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Abstract We provide a framework for careful analysis of the different methodological choices we make
when constructing multimodel ensemble seasonal forecasts of hydroclimatic variables. Specifically, we
focus on three common modeling decisions: (i) number of models, (ii) multimodel combination approach,
and (iii) lead time for prediction. The analysis scheme includes a multimodel ensemble forecasting algo-
rithm based on nonparametric regression, a set of alternatives for the options previously pointed, and a
selection of probabilistic verification methods for ensemble forecast evaluation. The usefulness of this
framework is tested through an example application aimed to generate spring/summer streamflow fore-
casts at multiple locations in Central Chile. Results demonstrate the high impact that subjectivity in
decision-making may have on the quality of ensemble seasonal hydroclimatic forecasts. In particular, we
note that the probabilistic verification criteria may lead to different choices regarding the number of models
or the multimodel combination method. We also illustrate how this objective analysis scheme may lead to
results that are extremely relevant for the case study presented here, such as skillful seasonal streamflow
predictions for very dry conditions.

1. Introduction

The requirement of seasonal hydroclimate forecasts for water resources management has historically moti-
vated climate scientists, hydrologists, forecasting agencies, and water managers for developing and imple-
menting innovative techniques in order to improve the quality of predictive systems. Several efforts can be
found in the literature, including a wide spectrum of hydroclimatic variables such as sea surface tempera-
ture [Barnston et al., 1994; Weisheimer et al., 2009], precipitation [Sharma, 2000; Block and Rajagopalan, 2007;
Devineni and Sankarasubramanian, 2010a], streamflow volumes [Piechota and Chiew, 1998; Souza Filho and
Lall, 2003], snowpack accumulation [McCabe and Dettinger, 2002], flood quantiles [Sankarasubramanian and
Lall, 2003], hurricane activity [Landsea et al., 1998], and air temperature [Huang et al., 1996; Hwang et al.,
2001], among others.

A logical step after many years of development has been the incorporation of uncertainty estimates. In view
of this, ensemble-based techniques have become widely popular in forecasting applications because of
their ability to provide probabilistic information. Typically, an ensemble may contain predictions coming
from (i) a single model (e.g., by perturbing inputs, state variables, or parameters), (ii) several models, or (iii) a
combination of ensembles coming from different models. Approaches (ii) and (iii) are among the well-
known multimodel methods, which have been widely explored in several hydrometeorological applications
[e.g., Krishnamurti et al., 2000; Rajagopalan et al., 2002; Georgakakos et al., 2004; Devineni et al., 2008; Block
et al., 2009; Devineni and Sankarasubramanian, 2010a,b]. A classic argument to support the use of a multi-
model approach has been that it allows ‘‘compensatory effects’’ that control the excess of spread coming
from individual model errors. However, it should also be regarded that the verification metrics used to com-
pare the single best model with several multimodel configurations might make a big difference when
deciding what approach should be used [Hagedorn et al., 2005].
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A critical issue in multimodel applications is how to mix forecasts from different models. Raftery et al. [2005]
introduced Bayesian Model Averaging (BMA) with the aim to combine outputs from several models in order
to obtain predictions with good probabilistic properties. Since then, BMA has been used in many hydrome-
teorological applications [e.g., Ajami et al., 2007; Sloughter et al., 2007; Duan et al., 2007; Vrugt and Robinson,
2007; Fraley et al., 2010; Schmeits and Kok, 2010]. Following the same model-weighting principle, Regonda
et al. [2006] proposed the Generalized Cross Validation (GCV) score to define weights for each model, which
are later used to randomly choose one ensemble forecast from one model to generate a final ensemble pre-
diction. A natural implication from this idea is that other model evaluation scores (e.g., correlation coeffi-
cient, bias, root mean square error, etc.) could also be used for assigning weights to forecasts coming from
different models. Another relevant decision for seasonal forecasting of hydroclimatic variables is the lead
time, which is absolutely critical for operational planning purposes.

In summary, setting up a multimodel forecasting system implies a host of subjective decisions regarding
the modeling strategy. In the case of ensemble systems, this subjectivity commonly extends to the choice
of verification measures (typically based on skill scores), disregarding other properties that also define the
quality of probabilistic forecasts [Wilks, 2011]. For instance, the use of a single best model could be appro-
priate in terms of skill, but it might provide a very poor representation of the uncertainty observed in the
hydroclimatic variable of interest. Similarly, a specific multimodel blending technique might provide moder-
ate skill, but a very good ability to discriminate the occurrence of a specific event.

