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ABSTRACT

A number of statistical methods that are used to provide local-scale ensemble forecasts of precipitation and
temperature do not contain realistic spatial covariability between neighboring stations or realistic temporal persis-
tence for subsequent forecast lead times. To demonstrate this point, output from a global-scale numerical weather
prediction model is used in a stepwise multiple linear regression approach to downscale precipitation and temperature
to individual stations located in and around four study basins in the United States. Output from the forecast model
is downscaled for lead times up to 14 days. Residuals in the regression equation are modeled stochastically to
provide 100 ensemble forecasts. The precipitation and temperature ensembles from this approach have a poor
representation of the spatial variability and temporal persistence. The spatial correlations for downscaled output
are considerably lower than observed spatial correlations at short forecast lead times (e.g., less than 5 days) when
there is high accuracy in the forecasts. At longer forecast lead times, the downscaled spatial correlations are close
to zero. Similarly, the observed temporal persistence is only partly present at short forecast lead times.

A method is presented for reordering the ensemble output in order to recover the space–time variability in
precipitation and temperature fields. In this approach, the ensemble members for a given forecast day are ranked
and matched with the rank of precipitation and temperature data from days randomly selected from similar dates
in the historical record. The ensembles are then reordered to correspond to the original order of the selection
of historical data. Using this approach, the observed intersite correlations, intervariable correlations, and the
observed temporal persistence are almost entirely recovered. This reordering methodology also has applications
for recovering the space–time variability in modeled streamflow.

1. Introduction

Local-scale forecasts of precipitation and temperature
are commonly obtained through statistical postprocess-
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ing of output from numerical weather prediction models.
A standard approach is model output statistics (MOS),
in which predictors from the Numerical Weather Pre-
diction model (NWP; e.g., temperature, humidity, and
winds at different pressure levels) are used in a multiple
linear regression model to forecast temperature and pre-
cipitation at individual stations (Glahn and Lowry
1972). In this approach, the regression equations (or
other statistical transfer functions) are developed sep-
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arately for each individual station of interest (Crane and
Hewitson 1998; Murphy 1999; Wilby et al. 2002; Clark
and Hay 2004) or for stations pooled together in a region
(Antolik 2000). The latter approach (‘‘pooled regres-
sion’’), in which stations are stacked, one after the other,
to provide a longer sequence of forecasts and obser-
vations, is favored in situations when the number of
archived forecasts is relatively small, a situation that is
very common because of the constant changes in op-
erational forecast models. Both single-site and pooled
regression techniques provide more accurate local-scale
forecasts of precipitation and temperature than those
obtained using raw output from forecast models (An-
tolik 2000; Clark and Hay 2004).

The problems with the MOS approach, as defined
above, are that it does not preserve the spatial covari-
ability between neighboring stations, nor does it pre-
serve the observed temporal persistence in the predicted
precipitation and temperature fields. Preserving the
space–time variability in precipitation and temperature
fields is critical for hydrologic applications; for exam-
ple, if one is to use the downscaled precipitation and
temperature forecasts as input to a hydrologic model to
forecast streamflow. Consider the snowmelt-dominated
river basins in the western United States. The high spa-
tial coherence in daily temperature fields results in high
spatial coherence in daily streamflow. If the spatial co-
variability in downscaled temperature fields is not pre-
served, then the resultant streamflow forecasts will mis-
represent extreme values—higher runoff in one basin
will offset lower runoff in a neighboring basin. Similar
problems arise if the temporal persistence in precipi-
tation and temperature fields is not preserved.

In this paper, a method is presented for reordering
local-scale ensemble forecasts of precipitation and tem-
perature to reconstruct the space–time variability of pre-
cipitation and temperature fields. As an example, results
are shown in which predictors from the 1998 version
of the National Centers for Environmental Prediction
(NCEP) Medium-Range Forecast Model are used in a
forward-screening multiple linear regression model to
forecast temperature and precipitation at individual sta-
tions. Residuals are modeled stochastically to provide
ensemble forecasts. In this example, a different statis-
tical model is used for each station, which allows an
assessment of the value of this approach for recon-
structing the space–time variability of precipitation and
temperature patterns based on local-scale forecasts from
multiple models (e.g., a multimodel ensemble com-
prised of outputs from a mix of statistical and dynamical
models). The remainder of this paper is organized as
follows: the model output and station data are described
in section 2, and methods are described in section 3.
Results, including assessments of model bias, proba-
bilistic forecast skill, intersite correlations, intervariable
correlations, and temporal persistence, are described in
section 4.

2. NWP model output and station data

a. The CDC forecast archive

The Climate Diagnostics Center (CDC) in Boulder,
Colorado, has generated a ‘‘reforecast’’ dataset using a
fixed version (circa 1998) of the NCEP operational Me-
dium-Range Forecast Model (MRF). The dataset in-
cludes an archive of 14-day forecasts for the last 24 yr
(1978–2001). The MRF has been running in near–real
time since February 2002, allowing development of sta-
ble MOS equations using the archived forecasts and
application of those MOS equations in near–real time.

Output variables used to develop MOS equations are
(a) the accumulated precipitation for a 12-h period (e.g.,
0000–0012 UTC), (b) 2-m air temperature, (c) relative
humidity at 700 hPa, (d) 10-m zonal wind speed, (e)
10-m meridional wind speed, (f ) total column precipi-
table water, and (g) mean sea level pressure. Previous
work has demonstrated the importance of these variables
when downscaling precipitation and temperature (e.g.,
Clark and Hay 2004).

b. Station data

This study uses daily precipitation and maximum and
minimum temperature data from the National Weather
Service (NWS) cooperative network of climate observ-
ing stations across the contiguous United States. These
data were extracted from the National Climatic Data
Center (NCDC) Summary of the Day Dataset by J. Eis-
cheid, National Oceanic and Atmospheric Administra-
tion (NOAA) Climate Diagnostics Center (Eischeid et
al. 2000). Quality control performed by NCDC includes
the procedures described by Reek et al. (1992) that flag
questionable data based on checks for (a) extreme val-
ues, (b) internal consistency among variables (e.g., max-
imum temperature less than minimum temperature), (c)
constant temperature (e.g., 5 or more days with the same
temperature are suspect), (d) excessive diurnal temper-
ature range, (e) invalid relations between precipitation,
snowfall, and snow depth, and (f ) unusual spikes in
temperature time series. Records at most of these sta-
tions start in 1948 and continue through to the present.

