sampling rate of the signal
is at least twice the signal bandwidth (Oppenheimet al
1983).

The optical system shown in figure 5 is bandlimited,
with a bandwidth given by:

W = [(M + 1)f #λ]−1 (34)

(Goodman 1968), whereλ is the light wavelength. For
f # = 8, M = 1, and λ = 0.5 µm, the bandwidth is
125 mm−1. This implies that a 1× 1 mm2 interrogation
area should be sampled with a resolution of (at least)
256× 256 pixels. This is a typical value used for the
conventional analysis of PIV photographs.

In section 2.1 it was explained that variations in
the displacement field scale with the magnitude of the
displacement. Since the displacement is usually much
larger than the particle-image diameter, the information
with regard to the displacement field is contained in the
low wavenumber range of the spectrum, whereas the high
wavenumber range only contains information with regard
to the detailed shape of the particle images. Hence, for the
purpose of the measurement it is not necessary to resolve
the full optical bandwidth.

An alternative definition of the signal bandwidth is the
width of a cylinder which has the same total volume as
the spectrum and the same height at zero wavenumber
(see figure 17), i.e.

WP = [πS(0, 0)]−1/2 (35)

which is referred to as the Parzen bandwidth (Oppenheim
et al 1983). In this definition the detailed shape is ignored,
and the bandwidth refers to a length scale that characterizes
the length over which the correlation decays to zero. (Note
thatS(0, 0) is equal to the integral over the correlation peak,
which is proportional tod2

t .)
For the optical parameters given above the Parzen

bandwidth is equal to 31 mm−1 (Westerweel 1993a, b), so
that a resolution of 64× 64 pixels for a 1× 1 mm2 area
should be adequate. This value is typically used nowadays
for PIV image interrogation (Prasadet al 1992).

4.2. Image sampling

The image I (x, y) is commonly discretized with an
electronic imaging device (usually a CCD) that ‘integrates’
the light intensity over a small area, referred to as a pixel. It
is assumed that the device has a linear response with respect
to light intensity and is made of square and contiguous
pixels of aread2

r . The discrete imageI [i, j ] is then given
by:

I [i, j ] =
∫ ∫

p(x − idr , y − jdr)I (x, y)dx dy (36)
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Figure 15. Pixelization of a continuous image consists of spatial sampling and the quantization of intensity values.

Figure 16. The sampling theorem.

Figure 17. The signal bandwidth according to Parzen (after
Oppenheim et al 1983).

wherep(x, y) is the spatial sensitivity of the pixel, i.e.

p(x, y) =
{

1/d2
r |x|, |y| < dr/2

0 elsewhere.
(37)

The discrete cross-covariance of two imagesI ′ and I ′′ is
defined as:

R[r, s] = 〈I ′[i, j ]I ′′[i+r, j+s]〉−〈I ′[i, j ]〉〈I ′′[i+r, j+s]〉
(38)

and substitution of (36) yields:

R[r, s] = {8pp ∗ R}(rdr , sdr) (39)

where8pp is the self-correlation of the pixel sensitivity;
see figure 18. Hence, the discrete correlation is given by
the convolution of continuous correlation with8pp, that is
subsequently sampled at integer pixel values.

4.3. Quantization

The step subsequent to image sampling is quantization,
by which the image intensityI is mapped onto a discrete

(a) p(x , y) (b) 8pp(r, s)

Figure 18. The spatial pixel sensitivity p(x , y) and the
corresponding self-correlation 8pp(r, s).

variableI • that takes values from a finite set of numbers.
Descriptions of quantizer designs and their properties have
been given by Jain (1989) and Rosenfeld and Kak (1982).

The relation between the quantizer input and output can
be written as

I [m, n] = I •[m, n] + ζ [m, n] (40)

(see figure 19) whereζ denotes the quantizer noise.
Provided that the number of levels is large with respect
to the range of the input signal,ζ has (approximately)
a uniform distribution, with the following statistical
properties:

E{ζ } = 0 E{I •ζ } = 0 E{Iζ } = E{ζ 2} (41)

(Jain 1989). Hence, the effect of quantization can be
modelled as additive white noise. This will appear in the
(cross-) correlation as a smallδ-impulse at zero offset, i.e.