The main goal of this paper is to provide an integrated analysis framework for seasonal forecasts of hydro-
climatic variables. Specifically, we aim to contribute for a better decision-making strategy focused on: (1)
number of models (single best model versus multimodel), (2) weighting approach used to combine fore-
casts coming from different models, and (3) lead time for seasonal forecasts. We present an example appli-
cation that aims to generate ensemble seasonal streamflow forecasts in 10 basins located along the Chilean
Andean region between 30o and 34o S. In our example, we perform several experiments in order to assess
the quality of seasonal forecasts obtained with different options for the choices listed above. The remainder
of this paper is organized as follows: the proposed approach is detailed in section 2, the example applica-
tion is described in section 3, results are provided in section 4, and discussion and conclusions are pre-
sented in section 5.

2. Approach

Given the need to forecast a hydroclimatic variable, we propose a methodology based on three main
components:

1. A multimodel ensemble forecasting technique.

2. A set of methodological choices to be tested for: (i) number of models, (ii) the multimodel combination
approach, and (iii) the lead time for prediction.

3. A selection of probabilistic verification methods for evaluating the modeling decisions listed above.

Because the ultimate goal of an ensemble forecasting system of hydroclimatic variables is to obtain results
with good probabilistic properties (e.g., skill, reliability, uncertainty, etc.), these elements interact with each
other as part of the experimental setup. We provide a description of the three components in the following
subsections.

2.1. Multimodel Ensemble Forecasting Technique
The seasonal forecasting framework builds upon previous work done by Grantz et al. [2005], Regonda et al.
[2006], and Bracken et al. [2010]. The main steps of the forecasting methodology are: (1) predictor identifica-
tion, (2) selection of best models using objective criteria, and (3) multimodel forecasting algorithm, which is
based on the combination of ensembles of predictions coming from the models identified in step (2).
Because the implementation of step (1) depends on the characteristics of the forecasting application, we
focus on the full description of steps (2) and (3).

2.1.1. Model Selection
If y is the hydroclimatic variable of interest (predictand) and x1; x2; . . . ; xR are the predictor variables, they
can be put together into a statistical model with the general form:
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y5f ðx1; x2; x3; . . . ; xRÞ1� (1)

where � represents the model error, which is commonly assumed to have a normal probability distribution
with mean 0 and standard deviation r. Although it is very common to adopt a linear model for the function
f, several case studies have demonstrated that nonparametric regression techniques (e.g., local polynomials)
can be much more effective in obtaining skillful predictions [e.g., Regonda et al., 2005; Prairie et al., 2005;
Towler et al., 2009; Bracken et al., 2010]. The main idea behind local polynomial models [Loader, 1999] is
that, given a point x* where the prediction is to be made, a number K5aN of neighboring points, where
N is the length of the data and a5ð0; 1Þ, can be selected in order to fit a polynomial of order p, typically
chosen to be 1 or 2. Thus, the fitted polynomial can be used to obtain the mean value of the predictand y*
and also an estimate of the error variance r2

le at that point.

Given a set of predictors, the parameters K and p are determined by minimizing the generalized cross vali-
dation score (GCV), which is defined as:

GCVðK ; pÞ5

XN

i51

e2
i

N

ð12q=NÞ2
(2)

where ei is the model error at point xi, N is the length of the data, and q is the number of parameters. The
procedure adopted here for defining a set of models for the multimodel framework is:

1. Determine all possible combinations of predictors, excluding all those sets that contain at least two pre-
dictors with linear correlation coefficient higher than a specific threshold.

2. For each combination of predictors, fit local polynomial models for several values of K and p, and com-
pute the GCV score using equation (2).

3. Select those values of K and p that minimize GCV.

4. Repeat steps 2 and 3 for all the combinations of predictors identified in step 1. As a result of this, best values
for parameters K and p (i.e., a single best local polynomial model) are identified for each set of predictors.

5. Finally, rank the best models obtained for the sets of predictors according to GCV scores.

The ranking defined above will be later used to select the Nmod models (i.e., best sets of predictors) to be
included in the multimodel forecasting algorithm.