Results are presented for four river basins used by
Hay et al. (2002) and Clark and Hay (2004): (a) Cle
Elum River in central Washington, (b) East Fork of the
Carson River on the California–Nevada border, (c) An-
imas River in southwest Colorado, and (d) Alapaha Riv-
er in southern Georgia (Fig. 1). Attention is restricted
to the ‘‘best stations’’ in the cooperative network that
are located within a 100-km search radius of the center
of these four basins. These best stations are defined as
those with less than 10% missing or questionable data
during the period 1979–99. This provides 15 stations
for the Animas basin, 16 stations for the Carson basin,
18 stations for the Cle Elum basin, and 10 stations for
the Alapaha basin (Table 1).
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FIG. 1. Location and topography of the study basins.

3. Method

a. Multiple linear regression model

Multiple linear regression is used to develop the MOS
equations (Glahn and Lowry 1972; Antolik 2000), in
which predictors from the NCEP MRF model are used
to forecast temperature and precipitation at individual
stations. Separate regression models are developed for
each variable, each station, each forecast lead time (1–
14 days), and each month. Precipitation is disaggregated
into occurrence and amounts—logistic regression is
used to model precipitation occurrence, and ordinary
least squares regression is used to model precipitation
amounts.

The intermittent and skewed character of the daily
precipitation data make it necessary to preprocess these
data prior to training the regression equations. The sta-
tion time series of precipitation are first disaggregated
into a time series of occurrence (1 5 wet days and 0
5 dry days) and precipitation amounts (only wet days).
The time series of occurrence is used as the response
variable for the logistic regression model, and the time
series of precipitation amounts is used as the response
variable for the ordinary least squares model. For pre-
cipitation amounts, the station precipitation data (only
wet days) are transformed to a normal distribution using
a nonparametric probability transform (Panofsky and
Brier 1963). For each data point, the cumulative prob-
ability of observed precipitation is computed. This is
matched with the cumulative probability from a standard
normal distribution (mean of zero and standard devia-
tion of one), and the normal deviate corresponding to
the cumulative probability in the standard normal dis-

tribution is used to replace the original precipitation
value.

The regression models have the form

y 5 b 1 b x 1 b x 1 · · · 1 b x 1 «, (1)0 1 1 2 2 k k

1
p 5 1 2 ,

1 1 exp(b 1 b x 1 b x 1 · · · 1 b x )0 1 1 2 2 k k

(2)

where Eq. (1) is for ordinary least squares regression
and Eq. (2) is for logistic regression. In these equations,
y is the response variable in the ordinary least squares
model (e.g., maximum temperature, minimum temper-
ature, or precipitation amounts at a station location), p
is the response variable in the logistic regression model
(e.g., the probability of precipitation at a station loca-
tion), b0 is the regression constant, b1 is the slope co-
efficient for the first explanatory variable (x1), b2 is the
slope coefficient for the second explanatory variable
(x2), bk is the slope coefficient for the kth explanatory
variable (xk), and « is the remaining unexplained noise
in the data (the error). The explanatory variables (x1,
x2, . . . , xk) are forecasted outputs from the NCEP MRF
model (e.g., 700-hPa relative humidity, mean sea level
pressure). The solution of ordinary least squares equa-
tion was done using the singular value decomposition
(SVD) algorithm (Press et al. 1992), and the logistic
regression equation was solved iteratively using the
method (and code) presented by Agterberg (1989).

The forward-selection approach is used to identify
the variables used in the regression equations (Antolik
2000). This procedure first identifies the explanatory
variable (e.g., 700-hPa relative humidity; x1) that ex-
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TABLE 1. List of stations used in each of the four basins.

