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Local Polynomial–Based Flood Frequency Estimator
for Mixed Population

Somkiat Apipattanavis1; Balaji Rajagopalan2; and Upmanu Lall3

Abstract: Floods are often generated by more than one physical mechanism, e.g., rainfall and snowmelt. Consequently, traditional flood
frequency methods that use a single distribution may not adequately describe the observed flood variability. Mixed distribution models
have been proposed but they have two major drawbacks when applied to observed data: �1� determining the appropriate number of
components or flood mechanisms and �2� identifying the probability distribution to be used for each component. Further, available flood
data are often not sufficient for detecting mixture populations. As a result, mixed-distribution models can be difficult to apply in practice.
In this paper we present a nonparametric approach based on local polynomial regression for estimating a flood quantile function that is
data driven, flexible, and can capture any arbitrary features present in the data, alleviating the drawbacks of the traditional methods. We
applied the proposed method to a suite of synthetic data from mixture of conventional distributions and to flood records that exhibit mixed
population characteristics from Gila River basin of southeast and central Arizona. It is found that the proposed method provides a better
fit to both the synthetic and historical data. Although the proposed method is presented in the context of mixed population flood frequency
estimation, the data-driven nature of the method lends itself as a simple, robust, and attractive alternative to traditional flood frequency
estimation.
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Introduction

Flood frequency analysis entails relating the magnitude of annual
maximum flood flows to their frequency of occurrence at a
gauged site. The typical interest is estimating extreme flood quan-
tiles, i.e., 100-year or 500-year flood, from a small number of
observations ��50 to 90 years� for design of hydraulic structures
such as dams, culverts, and bridges. Design flood which is esti-
mated from flood frequency analysis is very important for water
resources planning and management, e.g., flood protection, chan-
nel improvement, and drainage system.

Traditional parametric methods for design flood computation
assume that annual maximum floods are independent and identi-
cally distributed and drawn from a single homogeneous popula-
tion with a known probability density function �PDF�. An
appropriate PDF is selected from a candidate set or mandated by
a regulatory agency for at-site applications. Typical distributions
that are prescribed by agencies such as USBR and USGS and
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widely used in practice are log-Pearson Type III �LP3�, log nor-
mal �LN�, and extreme value Type I �EVI� distributions �see Kite
1977; Interagency Advisory Committee on Water Data �IACWD�
1982; Chow et al. 1988�. There are statistical tests to discriminate
between choices of distributions including L-moment methods
�see Kite 1977; Vogel 1986; Hosking 1990; Vogel and McMartin
1991�. However, it is often difficult to distinguish between candi-
date models for a given data set, and best fit criteria emphasize
the bulk of the distribution rather than its tails. Consequently,
there is considerable uncertainty as to the best underlying model
for the estimation of the upper flood quantiles.

Increasing evidence has been showing that floods are often
generated by two or more distributions and not a single distribu-
tion as traditional method assumes, therefore, that this might be a
significant reason why none of single population distributions
provide an appropriate fit to the flood data. Alila and Mtiraoui
�2002� summarized that the natural factors that cause the mixed
populations are �1� seasonal variations in the flood-producing
mechanisms, e.g., hurricanes, thunderstorms, snowmelt flood in
spring, and rainfall flood in summer �Waylen and Woo 1982;
Jarret and Costa 1988�; �2� changes in weather patterns resulting
from low-frequency climate shift and/or El Niño/La Niña oscilla-
tions �Webb and Betancourt 1992; Alila and Mtiraoui 2002, Jain
and Lall 2000, 2001�; �3� changes in channel routing owing to the
dominance of within-channel or floodplain flow �Woltemade and
Potter 1994�; and �4� changes in antecedent soil moisture and soil
cover resulting from basin variability.

Recognizing the mixture of flood populations, more research-
ers have been using mixed-distribution model methods to fit the
heterogeneous flood distributions. Commonly, they first classify
annual flood series according to flood-producing mechanisms into

subpopulations, then fit each subpopulation with a single popula-
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tion distribution, and finally, combine the distributions to fit the
annual floods. For example, Woo and Waylen �1984� combined
two EV1 distributions to model annual floods in British Colum-
bia, Canada. Singh �1987� applied two normal distributions to fit
six annual flood series from rivers in Japan. Jarret and Costa
�1988� combined two LP3 distributions to model floods in Colo-
rado. Webb and Betancourt �1992� combined three LP3 distribu-
tions to fit floods in Arizona. Singh et al. �2005� applied two
Pearson Type 3 distributions to model four flood series from riv-
ers in China.