2.1.2. Multimodel Forecasting Algorithm
Given a number Nmod of statistical models to be included in the seasonal forecasting framework, ensemble
predictions are generated in cross-validation mode for each time step (season) as follows:

1. Identify the best Nmod sets of predictors from the GCV-based ranking described in the previous
subsection.

2. Fit local polynomial models for the predictand, and use them to compute a prediction and the associated
error variance r2

le for the year of interest. The variance is used to generate an ensemble of forecasts by adding
Nens Gaussian random numbers with mean 0 and variance r2

le, where Nens is the number of ensemble members.

3. Repeat step 2 for all Nmod combinations of predictors identified in step 1. After this, an ensemble forecast
of size Nens is obtained from each model.

4. The likelihood of predictions coming from different models is not the same. Hence, weights are defined
for each one of the Nmod models adjusted. These weights are used to create a cumulative distribution func-
tion (cdf) from which a model is randomly selected given a random number with distribution U[0,1]. Then,
an ensemble member from that model is randomly sampled. The process is repeated Nf times, being Nf the
final size of the ensemble forecast.

Note that steps 2–4 simplify when the model combination technique is Bayesian model averaging, as
instead of using weights for resampling from each model, the Nf ensemble members of the hydroclimatic
variable are directly obtained by sampling the posterior pdf (see section 2.2.2 for further details).
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In this framework, several methodological choices have been left open for further testing. For instance,
Regonda et al. [2006] proposed a GCV-based weighting approach to combine forecasts from different mod-
els, but in practice any other score or combination method can be used. Furthermore, the number of mod-
els Nmod to be included can be modified in order to make sure that ensemble forecasts with good
probabilistic properties are obtained. In the next subsection, we describe some configuration choices that
we explore in order to set up a robust seasonal forecasting system.

2.2. Methodological Options
2.2.1. Number of Models
Despite the fact that past studies have demonstrated that multimodel approaches tend to outperform the ‘‘best’’
single model [e.g., Krishnamurti et al., 2000; Rajagopalan et al., 2002; Georgakakos et al., 2004], a careful evaluation
must be carried out, since the relative performance of single and multimodel techniques will be determined by
the verification methods adopted [Hagedorn et al., 2005]. For instance, the best single model might be better in
terms of skill, but very poor in representing the uncertainty of observations. Therefore, we recommend the evalu-
ation of the best single model obtained through GCV criteria and the posterior comparison with several multimo-
del configurations in terms of a set of probabilistic forecast properties (see section 2.3 for more detail).

2.2.2. Multimodel Combination Approach
Previous studies in several fields have demonstrated the utility of combining forecasts from different mod-
els to improve the skill of results [Reid, 1968; Bates and Granger, 1969; Clemen, 1989; Hagedorn et al., 2005].
In this seasonal forecasting system, we include four different techniques that combine predictions of lead-
ing PCs coming from Nmod models: a GCV-based approach [Regonda et al., 2006], Bayesian model averaging
[Raftery et al., 2005], Akaike’s information criteria [Akaike, 1974] and the root mean square error (RMSE).
Note that we do not modify the multimodel selection criteria described above, which is still based on GCV,
but we do change the way we blend the Nmod models included in the forecasting framework.

Generalized Cross Validation (GCV): the weights for each model are computed as 1/GCV, where GCV is
obtained using equation (2). This way, the model with the a smaller GCV value will have more weight rela-
tive to the one with higher GCV. These weights are normalized in order to make them sum 1, and then a
cdf is created, from which one ensemble from one model is randomly selected following step 4 in section
2.1.2. It is important to note that, in this combination approach, the weights assigned to the models are con-
stant for all years according to Regonda et al. [2006]. For the following combination methods (except Bayes-
ian model averaging), weights are computed for each year/model in a cross-validation framework.