R•[u, v] = R[u, v] + E{ζ 2} · δ[0, 0]. (42)

Thus, for non-zero displacements the quantization error
does not influence the evaluation of the correlation peak.
This has been confirmed by Monte Carlo simulations
(Willert 1996) which demonstrated that the random
measurement error for the displacement is independent of
the number of quantization levels.
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Figure 19. The quantization error can be considered as
additive noise.

5. Digital analysis

5.1. Discrete spatial correlation

The spatial cross-covariance for twoN × N pixel
(interrogation) imagesI ′ andI ′′ is estimated with:

R̂[r, s] = 1

N2

N∑
i=1

N∑
j=1

(I ′[i, j ]−Ī )(I ′′[i+r, j+s]−Ī ) (43)

where Ī is the (local) mean image intensity. The mean
image intensity is subtracted to eliminate the termsRC and
RF in (27). The expectation value for (43) is equal to

E{R̂[r, s]} = FI [r, s] · R[r, s] (44)

with

FI [r, s] =
(

1− |r|
N

)(
1− |s|

N

)
(45)

(cf equation (30)).
The spatial correlation of discrete images can be

evaluated directly or by using discrete Fourier transforms
(DFTs). It should be noted that the fast Fourier transform
(FFT) is simply a fast and accurate algorithm (and not a
method) to evaluate the double summation in (43).

One should be aware of the fact that the DFT applies
to periodic signals. The correlation domain for (43) ranges
from −N + 1 to N for each component. Hence, the DFT
should be carried out on a 2N × 2N domain. This can
be accomplished by paddingI ′ and I ′′ with zeros. When
the DFT is carried out over a smaller domain, then the
part of the correlation that is not resolved is folded back
onto the correlation. This is comparable to ‘aliasing’ in the
frequency domain.

When the displacement complies with the PIV design
rule in (33), i.e.|sD| < 1

4DI , then the correlation is zero for
|r|, |s| > 1

4N . In that case, zero padding is not required,
and the DFT can be carried out on anN × N domain.
However, one should be cautious when evaluating multiple-
exposure recordings. In that case, ‘harmonic’ correlation
peaks appear at integer multiples of the position ofRD
(Keane and Adrian 1991). The ‘aliased’ harmonic peaks
can interfere with the evaluation of theRD. This appears to
cause a biasing effect for displacements equal toN/n, with
n = 1, 2, . . . (Draad 1996). This is illustrated in figure 20.

5.2. Estimation of the correlation

The estimated correlation values are not independent
‘samples’ of the continuous image correlation but are

(a) without zero padding

(b) with zero padding

Figure 20. Result of the evaluation of a multiple-exposure
recording without and with zero padding, for the measured
axial velocity in a laminar pipe flow. The measured
displacement in pixel units is plotted as a function of the
distance from the centreline divided by the pipe diameter
(after Draad 1996).

correlated over a finite range. This can be expressed in
terms of a correlation areaL2, i.e.

L2 =
∑
t

∑
u

cov{R̂D[rD, sD], R̂D[rD + t, sD + u]}
var{R̂D[rD, sD]} (46)

where [rD, sD] is the location of the displacement–
correlation peak. The value ofL2 may be interpreted as
the number of correlated samples, so that the ratio ofN2

to L2 yields the effective number of ‘independent’ samples
(Priestley 1992, Westerweel 1993a, b).

Figure 21 showsL as a function ofdt/dr for the case
of a 1× 1 mm2 interrogation region withdt = 25µm. For
dt/dr < 1 the width ofRD is determined by8pp, andL
is O(1). For a narrow peak the correlation estimates are
practically uncorrelated, which implies that an improvement
of the resolution (i.e. the number of samples) increases the
information content of the correlation peak.