Nonparametric methods, on the other hand, do not assume a
distributional form to the data. Rather, the flood magnitude at any
quantile is estimated by locally smoothing the empirical quantile
function of the data or estimating the PDF using a kernel-based
estimator. Because the method is “local,” in which estimates of
the function at a point are based on data points in its neighbor-
hood, this provides the ability to better capture any arbitrary fea-
tures, especially flood feature that exhibits mixture of population
characteristics and furthermore, easily portable across sites.

For the estimation of tail quantiles, an extrapolation rather
than interpolation of the empirical quantile function is needed.
The local estimation procedure inherent in nonparametric flood
frequency analysis translates into a model for tail probability es-
timation. Traditional tail probability estimators consider specific
models of tail behavior whose parameters are to be estimated.
Typically, a threshold beyond which the tail probability model
should be applied also needs to be inferred from the data. Moon
and Lall �1994� demonstrated that kernel-based methods often
performed better in practice than some of the tail probability
models that are commonly used. In this paper, we present a higher
order nonparametric estimation scheme, local polynomial regres-
sion �LPR�, which improves further on the kernel quantile esti-
mations presented by Moon and Lall �1994�. Other extensions of
this sort of approach to the estimation of nonstationary flood fre-
quency distributions are reported by Sankarasubramanian and
Lall �2003�. We focus on heterogeneous flood frequency even
though the LPR method can also be effective in homogeneous
cases.

Parametric and nonparametric approaches for heterogeneous
flood frequency analysis are next overviewed. The LPR estimator
used for fitting heterogeneous distribution is then illustrated. We
later compare the performance of the proposed estimator with
those of mixed-distribution model estimators as well as that of
traditional frequency estimator on the same synthetic heteroge-
neous data sets, followed by their comparison on four streamflow
data sets in the Gila River basin of southeast and central Arizona
that exhibited mixed of population characteristics.

Background

Several mixed-distribution model methods have been developed
based on probability rules, resulting in a more appropriate fit to
the mixture of flood populations. Basically, these methods assume
that flood data are a mixture of two or more populations drawn
from different homogeneous distributions according to their
flood-producing processes, e.g., tropical storm, snowmelt in
spring, and rainfall in summer.

Assuming that flood populations X are generated by two inde-
pendent processes and characterized by two distinct distributions,
P1 and P2, Waylen and Woo �1982� then applied the multiplica-
tive rule of probability; the composite probability for magnitude x

flood, PC, can be estimated by
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PC�X � x� = P1�X � x�P2�X � x� �1�

where P1�X�x� and P2�X�x�=probabilities of the two popula-
tions. To obtain PC the following steps are needed: �1� identify the
two subpopulations and their homogeneous frequency distribu-
tions; �2� estimate parameters of each subpopulation; and �3�
apply Eq. �1� to obtain the probability of various magnitude
floods. Using combination of two EVI distributions, this method
was applied to fit annual floods of rivers in British Columbia
�Waylen and Woo 1982� and northern Ontario, Canada �Woo and
Waylen 1984�.

Similar to the previous method, X is drawn from two distinct
distributions, F1 and F2. Applying to the additive rule of probabil-
ity, the composite exceedance probability FC is then estimated by

FC�X � x� = F1�X � x� + F2�X � x� − F1�X � x�F2�X � x�

�2�

To obtain FC the same steps used in the first method are applied.
This method was implemented with combination of two LP3 dis-
tributions to fit annual flood series of front range in Colorado
�Jarret and Costa 1988� and with combination of three LP3 dis-
tributions to model annual floods in Arizona �Webb and Betan-
court 1992�.

Fundamentally, Eqs. �1� and �2� are the same and share the
same probability characteristic. It might be proved by substituting
P�X�x�=1−F�X�x� into Eq. �1�. It turns into Eq. �2�. Singh
et al. �2005� commented that these methods might overestimate
the frequency distribution.