Bayesian Model Averaging (BMA): the principle of BMA [Raftery et al., 2005] states that given an ensemble
forecast with Nmod members coming from different models, each ensemble member fi (i51; 2; . . . ;Nmod) is
associated with a conditional PDF hiðyjfiÞ, which can be interpreted as the PDF of the variable y given fi,
given that fi is the best forecast in the ensemble. Thus, the BMA predictive model is:

pðyjf1; . . . ; fNensÞ5
XNens

i51

wihiðyjfiÞ (3)

where the BMA weight wi is the posterior probability of forecast i being the best one, and is based on fore-
cast i’s relative performance in the training period. The weights wis are probabilities, so they are nonnega-

tive and add up to 1, i.e.,
XNmod

i51

wi51. For the implementation of this option, the weights for all models are

estimated by maximum likelihood in cross-validation mode (i.e., using N – 1 years for training) and assum-
ing that the conditional PDFs are approximated by a normal distribution. The likelihood is maximized using
the expectation-maximization (EM) algorithm [Dempster et al., 1977] which is implemented in the package
ensembleBMA (http://cran.r-project.org/web/packages/ensembleBMA/ensembleBMA.pdf) at the public
domain statistical software R (http://www.rproject.org/). Prior information (i.e., initial weights) is provided
for all years using the GCV-based weights previously estimated. Once the Nmod weights have been com-
puted for the year of interest, ensembles of the hydroclimatic variable are obtained by directly sampling
from the posterior pdf using random numbers with distribution U[0,1].

Akaike’s Information Criterion (AIC): the AIC score [Akaike, 1974] is a measure of the relative quality of a sta-
tistical model, given a set of training data. The mathematical formulation is:
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AIC52R22ðllhÞ (4)

where R is the number of parameters and llh is the log likelihood function. Given a particular year, the
AIC score is computed for each model, whose parameters are adjusted using the remaining N – 1 years
of data. Then, the weights for each model are computed as 1/AIC and also normalized to make them
sum 1.

Root Mean Square Error (RMSE): the final weighting approach is based on the root mean square error of the
desired predictand:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN21

i51

ðymod2yobsÞ2

N21

vuuuut
(5)

Note that RMSE is computed using N – 1 points because model parameters are adjusted for each year.
Again, the weights are computed as 1/RMSE for all models and then normalized to make them sum unity.
Once all weights are computed, ensembles coming from the models are combined following the process
previously described.

2.2.3. Lead Time for Seasonal Forecasts
The choice of forecasting lead time has been widely recognized in the literature as a key factor for the pre-
dictability of hydroclimatic variables [e.g., Barnston et al., 1994; Huang et al., 1996; Sharma, 2000; Hwang
et al., 2001; Pagano et al., 2004; Grantz et al., 2005; Regonda et al., 2006; Weisheimer et al., 2009; Ndiaye et al.,
2011], having strong implications on decision making and operational planning. In the case of ensemble
forecasts, the selection of lead time may affect significantly some probabilistic properties such as skill, reli-
ability, or uncertainty. Therefore, we consider that this is a critical modeling choice that should ideally be
tested in any seasonal forecasting system.

2.3. Probabilistic Verification Methods
Probabilistic verification techniques have become a powerful tool for providing a description of forecast
quality in hydrometeorological applications [e.g., Hamill, 2001; Clark and Slater, 2006; Laio and Tamea,
2007; Stensrud and Yussouf, 2007; Pappenberger et al., 2009; Renner et al., 2009; Mendoza et al., 2012]. In
this paper, we use three probabilistic verification methods: the Ranked Probability Skill Score (RPSS),
discrimination diagrams, and QQ plots. The ranked probability skill score represents the level of
improvement of a forecast in comparison to a reference forecast, typically assumed to be the mean cli-
matology. The discrimination diagram is a graphic device that describes the ability of a forecast system
to distinguish the occurrence of different events. Finally, the predictive QQ plot allows to assess the
ability of an ensemble forecast to properly represent the uncertainty of observations. Appendix A pro-
vides a detailed description on the calculation and interpretation of these probabilistic verification
measures.

3. Example Application

3.1. Motivation, Study Area, and Predictand
In the Chilean Andean area between 30o and 34o S (Figure 1), the rivers born at the Andes Cordillera are the
main source of water for human consumption, irrigation, industry, mining, and energy generation. The
northern boundary of this region is characterized by a semiarid climate, while in the southern area the rainy
season is somewhat longer, starting in May and continuing into the beginning of Spring (September–Octo-
ber). Nevertheless, approximately 85% of precipitation in this region falls during June, July, and August,
when frontal systems stemming from the Antarctic storm track reach lower latitudes [Rubio-�Alvarez and
McPhee, 2010]. Precipitation variability is dominated by variations in the southeastern Pacific anticyclone,
and El Ni~no (La Ni~na) episodes are associated with above (below) average rainfall in central Chile during
winter [Montecinos and Aceituno, 2003].