For dt/dr > 1 the width of the correlation peak
is proportional to dt , and L is proportional to N .
An improvement of the resolution does not mean that
information is added; instead the same information is
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Figure 21. The effective number of uncorrelated samples
in an interrogation window as a function of the pixel
resolution for a 1× 1 mm2 interrogation area and 25 µm
particle-image diameter.

simply distributed over more samples, and adjacent
correlation values become more strongly correlated. Hence,
the information content remains constant for increasing
resolution. Note that the resolution for whichL becomes
proportional toN (i.e.N > 64) complies with the sampling
rate based on the Parzen bandwidth.

The result in figure 21 indicates that the measurement
resolution is determined bydt/DI and not bydr/DI , so that
there is no difference in resolution and precision between
results from photographic and digital PIV recordings as
long as the value ofdt/DI is equal. This has actually
been verified by comparing photographic and digital PIV
measurements in the same flow geometry under equivalent
flow conditions (Westerweelet al 1996). The results
demonstrated that there were practically no differences
between photographic and digital PIV results, despite the
fact that the resolution of the photographs was several
orders of magnitude higher than that of the CCD camera.
However, photographs can contain a larger (equivalent)
number of pixels in comparison with CCD arrays, so that
photographs can view a larger area of the flow; this aspect
has been further explained by Adrian (1995).

5.3. Estimation of the fractional displacement

Consider the displacement-correlation peak at low pixel
resolution, i.e.dt/dr ∼ 2. If only the location of the
maximum correlation were to be used, then the absolute
measurement error would bedr/2; for a 32× 32 pixel
interrogation area with a displacement of (1

4 × 32=) 8 px,
this corresponds to a relative error of 6%. This not accurate
enough for many applications.

When the correlation peak covers more than one pixel,
the displacement can be determined at sub-pixel level by
interpolation. This is even possible when the particle-image

diameter is less than a pixel: note that the width of8pp is
2dr (for contiguous pixels), which implies that the discrete
correlation peak always covers more than one ‘pixel’ in the
correlation domain.

Figure 22 illustrates the appearance of the covariance
for dt/dr = 1.6 at different fractional displacements. The
strongest effect of the sub-pixel location is found in the
correlation values adjacent to the maximum; these hold
most of the information with respect to the fractional
displacement. Only the direct neighbours of the maximum
exceed the noise level (represented by the shaded area).
Hence, for smalldt/dr only threecorrelation values contain
significant information with respect to the particle-image
displacement in the associated direction. These three
correlation values are subsequently denoted asR∗−1, R∗+1
andR∗−1 respectively. Note that the unbiased correlation

estimates are used (i.e.R∗ = R̂/FI ).
Two interpolation methods that are frequently used are

the peak centroid and the Gaussian peak fit. The (sub-pixel)
peak centroid is given by:

ε̂C =
R∗+1− R∗−1

R∗−1+ R∗0 + R∗+1)
. (47)

The centroid estimator is based on the fact that the centroid
of a symmetric object is equal to the position of the object
(Alexander and Ng 1991). For the discrete correlation this
is only true forε = 0 and 1

2 (see figure 22). As a result, the
centroid estimate for the fractional displacement is strongly
biased towards integer values of the displacement in pixel
units. This effect is known as ‘peak locking’, and is clearly
visible in figure 23(a), which shows a histogram for the
displacement measured in turbulent pipe flow (Westerweel
et al 1996) using the peak centroid.

The Gaussian peak fit is based on the notion that
the displacement-correlation peak has an approximately
Gaussian shape:

ε̂G =
lnR∗−1− lnR∗+1

2(lnR∗−1+ lnR∗+1− 2 lnR∗0)
(48)

(Willert and Gharib 1991). As this estimator provides a
better approximation of the actual peak shape, the peak
locking effect is reduced considerably. For comparison,
figure 23 also shows the displacement histogram obtained
using equation (48).

Despite the differences in behaviour, the two estimators
described above are quite similar: the numerator only
containsR∗−1 andR∗+1, while the denominator is a function
of all three elements. This reflects the earlier observation
that a fractional displacement most strongly affectsR−1 and
R+1.