Singh �1968� proposed a curve fitting method by considering
that the annual maximum floods belong to a number of popula-
tions with distinct homogeneous distributions. The composite
probability, PC, in case of two populations, is estimated by

PC�X � x� = �P1�X � x� + �1 − ��P2�X � x� �3�

where �=weight factor relating contribution of each population.
The two distributions, P1 and P2, have means �1 and �2 and
standard deviations �1 and �2, respectively. This method does not
require a priori separation of flood data; however, the curve fitting
requires a priori assumed frequency distributions. Therefore, it
requires the estimation of five parameters, i.e., �, �1, �2, �1, and
�2. Singh �1987� combined two normal distributions to model six
annual flood series in Japan, USSR, Poland, Czechoslovakia,
Italy, and U.S.A.

Similar to Eq. �3� the exceedance probability, FC, can be esti-
mated by

FC�X � x� = �F1�X � x� + �1 − ��F2�X � x� �4�

Alila and Mtiraoui �2002� used Eq. �4� for combining two LN
distributions to fit the observed flood series in Gila River basin.
They estimated the five parameters ��, �1, �2, �1, and �2� by
minimizing objective function ���z�2 subject to the constraints
suggested by Cohen �1967� and using a nonlinear optimization
algorithm of Singh and Nakashima �1981�. Note that �z equals
the difference between the observed probability of annual floods
and theoretical probability estimated from mixture of assumed
distributions. The observed probability was obtained from the
Cunnane plotting position formula �FT= �n+0.2� / �m−0.4��,
where T is the return period in years, n is the number of obser-
vations, and m is the rank from the smallest �m=1� to the largest
�m=n� observation.

Singh et al. �2005� presented a mixed-distribution model
method using conditional probability and multiplication rule. The

composite exceedance probability �FC� can be estimated by
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FC�X � x� = �
i=1

s

F�Ai�F�X � x�Ai� �5�

where F�Ai�=probability of annual maximum flood that occurs in
seasons i �i=1,2 , . . . ,s� and s=number of season. P�x �Ai� is con-
ditional frequency probability of flood magnitude x given that
annual maximum flood occurs in season i. The method requires a
priori both separation and assumed distribution. This method was
applied by combining two LP3 distributions to fit four flood data
sets from three basins in the United States �Idaho, Louisiana,
Arizona� and one basin in China.

While providing more appropriate fit to heterogeneous flood
compared to traditional method, the mixed-distribution model
methods are complicated as more number of parameters have to
be estimated. From the above discussion it can be seen that the
mixed model methods have two main drawbacks when applied to
observed data: �1� how to determine the number of flood popula-
tions �mechanisms� and �2� how to identify homogeneous distri-
bution for each population. In practice, available flood data are
short, thus making it difficult to identify the population mixture
and also the form of each distribution. Furthermore, no clear re-
lationships between flood mechanisms and their frequency distri-
butions are available for selecting distributions suitably.
Therefore, in practice, it is difficult to apply or often not feasible
for modeling mixed population floods with the mixed-distribution
model methods; consequently, practitioners settle for a subopti-
mal solution by selecting a single PDF.

Nonparametric Approach

Nonparametric flood frequency estimators were developed and
studied by Schuster and Yakowitz �1985�, Adamowski �1985,
1989�, Adamowski and Feluch �1990�, and Bardsley �1988, 1989�
and subsequently by Lall et al. �1993�, Moon et al. �1993�, and
Moon and Lall �1994� who also compared their performance with
several alternatives available at the time. The nonparametric
methods are more advantageous than the parametric methods in
flood frequency analysis for both annual maximum and partial
duration flood series �Adamowski et al. 1998� in that they do not
require a priori assumption of the underlying PDF and the esti-
mation is local and data driven, which enables them to capture
any distributional features �homogeneous or heterogeneous� ex-
hibited by the data. This will be described in the context of our
proposed method in the following section.