Because of the topographic features and particular meteorological conditions of this zone, most of the sur-
face runoff comes from the water accumulated during winter as snowpack, which melts during the spring/
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summer seasons, and glacier
runoff, which becomes rele-
vant at the end of the ablation
season [Ohlanders et al., 2013].
Hence, in this area, the Andes
cordillera works as a large nat-
ural reservoir that provides
water for approximately 50%
of the total population in Chile.

Therefore, we test our multi-
model analysis framework with
spring/summer flows (Octo-
ber–March) as predictands.
Specifically, we focus our atten-
tion on 10 basins that are stra-
tegically relevant for water
supply and management
(Table 1). The main physio-
graphic characteristics of these
watersheds are relatively small
areas, high slopes, and gener-
ally stationary land used pat-
terns resulting from little to no
human intervention [Cort�es
et al., 2011].

3.2. Data
Monthly streamflow records
for the period April 1963 to
March 2007 are provided by
the Ministry of Public Works’
Direcci�on General de Aguas.
Annual time series of maxi-
mum Snow Water Equivalent
(SWE) during August at three
snow courses are also avail-
able from this agency (Table
1). Finally, large-scale climate
and oceanic variables from
the 2o 3 2o grid of the NCEP-
NCAR reanalysis project [Kal-
nay et al., 1996] are available
from NOAA’s Climate Diag-
nostics Center Website
(http://www.esrl.noaa.gov/).

3.3. Experimental Setup
3.3.1. Streamflow Analysis
With the aim to better understand the spatial and temporal variability of spring/summer flow in the area
of interest, and also to explore the possibility of reducing the dimensionality of the problem (i.e., the
number of predictands), we performed principal component analysis (PCA), which is a widely used tech-
nique for understanding the predominant modes of variability of hydrometeorological fields. If N is the
temporal length of the data, M is the number of sites and [Z] is the N 3 M matrix containing the mean
spring/summer flow data, PCA allows the following decomposition:

Figure 1. Location of the basins of interest.
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½Z�N3M5½Y�N3M½E�
T
M3M (6)

½Y�N3M5½Z�N3M½E�M3M (7)

where the matrix E contains the eigenvectors in each column, and the matrix Y contains principal compo-
nents (PCs) of the data. Note that the matrix Y is the projection of Z on the orthogonal vectors stored in E.
Hence, the PCs are also orthogonal, and commonly only a few of them represent most of the variance in
the original data field.

3.3.2. Climate Diagnostics for Predictor Identification
Although in this zone the streamflow monitoring network is quite good in terms of both extension and spa-
tial location, the number of meteorological stations and quality of the data is generally poor. Therefore, we
need to look for alternative datasets that provide other potential predictors than SWE. Several past studies
have demonstrated the link between streamflow and large-scale atmospheric and oceanic variables [e.g.,
Piechota and Chiew, 1998; Chiew et al., 2003; Souza Filho and Lall, 2003; Grantz et al., 2005; Block and Rajago-
palan, 2007; Rubio-�Alvarez and McPhee, 2010; Cort�es et al., 2011; Urrutia et al., 2011]. Hence, we develop cor-
relation maps between the leading PCs of spring/summer flows and reanalysis variables from the preceding
fall and winter months. The reanalysis variables considered in this case study are geopotential height (GPH),
zonal winds (ZW), meridional wind (MW), surface air temperature (SAT), and precipitable water (PW). The
correlation maps generated in this step were used to identify areas where these atmospheric/oceanic varia-
bles may be highly correlated with the leading PCs. Based on the highest correlation zones, spatial averages
of these variables are extracted for future use as potential predictors.

3.3.3. Multimodel Streamflow Forecasting Algorithm
In this example, the GCV-based ranking is constructed considering the leading PCs of streamflow as predic-
tands. Colinearity among predictors was avoided by choosing a linear correlation threshold of 0.7 (step 1 in
section 2.1.1), based on preliminary experiments aimed to reduce the standard errors in predictions. Addition-
ally, the multimodel forecasting algorithm described in section 2.1.2 is adapted for this application as follows:

1. Principal component analysis is performed for mean October–March flows at all M sites, using the N – 1
remaining years. Only the leading PCs are selected for prediction.