5.4. Estimation error

The variance of the estimated fractional displacement is
approximated by

var{ε̂} ≈
+1∑
i=−1

+1∑
j=−1

∂ε̂

∂R∗i

∂ε̂

∂R∗j
cov{R∗i , R∗j } (49)
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Figure 22. The correlation peaks for different values of the fractional displacement. The shaded area represents the 95%
significance level of the background noise.

(a) centroid

(b) Gaussian peak fit

Figure 23. Histograms of the measured axial displacement
in pixel in a turbulent pipe flow (Westerweel et al 1996),
using the centroid and Gaussian peak fit for the sub-pixel
interpolation.

(Westerweel 1993a, b) where∂ε̂/∂R∗i denotes the partial
derivative ofε̂ with respect toR∗i . Given that, forε = 0

∂ε̂

∂R∗0
= 0 and

∂ε̂

∂R∗−1

= − ∂ε̂

∂R∗+1

(50)

the expression for var{ε̂} reduces to:

var{ε̂} ≈
(
∂ε̂

∂R∗±1

)2

[var{R∗−1} + var{R∗+1}
−2 cov{R∗−1, R

∗
+1}]. (51)

The first term only depends on the sub-pixel interpolation
function, which reflects the observation that the precision
is improved when the interpolation matches the shape of
the correlation peak. The second term only depends on the
statistical properties of the displacement-correlation peak.
Note that this term would vanish ifR∗−1 and R∗+1 were

Figure 24. The rms estimation error for the fractional
displacement as a function of particle image diameter in
pixel units for a 1× 1 mm2 interrogation region with
dr = 31 µm (i.e. 32× 32 pixel resolution).

perfectly correlated. This only occurs for the case of a zero
displacement (with zero quantization error; see (42)).

It was shown by Westerweel (1993a, b) that the first
term is proportional to 1/R2

D = O(N−2
I ), whereas the

second term is proportional toR2
D = O(N2

I ). This leads
to the surprising conclusion that var{ε̂} does not depend on
the image density, i.e. increasing the seeding density does
not improve the estimation precision. This can also be
observed in Monte Carlo simulation results (Willert 1996).

An explanation for this is that the correlation analysis
is valid for (nearly) uniform displacements, so that
all particle–image pairs have the same displacement;
although the addition of particle–image pairs increases
the amplitude ofRD, which enhances the detectability
of the displacement-correlation peak, it does not add
new information with regard to the displacement (i.e. all
displacements are identical). So, the measurementprecision
is determined by dt/DI , whereas the measurement
reliability is determined byNI .

5.5. Optimal particle image diameter

Expression (51) is plotted in figure 24 for the Gaussian
peak fit estimator as a function ofdt/dr . This theoretical
result complies with earlier empirical results by Prasad
et al (1992), and simulation results obtained by Willert
(1996). Fordt/dr � 1 the measurement error is dominated
by bias errors (i.e. peak locking), whereas fordt/dr �
1 random errors (that increase proportionally with the
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Figure 25. The random error amplitude as a function of the displacement for dt/dr =2 and DI /dr =32. The symbols are results
of a Monte Carlo simulation; the full curve is the theoretical prediction according to (51) (after Westerweel et al 1997).

particle-image diameter) are dominant. The estimation
error has a minimum atdt/dr ∼ 2, with a value that is
proportional todt/DI (Willert 1996).

A typical value for the minimum measurement error is
0.05 to 0.1 pixel units for a 32× 32 pixel interrogation
region. This implies a relative measurement error of
about 1% for a displacement that is one quarter of the
interrogation window size.

5.6. Optimization of the estimation

The theoretical description of the statistical properties
can be applied to optimize further estimations of the
displacement. Figure 25 shows the theoretical prediction
and simulation results for RMS measurement error
(var{ε̂}1/2) as a function of the displacement forW ′ = W ′′.
The error is almost constant over the complete range of
displacements, except for very small displacements, where
it decreases to zero. This change in behaviour is determined
by the statistical properties of the estimated correlation:
when the maximum displacement-correlation is located
at [0, 0] then var{R∗−1} + var{R∗+1} ≈ 2 cov{R∗+1, R

∗
+1};

otherwise, var{R∗−1} + var{R∗+1} > 2 cov{R∗+1, R
∗
+1}.