Lall et al. �1993� developed a kernel-based quantile estimator,
in which a kernel density estimator is used to estimate the prob-
ability distribution function and consequently, the quantiles of
interest. They also showed that parametric estimates based on
the cumulative distribution function are more appropriate than
those based on density estimates in the flood frequency context.
Estimators based on kernel density are easy to implement; how-
ever, they suffer from �1� loss of efficiency of estimation with
respect to the true distribution; �2� an uncertain and likely negli-
gible ability to extrapolate beyond the data �Lall et al. 1993�;
and �3� oversmooth the distribution function. Adamowski �1989�
suggested a variable bandwidth kernel density estimator that ad-
dresses the extrapolation problem. Later, Moon and Lall �1994�
developed a nonparametric kernel-based regression estimator
for quantiles. Here, the empirical quantile function is smoothed
using a kernel regression estimator. They found that both the den-
sity and regression based estimators are competitive compared to

other estimators. However, both these methods suffer from
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boundary problems, i.e., the tail quantiles are biased �Lall et al.
1993; Moon and Lall 1994�. Here, we present a LPR �Loader
1999� based estimator that improves on the kernel-based methods
in this respect.

LPR Estimator

The LPR estimator is based on fitting of the observed quantile
function of the flood data. The quantile function is prescribed
through a standard “plotting position formula:” Xi= i / �n+1�,
where n is the sample size and i=1,2 , . . . ,n. Makkonen �2008�
recently recommended that “the plotting position should be con-
sidered not as an estimate but to be equal to i / �n+1�.” He also
added that the result from this plotting position is unique and
independent of the parent distribution.

Given an n-year historical record of annual maximum floods,
we can define the observed quantile function through the follow-
ing set of ordered pairs: �Xi ,Yi�, i=1,2 , . . . ,n, where Xi= i / �n
+1� and Yi=ranked annual maximum flood data. The Xi are the
so-called plotting positions.

Then, we consider a general model for the quantile function
as

Yi = ��Xi� + �i �6�

where �� · �=nonlinear function; �i=assumed to be identically
distributed errors with mean 0 and finite variance; and Xi

� �0,1�. In this context if we consider the estimation of the T
year flood, then we are interested in an estimate ��XT� such that
XT=1−1 /T. The specific proposal here is that ��XT� be estimated
using LPR, where we assume that ��XT� is a general function that
is continuous and has �p-1� derivatives. Hence, it is reasonable to
approximate ��XT� using a local polynomial of order p, following
Taylor series arguments. Local here refers to an approximation in
the neighborhood of XT. The size of the neighborhood depends on
the smoothness of the target regression function and on the nature
of the residual process that generates.

More details of local regression technique are provided by
Loader �1999�. The estimation algorithm is summarized below:
1. For any point of estimate, XT, nearest neighbors �i.e., nearest

data points�, k= ��n�, are identified, where � varies from 0 to
1 �when �=1 then all the data points are neighbors to XT�.
The bandwidth h�XT� of this window of k neighbors around
XT is the distance to the kth neighbor. For tail quantiles, this
translates into the number of upper order statistics that are
used to fit a polynomial tail quantile model.

2. Each of the k data pairs used is then weighted according

Table 1. Details of Selected Stream Gauges in the Gila River Basin

Number Station name
USGS

number
Data

period
Sample

size

1 San Francisco River
at Clifton

94445000 1891–2005 98

2 San Pedro River
near Redington

94720000 1926–1998 67

3 Santa Cruz River
at Tucson

94825000 1915–2004 87

4 Salt River
near Roosevelt

94985000 1916–2005 81

Note: Missing data exist in record.
to the distance to XT via a weight function �e.g., bisquare,

2010
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tricubic, etc.�. The bisquare weight is given as W�ui�
= �15 /16��1−ui

2�2, where u= �Xi−XT� /h�XT� and �u��1.
3. Within the smoothing window �i.e., with the k neighbors�,

��X� is approximated by a polynomial order p. For example,
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Fig. 1. Synthetic flood data �Q� from a mixture of two distributions
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��X� = a0 + a1�X� + a2�X�2 �7�

The coefficients of the polynomial a0, a1, and a2 are obtained
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�
i=1

k

Wi�XT�„Yi − ��Xi�…2 �8�

These steps are repeated for each estimation point.
The key parameters are the optimal number of neighbors k and

the order of polynomial p. These are obtained via minimization of
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Fig. 2. Boxplots of estimates of 10-, 50-, 100-, 250-, and 500-year
distribution; �b� LPR; �c� mixed-distribution model; �d� LN; �e� LP3;
values. Note that the heights of boxplots represent sampling errors a
a generalized cross-validation �GCV� function described below. If
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h�X� is too small, insufficient data fall within the smoothing win-
dow; the estimated quantile value will have a very high variance.
On the other hand, if h�X� is too large, the quantile estimate may
have a large bias. Therefore, the bandwidth must be chosen to
compromise this bias-variance trade-off. Similar to the band-
width, the degree of the local polynomial p also affects the bias-
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Loader �1999� suggested that it often suffices to choose a low
order polynomial and concentrate on choosing the bandwidth to
obtain a satisfactory fit. Typically, in parametric regression, mean
squared error is used to assess the performance of the fit. How-
ever, this is a poor indicator of future performance of the model
�i.e., predictive error�. Craven and Wahba �1978� developed the
GCV, similar to Akaike information criteria and Bayesian infor-
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Fig. 3. Same as Fig. 2 but synthetic d
mation criteria, which approximates predictive risk
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GCV��,p� = n�
i=1

n

„Yi − �̂�Xi�…2/�1 − �
i=1

n

hii	2

�9�

where n=sample size; Yi− �̂�Xi�=residual; and hii=diagonal
terms of the hat matrix H. The hat matrix can be estimated using
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standard linear regression procedures. For fairly small data sets
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Loader �1999� suggested the use of the leave-one-out cross-
validation �CV� function

CV��,p� =
1

n�
i=1

n

„Yi − �̂−i�Xi�…2 �10�

where �̂−i�Xi� denotes the leave-Xi-out estimate of �̂�Xi�. That is,
each Xi is removed from the data set in turn and the local regres-
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Fig. 4. Same as Fig. 2 but synthetic d
sion estimate computed from the remaining n-1 data points.
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Applications

The performance of LPR quantile estimator was tested on a suite
of synthetic heterogeneous data sets that composed of a mixture
of two conventional distribution populations and also compared
with those of mixed model methods and traditional models. We
then applied the LPR estimator on four streamflow data sets that
exhibit mixed population characteristics.
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Synthetic Heterogeneous Flood Distribution
Experiments

To simulate synthetic heterogeneous flood data sets, three sets of
combined probability distribution models as “parents” for at-site
flood generation processes were considered. Consequently,
we generated 500 samples of size 80 each from Eq. �3� using
different combined probability distributions. The combinations
were �1� two LN distributions with mean �y1=5.0, standard de-
viation �y1=0.4, and �y2=6.0, �y2=0.5; �2� two LP3 distributions
with �y1=3.5, �y1=0.2, coefficient of skewness, 	y1=0.4,
and �y2=3.7, �y2=0.3, and 	y2=0.5; and �3� two EVI distribu-
tions with �x1=1,500, �x1=200 and �x2=1,000, �x2=200, where
y=log�x�. All combinations used weight factor, �=0.25. The pa-
rameters of the distribution and the weight factor of combination
were selected to provide distributions that are well discriminated
and a clear mixture distribution. The appropriate mixed-
distribution model estimators were used to estimate five quantiles
�10-year, 50-, 100-, 250-, and 500-year return periods� across the
suite of parents. The LPR estimator was applied to each of the
generated samples and five quantiles were estimated. Three con-
ventional PDFs—LN, LP3, and EV1—were also applied for esti-
mating the quantiles. The quantile estimates are displayed as
boxplots along with the true values from the parent.

Our hypothesis is that the proposed nonparametric method will
be competitive against the parametric alternatives. The proposed
method as described in the previous section requires neither the
flood-producing mechanism information in basin nor a priori dis-
tribution for each flood mechanism. In contrast, the mixed model
method requires data of both flood mechanisms and flood distri-
butions, which often are deficient. Furthermore, the traditional
single PDF estimators cannot recognize the mixture of two distri-
bution populations in the synthetic flood data resulting in inap-
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Fig. 5. Histogram of logarithm of annual peak flow data �log�Q�� fo
�d� Salt River. The dashed lines are the PDFs estimated using kernel
propriate fits. We test our hypothesis by examining the model
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error �bias� and sampling error �variance� of each estimator from
the true quantiles of the parent combined distributions.