2. Identify the best Nmod sets of predictors from the GCV-based ranking.

3. Fit local polynomial models for the leading PCs, and use them to generate an ensemble of predicted lead-
ing PCs following step 2 in section 2.1.2. The nonleading PCs are randomly selected (i.e., bootstrapped)
from historic values in order to obtain a complete ensemble forecast of all PCs.

4. Repeat step 3 for all Nmod combinations of predictors in order to obtain a matrix with ensemble predic-
tions of PCs with size ðNmod � NensÞ3M.

Table 1. Station Data Used in This Studya

Station Name Lat S Lon W Elevation (m.a.s.l.) Area (km2) Mean Annual Value Units

Streamflow stations
Hurtado en San Agust�ın 30.46 70.54 2035 656 2.77 m3=s
Mostazal en Cuestecita 30.80 70.60 1250 353 1.74 m3=s
Tascadero en Desembocadura 31.01 70.66 1370 238 1.45 m3=s
Illapel en Las Burras 31.51 70.81 1079 600 2.73 m3=s
Choapa en Cuncum�en 31.97 70.59 1200 1172 10.04 m3=s
Putaendo en Resguardo Los Patos 32.50 70.58 1218 927 8.40 m3=s
Aconcagua en Chacabuquito 32.85 70.51 950 2400 34.14 m3=s
Array�an en La Montosa 33.33 70.46 970 219 1.65 m3=s
Mapocho en Los Almendros 33.37 70.45 990 620 6.46 m3=s
Maipo en El Manzano 33.58 70.67 850 4968 115.63 m3=s

Snow Stations
Cerro Vega Negra 30.90 70.52 3600 - 412.7 mm
Portillo 32.84 70.11 3000 - 586.2 mm
Laguna Negra 33.67 70.11 2780 - 517.4 mm

aThe mean values for streamflow correspond to the period April 1963 to March 2007, while the mean value for Snow Water Equiva-
lent (SWE) is the average computed from the annual time series of maximum SWE in August for the same period.
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5. Combine forecasts coming
from different models, obtain-
ing a final matrix with ensem-
ble predictions of PCs with size
Nf 3M, being Nf the final size of
the ensemble.

6. Predictions are backtrans-
formed to the original stream-
flow space using equation (6).
After this step, ensemble sea-
sonal streamflow forecasts are
obtained at all M locations.

In this algorithm, we use
Nens5Nf 5100. Note that this
forecasting approach differs
from Regonda et al. [2006] and
Bracken et al. [2010] in that
ensembles from different mod-
els here are combined before
going back to the original
streamflow space. We decided
to follow this procedure after
performing some experiments
(not shown here) that demon-
strated some improvements
in skill and ensemble spread
when compared with the mul-
timodel combination frame-
work proposed in those works.

3.3.4. Experiments
In order to provide a careful analysis of the methodological choices listed in section 2.2, we perform the fol-
lowing experiments:

Number of models: With the aim to fairly compare the single best model with other multimodel configura-
tions, we perform a detailed probabilistic and deterministic verification on ensemble streamflow forecasts
issued on September 1, including SWE among the set of predictors. In addition, for this first analysis we
decide to keep the GCV-based model combination technique.

Model combination approach: Given a number of Nmod models, we compare the model combination techni-
ques detailed in section 2.2.2. In this comparison, all streamflow forecasts are issued on September 1 and
include SWE in the set of predictors.

Lead time: In Chile, seasonal streamflow forecasts must be provided to water managers at the end of the
antecedent snow accumulation season (September 1) in order to supply a reasonable time window for
operational planning. In this example, we evaluate the skill of seasonal streamflow forecasts initialized from
three different times: September 1 (1 month lead time forecast), August 1 (2 month lead time forecast), and
July 1 (3 month lead time forecast). Additionally, we assess the impact of Snow Water Equivalent (SWE) data
availability at the end of the month of maximum accumulation (August) on seasonal streamflow forecasts
issued on September 1.