When the interrogation windows are offset by the
(integer part of the) particle-image displacement, the
displacement-correlation peak is relocated near the origin.
This does not only optimize the detectability of the
displacement-correlation peak (Keane and Adrian 1993),
but also reduces the measurement error. A further
description is given by Westerweelet al (1997); the
error reduction is demonstrated in measurements of grid
turbulence and turbulent pipe flow.

However, a further improvement of the estimation
precision does not automatically imply that the overall
accuracy is improved by the same amount. For example,
the measurement accuracy is also determined by the
behaviour of the tracer particles, filtering effects due to the
representation of the velocity field as a (locally uniform)
displacement field, nonlinear effects of the imaging optics,
etc., and at a certain point these effects become dominant.
In that case it would be worthwhile to reduceDI so that the
estimation error (which is proportional todt/DI ) is at the
same level as the other error sources. Hence, the window
offset can be utilized to improve thespatial resolution of
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Figure 26. Velocity fluctuations relative to the mean
velocity profile for a turbulent pipe flow (Westerweel et al
1996), obtained from a 1000× 1016 pixel digital image that
was interrogated with 16× 16 pixel interrogation regions
(with a window offset equal to the local particle-image
displacement). The upper and lower axes coincide with the
pipe wall; the large arrow at the top of the figure represents
the mean particle-image displacement at the centreline
(11.7 px).

the measurement. An example is shown in figure 26, where
a window offset was combined with a reduction in the size
of the interrogation windows. At a spatial resolution of
only 16× 16 pixels with a 50% overlap between adjacent
interrogations, 14 641 vectors were extracted from a single
1000× 1016 pixel image.

6. Conclusion

The measurement principle has been generalized and is
described in terms of linear system theory. The fluid motion
is determined from a correlation of a tracer pattern that is
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tied to the fluid. The tracer pattern does not necessarily
have to consist of discrete tracer particles. As a matter
of fact, it was shown that an interpretation in terms of
‘particles’ does not always yield a consistent description
of interrogation analysis. In principle it would also be
possible for the tracer pattern to describe a continuous
tracer, such as speckle or dye. It has been demonstrated
that an interpretation of the image correlation in terms of the
displacement is only valid for a statistically homogeneous
tracer pattern.

The general picture that emerges from the description
of the fundamental aspects of digital particle image
velocimetry is that the limitations of the technique arise as
direct consequences of particular implementation choices.
For example, the representation of the velocity field as a
displacement field implies a spatial and temporal low-pass
filtering. Another example is the directional ambiguity that
arises due to fact that the estimation of the image cross-
covariance is implemented as a spatial auto-correlation.
So, one may view the different ‘methods’ described in the
literature as different ‘implementations’ of the same basic
principle.

Further analysis of the signals showed that the
measurement resolution is not determined by the pixel size,
but by the particle-image diameter relative to the size of
the interrogation region. The amount of information with
regard to the particle-image displacement does not improve
when the particle image has a diameter of more than two
pixels; a further reduction of the pixel size corresponds
to an over-sampling of the signal. Evidently, this applies
to information with regard to the displacement (i.e. the
location of the displacement-correlation peak) only; for
other signal characteristics, such as peak amplitude (i.e. out-
of-plane motion) and peak width (i.e. velocity gradients),
the resolution requirements may be quite different.

The theory provides guidelines for optimization of the
measurement technique. An explanation of why the number
of quantization levels is not significant with respect to the
measurement precision has been given. It has also been
shown that the measurement reliability is determined by
the image density, whereas the measurement precision is
determined by the particle-image diameter.

Finally, the theory is also useful to further improve the
performance of the method. The noise reduction effect for
interrogation analysis with a window offset could be used to

improve the spatial resolution. Further improvements may
be expected by optimizing the sub-pixel interpolation with
respect to the shape of the discrete displacement-correlation
peak.
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