Observed Data

The LPR estimator was subsequently applied to annual maximum
flood series from four stream gauges in the Gila River basin of
central and southern Arizona. Several researchers have described
various causes of heterogeneity in the flood data of this basin
�Webb and Betancourt 1992; Yarnal and Diaz 1986; Reyes and
Cadet 1988; Hjalmarson 1990�. Lately, Alila and Mtiraoui �2002�
concluded that heterogeneity in the flood data of this basin results
from three potential causes �1� different types of storms, i.e.,
monsoonal storm, frontal storm, and tropical cyclone, �2� El Niño
southern oscillation �ENSO� conditions, during ENSO years
precipitation and its variability are enhanced, and/or �3� decadal
climatic fluctuations, shifts in the climate of the southwestern
U.S.A. around 1,930 and 1,960 were driven by decadal scale vari-
ability.

The four stream gauges are on four tributaries: �1� San Fran-
cisco River; �2� San Pedro River; �3� Santa Cruz River; and �4�
Salt River. The details of each gauge such as station name, USGS
station number, data period, and sample size are shown in Table 1.
Lacking information of flood-producing mechanisms for separat-
ing the flood data into subpopulations, thus, applying the mixed-
distribution model to these observed flood data was not possible.

Bootstrap based confidence intervals were also computed for
each quantile estimates. In this, we generated 1,000 bootstrap
samples and the quantiles are estimated for each sample using the
LPR method—the 5th and 95th percentiles of the estimates from
the bootstrap samples provide the 90% confidence intervals for
the quantile estimates. The bootstrap approach is nonparametric
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generate surrogate independent and identically distributed
samples of the same length as the original data by sampling with
replacement.

Finally, the predictive capability of the LPR method was tested
in a leave-one-out CV mode. In this, a flood observation is
dropped from the data set and the LPR estimators on the re-
maining data are used to estimate the quantile of the dropped
observation; this is repeated for all the observations. The results
from the synthetic and observed data are described in the follow-
ing section.

Results

Synthetic Data

The synthetic mixed data series from all parent combined distri-
butions show their mixed population characteristics by their bi-
modal distributions and their dog-leg shaped flood frequency
curves �Fig. 1 shows one of the 500 samples�. Potter �1958� sug-
gested that the dog-leg shape of flood frequency curve indicates
the mixture of two populations.
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Fig. 6. Quantile estimates from EV1, LN, LP3, and LPR estimators f
�d� Salt River. Circles represent empirical quantiles and lines represe
As mentioned earlier, the LPR estimator and the parametric
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estimators are applied to each mixed synthetic data and we esti-
mate the 10-, 50-, 100-, 250-, and 500-year return period magni-
tudes. These estimates from the simulations are shown as
boxplots along with the true values as solid points connected with
a solid line �Figs. 2–4�. Box sizes provide the variance of the
estimates resulting from sampling error, while departures of true
values from median of the estimates �horizontal line in box� pro-
vide the bias of the estimates resulting from modeling error. The
bias is acceptable if the true value falls within the box where 50%
of estimate values �between 25th and 75th quartile� are contained,
which can be considered as 50% confidence interval.

The LPR estimator exhibits good performance for all the par-
ent distributions �Figs. 2�b�, 3�b�, and 4�b��. The variance of the
estimates from LPR increases �bigger boxes� as the return period
increases—more so for return periods of 250 and 500 years. This
is to be expected from standard regression theory, as LPR ex-
trapolates beyond the range of the data at higher return periods
and, hence, has larger variance and larger bias. However, the true
values are still within the boxes. This shows the ability of the
LPR estimator to recognize the mixed population characteristic.

Of course, the mixed-distribution model �Eq. 3 of Singh
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does. As expected, the true mixed model estimates show no bias
�Figs. 2�a�, 3�a�, and 4�a�� while LPR estimates show some bias
for 250- and 500-year return period magnitudes, but their perfor-
mances on variance are comparable.

None of the traditional parametric homogeneous distributions
i.e., LN, LP3, and EVI, perform well on the parent distributions
due to their inability in recognizing the mixed populations. They
either underestimate or overestimate the upper tail quantiles, i.e.,
beyond 100-year return periods and have unacceptable bias �true
value falls outside box� for 250- and 500-year return periods
�Figs. 2�d�, 3�d�, and 4�d� for LN, Figs. 2�e�, 3�e�, and 4�e� for
LP3, and Figs. 2�f�, 3�f�, and 4�f� for EVI�. Surprisingly, LP3
performs well for the two LP3 mixed distribution �Fig. 3�e�� and
LN performs well for the two EVI mixed distribution �Fig. 4�d��.