Basin Lat (8N) Lon (8E) Station ID Station name

Animas 38.400
37.234
37.767
38.025
37.199

252.483
251.950
252.867
252.685
251.512

CO1609.COOP
CO3016.COOP
CO3951.COOP
CO4734.COOP
CO5531.COOP

CIMARRON 3 SE
FORT LEWIS
HERMIT 7 ESE
LAKE CITY
MESA VERDE NP

38.132
38.021
37.243
37.713
37.726

251.714
252.331
252.983
251.961
252.732

CO6012.COOP
CO6203.COOP
CO6258.COOP
CO7017.COOP
CO7050.COOP

NORWOOD
OURAY
PAGOSA SPRINGS
RICO
RIO GRANDE RESERVOIR

37.949
37.384
36.833
36.936
36.817

252.127
252.418
252.000
253.000
252.383

CO8204.COOP
CO8582.COOP
NM0692.COOP
NM2608.COOP
NM6061.COOP

TELLURIDE 4 WNW
VALLECITO DAM
AZTEC RUINS NATL
DULCE
NAVAJO DAM

Carson 39.383
38.250
38.283
38.249
37.967

239.900
240.767
239.683
239.140
240.083

CA0931.COOP
CA1072.COOP
CA1277.COOP
CA1428.COOP
CA1697.COOP

BOCA
BRIDGEPORT
CALAVERAS BIG TREES
CAMP PARDEE
CHERRY VALLEY DAM

39.317
39.167
38.446
39.333
38.700

239.767
239.867
239.501
239.817
239.967

CA2467.COOP
CA8758.COOP
CA8928.COOP
CA9043.COOP
CA9105.COOP

DONNER MEMORIAL ST
TAHOE CITY
TIGER CREEK PH
TRUCKEE RS
TWIN LAKES

37.757
39.150
39.083
39.000
39.083
39.000

240.412
240.233
240.050
240.250
240.883
240.883

CA9855.COOP
NV1485.COOP
NV3205.COOP
NV5191.COOP
NV8822.COOP
NV9229.COOP

YOSEMITE PARK HDQTRS
CARSON CITY
GLENBROOK
MINDEN AIRPORT
WABUSKA 6 SE
YERINGTON

Cle Elum 47.767
47.167
47.417
47.836
47.183

238.517
238.000
238.267
239.962
239.083

WA0456.COOP
WA0945.COOP
WA1233.COOP
WA1350.COOP
WA1504.COOP

BARING
BUCKLEY 1 NE
CEDAR LAKE
CHELAN
CLE ELUM 1

47.000
47.383
47.133
47.850

239.483
238.033
237.733
238.017

WA2505.COOP
WA4486.COOP
WA5224.COOP
WA5525.COOP

ELLENSBURG
LANDSBURG
MC MILLIN RESERVOIR
MONROE

47.150
47.300
47.183
47.450
47.542

238.067
238.150
240.133
237.700
238.164

WA5704.COOP
WA6295.COOP
WA6880.COOP
WA7473.COOP
WA7773.COOP

MUD MOUNTAIN DAM
PALMER 3 SE
QUINCY 3 S
SEATTLE TCOMA WSCMO
SNOQUALMIE FALLS

47.871
47.430
47.402
46.568

238.283
239.689
239.795
239.457

WA8034.COOP
WA9074.COOP
WA9082.COOP
WA9465.COOP

STARTUP 1 E
WENATCHEE
WENATCHEE
YAKIMA AIRPORT

Alapaha 31.583
31.533
31.183
31.967
31.517

275.833
277.483
275.800
276.217
277.150

GA0140.COOP
GA0211.COOP
GA1500.COOP
GA2266.COOP
GA2783.COOP

ALBANY
ALMA FAA AIRPORT
CAMILLA 3 SE
CORDELE WATER WORKS
DOUGLAS 2 NNE

32.200
31.717
31.033
31.167
31.483

276.794
276.750
277.200
276.250
276.467

GA2966.COOP
GA3386.COOP
GA4429.COOP
GA6087.COOP
GA8703.COOP

EASTMAN 1 W
FITZGERALD
HOMER VILLE 3 WSW
MOULTRIE 2 ESE
TIFTON EXP STN
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plains most of the variance of the response variable (y).
It then searches through the remaining variables and
selects the second explanatory variable (x2) that reduces
the largest portion of the remaining unexplained vari-
ance in combination with the variable already chosen.
If the improvement in explained variance exceeds a giv-
en threshold (taken here as 1%), the variable is included
in the multiple linear regression equation. The remain-
ing variables are examined in the same way until no
further improvement is obtained based on the correlation
threshold. Cross-validation approaches are used to val-
idate the regression equations. Each year in the time
series is successively held out of the sample used to
develop the regression equations, and the equations are
used to predict data for the withheld year. This process
is repeated for all years in the record.

Application of the regression model is most straight-
forward for forecasts of maximum and minimum tem-
perature. The regression model is formulated using the
method just described, and the value of y predicted from
the regression equation (ŷ) is given for each data point
in the time series [Eq. (1)]. The error term in the re-
gression equation, «, is then modeled stochastically to
inflate the variance of the predicted values and generate
an ensemble of forecasts:

y 5 ŷ 1 Ns ,iens e (3)

where yiens is the predicted value for a given ensemble
member, ŷ is the value predicted by the regression equa-
tion, N is a random number from a standard normal
distribution, and se is the standard deviation of the re-
gression residuals (y 2 ŷ). One hundred ensemble mem-
bers were generated using this procedure.

The procedure is more complex for precipitation. To
account for the intermittent properties of precipitation,
precipitation is modeled in a two-stage process. Logistic
regression is used to estimate precipitation occurrence
[Eq. (2)], and ordinary least squares regression [Eq. (1)]
is used to estimate precipitation amounts. Precipitation
can then be modeled (in normal space) as follows:

0, when p̂ , u
y 5 (4)iens 5ŷ 1 Ns , when p̂ $ u.e

In Eq. (4), u ; U[0, 1] is a random number from a
uniform distribution ranging from zero to one, and p̂ is
the probability of precipitation occurrence predicted
from the logistic regression model [Eq. (2)]. If p̂ , u,
then we assume there is no precipitation. If p̂ $ u,
precipitation is set to occur, and the precipitation amount
is computed using Eqs. (1) and (4). When p̂ $ u, the
forecasted normal deviates from Eq. (4) are then trans-
formed back to the original gamma-type distribution of
observed precipitation using the nonparametric proba-
bility transform technique described above. The sto-
chastic modeling of the regression residuals inflates the
variance of precipitation and temperature forecasts, re-

ducing problems of variance underestimation that are
typical of regression-based models.

b. The ensemble reordering method

The ensemble reordering method was described to
the authors by Dr. J. Schaake, National Weather Service
Office of Hydrologic Development, in October 2002 and
is hereafter referred to as the Schaake Shuffle. For a
given time, the starting point is a three-dimensional ma-
trix of ensemble forecasts Xi,j,k, where i refers to each
ensemble member, j refers to each station, and k refers
to each variable. To correspond to the matrix X, we
construct an identically sized three-dimensional matrix
Yi,j,k derived from historical station observations of the
respective variables, where i refers to an index of dates
in the historical time series, and, as in X, j refers to each
station and k refers to each variable. The dates used to
populate the matrix Y are selected so as to lie within 7
days before and after the forecast date (dates can be
pulled from all years in the historical record, except for
the year of the forecast). Populating the Y matrix in this
way means that data from the same date is used for all
stations ( j) and variables (k).

For a given station ( j) and variable (k), the Schaake
shuffle method can be formulated as follows: Let X be
a vector of n ensemble forecasts (x) and x be the sorted
vector of X, that is,

X 5 (x , x , . . . , x ), and (5)1 2 n

x 5 (x , x , . . . , x ), x # x · · · # x . (6)(1) (2) (n) (1) (2) (n)

Also, let Y be a vector of n selected historical obser-
vations (y), and g be the sorted vector of Y, that is,

Y 5 (y , y , . . . , y ), and (7)1 2 n

g 5 (y , y , . . . , y ), y # y · · · # y . (8)(1) (2) (n) (1) (2) (n)

Furthermore, let B be the vector of indices describing
the original observation number that corresponds to the
values in the ordered vector g.

As an example, forecasts of maximum temperature
for 10 ensemble members at a given station on a given
date, and the corresponding selection of historical ob-
servations, may provide vectors of X, x, Y, g, and B
that are

X 5 (15.3, 11.2, 8.8, 11.9, 7.5, 9.7, 8.3, 12.5, 10.3, 10.1);

x 5 (7.5, 8.3, 8.8, 9.7, 10.1, 10.3, 11.2, 11.9, 12.5, 15.3);

Y 5 (10.7, 9.3, 6.8, 11.3, 12.2, 13.6, 8.9, 9.9, 11.8, 12.9);

g 5 (6.8, 8.9, 9.3, 9.9, 10.7, 11.3, 11.8, 12.2, 12.9, 13.6);

and
B 5 (3, 7, 2, 8, 1, 4, 9, 5, 10, 6).

In this example, data from the first date selected from
the historical record (10.7 in vector Y) is ranked fifth
lowest of the 10 ensemble members, as shown in the
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FIG. 2. The ensemble reordering method for a hypothetical ensemble of 10 members and for a given variable (e.g., max temperature),
showing (a) the ranked ensemble output for three stations, (b) a random selection of historical observations for the three stations, (c) the
ranked historical observations, and (d) the final reordered output. See text for further details.

vectors g and B. Data from the second date is ranked
third lowest (9.3 in vector Y); and data from the third
date selected from the historical record is ranked lowest
of all 10 ensemble members (6.8 in vector Y).

Now, the final step is to construct the reordered vector
XSS, which are the final forecast values:

SS ss ss ssX 5 (x , x , . . . , x ),1 2 n (9)

where
ssx 5 x , (10)q (r)

q 5 B[r], (11)

r 5 1, . . . , n. (12)

Recall that the subscripts in parentheses refer to the
elements in the sorted vector x. Following through with
the numbers from the example above provides

ssx 5 x 5 7.5;3 (1)

ssx 5 x 5 8.3;7 (2)

ssx 5 x 5 8.8; and so on.2 (3)

Hence, in this example,
ssX 5 (10.1, 8.8, 7.5, 10.3, 11.9, 15.3, 8.3, 9.7, 11.2, 12.5).

The Schaake Shuffle approach is demonstrated graph-
ically in Fig. 2 through an example (pseudo-FORTRAN
code illustrating the algorithm is given in the appendix).

Figure 2 outlines example results for three stations (j 5
3) and one variable (e.g., maximum temperature) that
are extracted from the matrices X and Y that were de-
scribed at the beginning of this section. Figure 2a de-
scribes ranked ensemble output for the three example
stations (the vectors x defined earlier). Figure 2b de-
scribes randomly selected observations from dates in
the historical record (the vectors Y defined earlier), and
Fig. 2c shows the ranked historical observations (the
vectors g defined earlier). Also in Fig. 2c is the vector
B, which is the index of the original ensemble member
that corresponds to the values in the ordered vector g.
Figure 2d describes the final shuffled output (the vectors
XSS).

The dark ellipses in Fig. 2 correspond to the first
ensemble member extracted from the historical record.
When this is not sorted (i.e., the vector Y), the values
are 10.7, 10.9, and 13.5, for stations 1, 2, and 3, re-
spectively (Fig. 2b). When these values are sorted with
respect to all other ensemble members, the first observed
ensemble is ranked fifth for station 1, sixth for station
2, and fourth for station 3 (Fig. 2c). For the first en-
semble member, the ranks 5, 6, and 4 are actually the
values of the index (r) for the three stations [Eq. (10)]—
values for the first ensemble member, once resorted
[ 5 x(r)], are 10.1 at station 1 [ 5 x(5); see Fig. 2a],ss ssx xq 1

9.3 at station 2 [ 5 x(6)], and 14.5 at station 3 [ 5ss ssx x1 1

x(4)]. Also consider the second ensemble in Fig. 2 (the
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light ellipses). Ensemble 2 from the historical record is
ranked third, second, and fifth for stations 1, 2, and 3,
respectively (Fig. 2c), such that the final shuffled output
for ensemble 2 is 8.8 (station 1), 7.2 (station 2), and
15.6 (station 3).

This approach works because it preserves the Spear-
man Rank correlation structure between station pairs
and between climate variables. Consider first the cor-
relation between station pairs. If observed data at two
neighboring stations are similar (i.e., a high correlation
between stations), then the observations at the two sta-
tions on a given (randomly selected) day are likely to
have a similar rank. The rank of each downscaled en-
semble member at the two stations is matched with the
rank of each randomly selected observation, meaning
that, for all ensemble members, the rank of the down-
scaled realizations will be similar at the two stations.
When this process is repeated for all forecasts, the ranks
of a given ensemble member will on average be similar
for the two stations, and the spatial correlation will be
reconstructed once the randomly selected days are re-
sorted. This reasoning is identical for intervariable cor-
relations.