The performance of the LPR estimator is quite competitive
with the true underlying model estimates. Similar results were
seen with synthetic data generated from homogeneous distribu-
tions �Apipattanavis et al. 2003�. Given that in practice it is often
not feasible to obtain the true mixture distributions and mixed-
distribution models such as Eq. 1 of Waylen and Woo �1982� tend
to overestimate for all parent distributions �Singh et al. 2005�, the
LPR method with its data-driven feature is very attractive.

Observed Data

Unlike the synthetic data, annual flood series from the four
gauges in the Gila River basin do not show clearly their multi-
modal characteristics �Fig. 5� due to the short record length re-
lated to their three flood-producing mechanisms �Alila and
Mtiraoui 2002�. However, their flood frequency curves show the
dog-leg shape indicating their mixed populations �see their em-
pirical quantiles shown as circles in Fig. 6�.

The LPR estimators closely follow and smooth the empirical
quantiles of annual flood data of all four rivers for all return
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Fig. 7. Leave-one-out quantile estimates �solid lines� and 90% confid
�b� San Pedro River; �c� Santa Cruz River; and �d� Salt River
periods �shown as solid lines in Fig. 6�. The traditional methods
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�LN, LP3, and EVI estimators�, on the other hand, do not capture
the quantile features present in the data. The LPR estimator pro-
vides an appropriate fit to mixed flood data obviating the tough
task of identifying and separating the data into homogeneous
flood populations.

The leave-one-out cross-validated quantile estimates �Fig. 7�
appear to be within the 90% confidence interval �obtained from
the bootstrap approach� for all four sites. Residuals from the
cross-validated estimates were found to be normally distributed
with no significant autocorrelation �figures are not shown� indi-
cating the goodness of the LPR model. The quantile estimates for
250- and 500-year return periods along with the 90% confidence
intervals from the bootstrap approach, at all sites are shown in
Fig. 8. It can be seen that the confidence intervals are asymmetric,
unlike the symmetric intervals, from traditional approaches.

Summary and Conclusions

A nonparametric flood frequency estimator based on LPR was
developed and applied on synthetic and historical data sets, then
analyzed the flood quantiles of return periods up to 500 years. The
method performs a local regression on the empirical quantiles to
smooth them and also to extrapolate in the tails. The local aspect
of the estimation provides the ability to capture any arbitrary
features that might present in the data. Thus, it is particularly
suited for estimating quantiles from mixture of flood populations.
Traditional parametric mixed-distribution-model methods require
the knowledge of the generating mechanisms and frequency dis-
tribution for each mechanism. In practice, it is often not feasible
to identify the distributions from short data sets. Unlike the para-
metric counterparts, the LPR estimator requires no prior assump-
tion of the underlying distribution, which makes it portable across
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sites. This also improves upon kernel-based nonparametric esti-
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mators developed in the past in that it is easy to alleviate the
boundary problems that plague the kernel estimators. The LPR
estimator showed good performance on a variety of synthetic data
sets from mixed population characteristics and also on observed
flood data. The method offers an attractive alternative. In situation
in which traditional models can be well identified and are well
suited, we suggest using them, otherwise, the LPR estimator is a
good alternative. Our aim in this research is to offer a simple and
flexible framework that can supplement and compliment the tra-
ditional methods. There is emerging research on estimating flood
frequency conditioned on large-scale ocean-atmospheric informa-
tion using semiparametric approaches �Sankarasubramanian and
Lall 2003� and Bayesian methods �Lima and Lall 2010�. These
estimations can provide flood frequency information for each year
that will be of immense help for water resources planning. Gen-
eralized extreme value distributions have also been used for esti-
mating flood quantiles using covariates �Katz et al. 2002�.
Furthermore, these approaches are useful in estimating extreme
events under changing climate �Towler et al. 2010�. The LPR
estimator proposed here can be easily adapted for the same pur-
pose �Apipattanavis 2007� and it could also be extended for re-
gional flood frequency analysis.
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