An ordered selection of dates from the historical rec-
ord enables preservation of temporal persistence. The
random selection of dates that are used to populate the
matrix Y are only used for the first forecast lead time
(i.e., day11) and persisted for subsequent forecast lead
times. In the example presented in Fig. 2, the dates for
the forecast with a lead time of 2 days would be 9
January 1996 for the first ensemble member, 18 January
1982 for ensemble 2, 14 January 2000 for ensemble 3,
and so on. High temporal persistence (e.g., as measured
through correlation statistics) means that the historical
observations for subsequent days will, on average, have
a similar rank. Because the ranked ensemble output is
matched with the rank of successive observations, the
temporal persistence is reconstructed once the ensemble
output is resorted.

4. Results

a. Bias

The downscaling approach correctly preserves the
mean seasonal cycles in precipitation and temperature.
Figure 3 illustrates the forecasted and observed monthly
climatologies of precipitation and maximum and min-
imum temperature for example stations in each of the
study basins (forecast lead time is 5 days). The thin line
(and small diamonds) depicts the observed climatolo-
gies, and the box and whiskers illustrate the climatol-
ogies of the minimum, lower quartile, median, upper
quartile, and maximum of all forecasted ensemble mem-
bers. In all cases the observed monthly mean values lie
within the range of the forecast ensemble.

The results presented in Fig. 3 are not altogether un-
expected. Even though all downscaled realizations are

generated through a detailed cross-validation exercise,
the regression equations are constrained to provide un-
biased estimates (refer to section 3). The data ‘‘held
out’’ in successive validation periods are not very dif-
ferent from the data used to estimate the coefficients in
the regression equations. A more complete assessment
of bias can be obtained through considering measures
of reliability, or conditional bias.

The reliability diagram depicts the conditional prob-
ability that an event occurred (o1) given different prob-
abilistic forecasts (yi), that is, p(o1 | yi), i 5 1, . . . , I,
where the subscript i denotes different probability cat-
egories (Wilks 1995). This can be implemented as fol-
lows: First, the ensemble output (100 ensemble mem-
bers) is converted into probabilistic forecasts (i.e., the
probability a specific event occurs). Next, the observed
data are converted to a binary time series—a day is
assigned ‘‘one’’ if the event occurs and ‘‘zero’’ if it does
not. The above steps produce a set of probabilistic fore-
cast–observation pairs for each variable, station, month,
and forecast lead time. Finally, the forecasted proba-
bilities are classified into I categories (i.e., probabilities
between 0.0 and 0.1, between 0.1 and 0.2 . . . between
0.9 and 1.0), and for each category both the average
forecasted probability (yi) and the average of the ob-
served binary data (o1; i.e., the observed relative fre-
quency) is calculated. In this case, the ‘‘event’’ is that
the day is forecasted to lie in the upper tercile of the
distribution, and the probability is simply calculated as
all ensemble members in the upper tercile divided by
the total number of ensemble members. The upper ter-
cile is used in this example to focus attention on sig-
nificant streamflow events, due to either snowmelt (tem-
perature) or rainfall. This procedure provides a method
to assess the conditional bias in probability space.

Results show that, on average, the forecasted prob-
abilities match the observed relative frequencies re-
markably well for all variables. Figure 4 shows reli-
ability diagrams for precipitation and maximum and
minimum temperature for each of the study basins. The
dark line with triangles depicts the reliability diagram
for the month of January, and the light line with squares
depicts the reliability diagram for the month of July
(again the forecast lead time is 5 days). The forecast–
observation pairs are lumped together for all stations in
each basin, so the reliability diagrams illustrate results
for each basin as a whole. The major deficiency in the
reliability diagrams is the tendency for a low observed
relative frequency at high forecasted probabilities, most
pronounced for precipitation in the Alapaha River basin.
In other words, when a high probability of an event is
forecasted, the actual occurrence of that event is less
common. Note, however, that the sample size at high
forecast probabilities is often very small. When all plots
are considered there is very little conditional bias in the
forecasted precipitation and temperature fields. Note
that the biases are identical for shuffled and unshuffled
ensemble members—the Schaake Shuffle just alters the
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FIG. 3. Box-and-whisker plots illustrating the (left) observed and forecasted climatological mean precipitation, (middle) max temperature,
and (right) min temperature for example stations in the (top) Cle Elum, (second from top) the East Fork of the Carson, (third from top) the
Animas, and (bottom) the Alapaha basin. The observed climatology is depicted by the thin lines and small diamonds, and the box and
whiskers illustrate the forecasted climatological mean for the lowest ensemble, the lower quartile, the median, the upper quartile, and the
maximum ensemble.
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FIG. 4. Reliability diagrams (conditional bias) for the four study basins. The dark line with triangles illustrates the conditional bias for
Jan, and the light line with squares illustrates the conditional bias for Jul. Data are plotted only if there are at least 30 cases in a given bin.
Results are shown for the forecast lead time of 5 days. See text for further details.
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order of the ensemble members, not their values (see
section 3b).

b. Skill

The probabilistic skill of the downscaled precipitation
and temperature forecasts is assessed using the ranked
probability skill score (RPSS; Wilks 1995). The RPSS
is based on the ranked probability score (RPS) computed
for each forecast–observation pair:

J

2RPS 5 (Y 2 O ) , (13)O m m
m51

where Ym is the cumulative probability of the forecast
for category m, and Om is the cumulative probability of
the observation for category m. This is implemented as
follows: First, the observed time series is used to dis-
tinguish 10 (J) possible categories for forecasts of pre-
cipitation and temperature (i.e., the minimum value to
the 10th percentile, the 10th percentile to the 20th per-
centile . . . the 90th percentile to the maximum value).
These categories are determined separately for each
month, variable, and station. Next, for each forecast–
observation pair, the number of ensemble members fore-
cast in each category is determined (out of 100 ensemble
members), and their cumulative probabilities are com-
puted. Similarly, the appropriate category for the ob-
servation is identified, and the observation’s cumulative
probabilities are computed (i.e., all categories below the
observation’s position are assigned ‘‘0,’’ and all cate-
gories equal to and above the observation’s position are
assigned ‘‘1’’). Now, the RPS is computed as the
squared difference between the observed and forecast
cumulative probabilities, and the squared differences are
summed over all categories [Eq. (13)].

The RPSS is then computed as

RPS
RPSS 5 1 2 , (14)

RPSclim

where is the mean ranked probability score for allRPS
forecast–observation pairs, and clim is the meanRPS
ranked probability score for climatological forecasts.
For temperature, clim is computed using an equalRPS
probability in each of the m categories defined in Eq.
13 (i.e., 1/J); for precipitation, the probability for the
first category (zero precipitation) is taken as the ob-
served probability of no precipitation, and the proba-
bility for all other categories is taken as 1/(J 2 1) [see
Eq. (13)].

The forecast ensemble has much higher probabilistic
skill than the climatological for lead times up to about
7 days. Figure 5 plots the median RPSS values of all
stations against forecast lead time for precipitation and
maximum and minimum temperature in each of the
study basins. The dark line with triangles depicts the
median RPSS for January, and the light line with squares
depicts the median RPSS for July. Most apparent in Fig.

5 is that the probabilistic skill of precipitation forecasts
is much lower in July than in January in all basins. This
is anticipated because of the increased prevalence of
small-scale convective precipitation in July (see also
Clark and Hay 2004). The decreases in RPSS with in-
creased forecast lead time should be noted for the fol-
lowing discussion.

c. Intersite correlations

Accurate representation of the spatial covariability of
precipitation and temperature fields is an important con-
sideration in forecasting streamflow. For example, imag-
ine a case in which precipitation in two subbasins within
a watershed is highly correlated. Underestimating the
spatial correlation structure will mean that forecasts of
high precipitation in one subbasin (for a given ensemble
member) will be canceled out by forecasts of moderate
or low precipitation in the neighboring subbasin (for
that ensemble member), and the resultant ensemble fore-
cast of streamflow will have much fewer extreme values
than would be expected if the spatial covariability in
precipitation had been preserved perfectly. Herein lies
the value of the Schaake Shuffle—the technique reor-
ders the downscaled ensemble output so as to recon-
struct the observed space–time variability in the down-
scaled precipitation and temperature fields.

The performance of the Schaake Shuffle for preserv-
ing intersite correlations is quite remarkable. Figure 6
illustrates the correlation between two example stations
in the Cle Elum River basin for unshuffled and shuffled
ensemble output for forecast lead times up to 14 days.
The top plots show spatial correlations for precipitation
and maximum and minimum temperature for the un-
shuffled forecast ensemble, and the bottom plots show
the spatial correlations for the shuffled forecast ensem-
ble. The thick gray line depicts the observed correlation
between the two stations, and the box and whiskers
depict the minimum, lower quartile, median, upper quar-
tile, and maximum of the forecasted ensemble members.
The spatial correlations for the shuffled ensemble are
similar to the observed correlations. By contrast, the
spatial correlations for the unshuffled ensemble output
are much lower than the observed correlations, partic-
ularly at longer forecast lead times when there is little
skill in the forecasts.

To evaluate the generality of the performance of the
Schaake Shuffle method, the observed correlation is
plotted against the median correlation from the shuffled
and unshuffled ensemble output for each possible station
pair for the month of January for the forecast lead time
of 5 days (Fig. 7). The median unshuffled versus ob-
served correlations are depicted as dark triangles, and
the median shuffled versus observed correlations are
depicted as light squares. Figure 7 demonstrates the ca-
pability of the Schaake shuffle to reconstruct the spatial
variability in precipitation and maximum and minimum
temperature over a wide range of cases—the shuffled
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FIG. 5. The median RPSS of all stations in each of the four study basins. The dark line with triangles depicts the median RPSS for Jan,
and the light line with squares depicts the median RPSS for Jul. See text for further details.
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FIG. 6. The spatial correlation between two example stations in the Cle Elum basin in Jan for (top) raw ensemble output and (bottom)
reordered ensemble output. The thick line depicts the observed correlation between the two stations, and the box and whiskers depict the
minimum, lower-quartile, median, upper-quartile, and maximum correlations of all ensemble members.

ensemble output is much closer to the observed cor-
relation than unshuffled output for all station pairs.

The Schaake shuffle technique does tend to slightly
underestimate the observed spatial correlations for pre-
cipitation (left column in Fig. 7). This occurs because
of the intermittent properties of precipitation time series.
Consider the ranked ‘‘downscaled’’ and ‘‘observed’’ en-
sembles in Fig. 2. Both of these ensembles may include
zero precipitation days. In the case that the downscaled
ensemble has more precipitation days than the observed
ensemble, some of the smaller downscaled precipitation
amounts will be matched with zero precipitation days.
These smaller precipitation amounts will consequently
have an identical rank, and their assignment to a given
ensemble member is random. The solution to this prob-
lem is to interpolate precipitation data from surrounding
stations to fill in the zero precipitation days with trace
precipitation amounts. Another case is that the down-
scaled ensemble has less precipitation days than the ob-
served ensemble. In this case, zero precipitation days
will be matched with observed precipitation amounts,
and their assignment to a given ensemble member is
entirely random. This latter problem is intractable. In
spite of such problems with daily precipitation data,
however, the Schaake Shuffle does preserve most of the
spatial correlation structure in precipitation fields and
certainly provides a significant improvement over the
unshuffled ensemble output.

Figure 8 shows correlations for all possible station

pairs for the month of July. Results are fairly similar
for the January plot in Fig. 7, except for precipitation
in the Carson and Cle Elum River basins, where the
shuffled output provides a poor representation of the
observed spatial correlation structure. Precipitation is
rare in the Carson basin in July, exemplifying the prob-
lems with matching zero days described above. Precip-
itation results for shuffled output in the Carson basin
do, however, improve upon the unshuffled output. For
other variables and basins, the Schaake Shuffle provides
a credible portrayal of the observed spatial correlation
structure in precipitation and temperature fields.

d. Intervariable correlations

The reconstruction approach should also be capable
of preserving the correlation between variables (e.g.,
correlations between precipitation and temperature).
Suppose if in Fig. 2 the three time series were named
‘‘precipitation,’’ ‘‘maximum temperature,’’ and ‘‘mini-
mum temperature’’ instead of ‘‘station 1,’’ ‘‘station 2,’’
and ‘‘station 3.’’ If the randomly selected observations
between the two variables have a similar rank (i.e., high
intervariable correlation), then this correlation structure
should be reconstructed once the ensemble output is
reordered. By using the same randomly selected dates
for all stations and variables, both the spatial correlation
structure and the consistency between variables should
be preserved.
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FIG. 7. The observed and forecasted intersite correlations for Jan for all station combinations in each of the four study basins, for both raw
ensemble output (black triangles) and reordered ensemble output (gray squares). Results are shown for the forecast lead time of 5 days.

The comparison between the observed intervariable
correlations and forecast intervariable correlations is
shown for both shuffled and unshuffled ensemble output
in Fig. 9. The presentation is similar to that in Figs. 7

and 8—the median intervariable correlation from the
ensemble output for a given station is plotted against
the observed intervariable correlation for that station.
The dark (light) symbols depict unshuffled (shuffled)
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FIG. 8. Same as Fig. 7, except for Jul.

correlations, and the triangles (squares) depict results
for the months of January (July). As expected from
section 3, the observed intervariable correlations are
preserved very well. An important feature in Fig. 9 is
the negative correlations between precipitation and

maximum temperature, most pronounced in July. This
reflects lower temperatures on precipitation days, and
although this feature is not present in the unshuffled
output, it is reconstructed once the ensemble output has
been shuffled. Another important feature in Fig. 9 is the
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FIG. 9. The observed and forecasted intervariable correlations for all stations in each of the four study basins, shown for the forecast lead
time of 5 days. The dark symbols depict results for unshuffled output, and the light symbols depict results for the shuffled output. For both
unshuffled and shuffled output, diamonds depict results for the month of Jan and squares depict results for the month of Jul.
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FIG. 10. The lag21 correlation for an example station in the Cle Elum basin in Jan for (top) raw ensemble output and (bottom) reordered
ensemble output. The thick line depicts the observed lag21 correlation, and the box and whiskers depict the minimum, lower-quartile,
median, upper-quartile, and maximum correlations of all ensemble members.

high correlation between maximum and minimum tem-
perature, most pronounced in January. The observed
correlation between maximum and minimum tempera-
ture is underestimated in the unshuffled output, but is
reconstructed once the ensemble output is shuffled.

e. Temporal persistence

Accurate reproduction of the temporal persistence of
precipitation and temperature time series also is an im-
portant consideration in forecasting streamflow. For ex-
ample, if there is no temporal persistence in time series
of temperature, warm days will be immediately followed
by moderate-to-cold days, and any snowmelt will be
abruptly halted. This scenario is in contrast to a situation
closer to reality wherein warm days persist for several
days, thereby creating rapid and persistent snowmelt.
The Schaake Shuffle method should also be capable of
reconstructing the temporal persistence in observed pre-
cipitation and temperature fields (see section 3b).

Figure 10 illustrates the temporal persistence (lag21
correlation) from shuffled and unshuffled ensemble out-
put for one example station in the Cle Elum River basin.
Similar to Fig. 6, the top plots show temporal correlations
for precipitation and maximum and minimum tempera-
ture for the unshuffled forecast ensemble, and the bottom
plots show the temporal correlations for the shuffled fore-
cast ensemble. In this example, day12 forecasts are cor-
related against day11 forecasts, day13 forecasts are cor-

related against day12 forecasts, and so forth. Results
show similar patterns to those exhibited in Fig. 5. The
unshuffled output preserves some (but by no means all)
of the observed temporal persistence at short forecast lead
times when there is skill in the forecasts. None of the
temporal persistence is captured at longer forecast lead
times when there is no forecast skill. By contrast, the
shuffled ensemble output preserves the observed tem-
poral persistence for all forecast lead times.

Extending these results, Fig. 11 presents lag21 cor-
relation statistics for all stations in each study basin.
Results are presented in a similar manner to those in
Figs. 7–9, where the median lag21 correlation from the
ensemble output for a given station is plotted against
the observed lag21 correlation for that station. Figure
11 demonstrates that the shuffling methodology is ca-
pable of reconstructing the observed temporal persis-
tence for all stations and variables. In all cases the tem-
poral persistence in the shuffled ensemble output is clos-
er to observations than the unshuffled output.

Another feature important for hydrologic applications
is the intermittency of precipitation, which is not de-
scribed well by the lag21 correlation plots. To address
this issue, we calculate the probability that a dry day
follows a wet day (Pwd), and the probability that a wet
day follows a dry day (Pdw), for each day in the forecast
cycle. These probabilities are termed ‘‘transition prob-
abilities’’ and are widely used to construct Markov-type
models of precipitation occurrence (e.g., Gabriel and
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FIG. 11. The observed and forecasted lag21 correlation for all stations in each of the four study basins, shown for the forecast lead time
of 5 days. The dark symbols depict results for unshuffled output, and the light symbols depict results for the shuffled output. For both
unshuffled and shuffled output, diamonds depict results for the month of Jan and squares depict results for the month of Jul.
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FIG. 12. The observed and forecasted transition probabilities for
the month of Jul for the forecast lead time of 5 days. The dark symbols
depict results for unshuffled output, and the light symbols depict
results for the shuffled output. The probability that a dry day follows
a wet day is illustrated with squares, and the probability that a wet
day follows a dry day is illustrated with triangles.

Neumann 1962; Wilks 1998; Wilks and Wilby 1999).
The comparison between observed and forecasted tran-
sition probabilities is presented in Fig. 12 for each sta-
tion in the four basins. Results are presented only for

the month of July. The triangles (squares) illustrate the
case for Pdw (Pwd), and, as in other figures, the dark (light)
symbols depict unshuffled (shuffled) results. Note that if
Pdw is similar to the climatological probability of precip-
itation occurrence (or if Pwd is similar to the probability
of no precipitation), then the unshuffled ensemble output
will mirror the transition probabilities quite well. The
results in Fig. 12 show fairly small differences between
the observed and forecasted transition probabilities for
both unshuffled and shuffled ensemble output, but, on
the whole, the shuffled transition probabilities are closer
to the observed transition probabilities for all four basins.

5. Summary and conclusions

A method for reconstructing the space–time vari-
ability in forecasted precipitation and temperature fields
is presented. In this approach, the ensemble output for
a given forecast is ranked and matched with the rank
of precipitation and temperature data from dates ran-
domly selected from the historical record. The ensem-
bles are then reordered to correspond to the original
order of the selection of historical data.

To assess the value of this method, the space–time
variability in local-scale ensemble forecasts of precip-
itation and temperature is examined in four river basins
in the United States. Forecasts are generated using re-
gression-based statistical downscaling of medium-range
numerical weather prediction model output. Forecasts
are essentially unbiased and have useful probabilistic
forecast skill for all variables at short forecast lead
times. The reconstruction methodology preserves the
spatial correlation between all station pairs for all var-
iables in each of the study basins. In some instances,
the spatial correlation for precipitation is slightly un-
derestimated due to the intermittency properties of pre-
cipitation time series, but the spatial correlations from
the reconstruction methodology are closer to observed
correlations than the raw ensemble output for all station
pairs. Similarly, the reconstruction methodology pre-
serves the observed temporal persistence in precipita-
tion and temperature time series for all station pairs.

The main caveat with this approach is that it assumes
stationarity in the spatiotemporal correlation structure.
Put differently, the approach assumes that the spatial cor-
relation from randomly selected dates in the historical
record will be valid for forecasts in the future. This point
was not addressed in the present paper, as all results
(correlations) are computed using all years in the forecast
archive (1979–98). As presented here, the Schaake shuf-
fle approach will not preserve the spatial gradients in
precipitation and temperature fields for individual fore-
casts. An extension to this climatological ensemble re-
ordering approach is to preferentially select dates from
the historical record that resemble forecasted atmospheric
conditions and use the spatial correlation structure from
this subset of dates to reconstruct the spatial variability
for a specific forecast. This type of analog approach may
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APPENDIX

Pseudo-FORTRAN Code to Perform the Schaake Shuffle

The sort2 subroutine sorts two real vectors using the quick sort algorithm and can be used directly from Press et al. (1992).

BEGIN CODE
c Variable declarations

integer nens
real b(nens)
real x(nens)
real y(nens)
integer iens
integer ierr

! total number of ensemble members; equals length of observed data
! counter vectors; needs to be real for subroutine sort2
! unshuffled ensemble/model output of length nens
! observed data of length nens
! iteration variable
! error code, 0 5 no error ; 1 5 error

c

c Create vectors, a and b, and read vectors x and y
do iens 5 1, nens

b(iens) 5 float(iens)
x(iens) 5 read unshuffled ensemble output
y(iens) 5 read observed data

c perform error check to ensure x(iens) and y(iens) have no missing value
if ((x(iens) is missing).or.(y(iens) is missing)) ierr51

enddo !iens
c

c Perform Schaake Shuffle
if (ierr.eq.0) then

call sort(nens, x)
call sort2(nens, y, b)
call sort2(nens, b, x)

endif

! sort the ensemble output
! sort the observed data
! shuffle

END CODE

be capable of preserving spatial gradients for individual
forecasts, at least for short forecast lead times. Further
research is warranted on this topic.

It is of course possible to use statistical methods that
preserve the space–time variability of downscaled fields
intrinsically. One example of this type is from Wilby et
al. (2003), where regression methods are applied to pre-
dict regionally averaged precipitation and spatially dis-
aggregated by simply using data from individual sites for
days that are similar to the regionally averaged predic-
tions. In another approach, Charles et al. (1999) apply a
nonhomogeneous hidden Markov model to simulate dis-
tinct patterns of multisite precipitation and amounts con-
ditional on a set of synoptic-scale atmospheric variables.
Both of these approaches preserve the observed intersite
correlations very well. The value of the Schaake shuffle,
however, is that it is applied as a postprocessing step. It
is possible to use any statistical downscaling method (or
combination of methods) that provide the best ensemble
of predictions at individual stations, and then reconstruct
the space–time variability after the fact.

The reordering methodology is a generic approach
that can be applied in many different settings. As an
example, consider ensemble simulations of streamflow

generated using the multiobjective optimization algo-
rithm (MOCOM-UA; Yapo et al. 1998) or the gener-
alized likelihood uncertainty estimation (GLUE) meth-
odology (Beven and Binley 1992), implemented for
many subbasins within a large watershed. Now, if the
models in each subbasin are calibrated separately, ‘‘en-
semble 1’’ from a given subbasin will not necessarily
correspond to ‘‘ensemble 1’’ from the neighboring sub-
basin. If these ensembles are combined to produce sim-
ulations of runoff for the entire watershed, then a can-
celing effect will ensue and the streamflow simulations
for the watershed will underestimate both low and high
extreme values. Some reordering of ensemble output
will be required to circumvent this problem.
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