4. Results

4.1. Streamflow Characteristics
The results obtained from principal component analysis performed over spring/summer flows are displayed
in Figure 2. It is possible to see that the first mode of variability captures 88% of the total variance contained

Figure 2. Percentage variance explained by the 10 principal components (PCs) (top), time
series of the first PC (middle), and eigenloadings of the first PC at the 10 streamflow loca-
tions (bottom).
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in the data, a very similar result to what Regonda et al. [2006] reported for the Gunnison River Basin, USA.
Therefore, we deduce that the first principal component may be used as a representative index of seasonal
spring/summer flows in the basins of interest, and the rest of the modes can be treated as ‘‘noise.’’ This
powerful assumption allows us to reduce substantially the high dimensionality of the original problem, as
we can focus on developing statistical models to predict only one variable, instead of seasonal flows at
each station location.

The middle panel in Figure 2 shows the time series of the first principal component of mean spring/summer
streamflow data, whose temporal evolution has the opposite sign in comparison to the observed seasonal
flows in all the basins. It is important to note that the lag-1 year autocorrelation for this variable is equal to
20.143 over the period analyzed, indicating a weak year-to-year dependence (i.e., no persistence). Finally,
the bottom panel displays the values of the first column in the matrix E (i.e., the eigenloadings for the first
mode of variability). The similarity among these values reaffirms that the hydroclimatic regime in all the
basins is practically the same.

4.2. Selection of Predictors
Correlation maps among the first PC of mean spring/summer flows and average values of large-scale atmos-
pheric/oceanic variables for the period May–August are presented in Figure 3. Although these maps were
also generated using other time windows during April–September (fall/winter), we found the largest corre-
lations occurring during May–August for the five variables in Figure 3. One may also note that while in
some maps (geopotential height, zonal winds, and meridional winds at 1000 mb), there are well-defined
areas with both negative and positive correlation, for the cases of surface air temperature at 1000 mb and
precipitable water there are only high negative correlation zones.

From the correlation maps, one can note that the first PC of spring/summer flows is positively correlated
with geopotential height (1000 mb) in the middle of the South Pacific Ocean, while it is negatively corre-
lated with the same variable close to the Drake passage. This indicates that a decrease in geopotential
height over the mid South Pacific and an increase of the same variable over the Drake passage are associ-
ated with an increase in spring/summer flows in the Chilean Central Andes (recall that signs of PC1 and
actual spring/summer flows are opposite). From Figure 3b, it is inferred that increases in zonal winds over
the Pacific Equator and the middle South Pacific will produce increases in spring/summer flows, while a
decay in the same variable over Austral Chile will produce the opposite effect. Analysis of meridional winds
(Figure 3c) reveals that a decrease in their intensity over the Equator and an increase over Central/South
Chile has associated a general decrease in spring/summer flows. The ENSO pattern is reflected in the corre-
lation map with surface air temperature (Figure 3d), which shows that a decrease in this variable will pro-
duce a decay in seasonal spring/summer flows. Finally, a negative correlation between the first mode of
variability and precipitable water over Central Chile (Figure 3e) simply reflects the link between fall/winter
precipitation and spring/summer runoff.

The areas with maximum (positive or negative) correlation between the first mode of mean spring/summer
flows are summarized in Table 2. The zones defined in this table were used to extract time series with pre-
dictors, computed as the difference of mean values among positive and negative correlation areas. For
instance, (GPH-P)-(GPH-N) denote one predictor, computed as the difference between area-averaged geo-
potential height values over the positively (GPH-P) and the negatively (GPH-N) correlation regions indicated
in Table 2. Other large-scale variables preliminarily included in the analysis such as sea level pressure and
sea surface temperature were finally removed due to very high spatial correlation with geopotential height
and surface air temperature, respectively. Finally, we also included among the set of potential predictors
the annual time series with maximum SWE recorded during August, averaged over three snow courses
located in the Central Andes.

4.3. Assessment of Methodological Choices
The ranking of models considered in this example application is presented in Table 3. For skill analysis, RPSS
is computed for each year, but only the median from all years is reported in the remaining of this paper.

4.3.1. Single Best Model Versus Multimodel Framework
In this section, we examine the impacts of the number of models on the quality of seasonal ensemble fore-
casts. In order to illustrate such effects in a controlled way, we focus our attention on the GCV-based model
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combination technique. According to the skill results displayed in Figure 4a, scores do not improve further
if more than six models are included in the forecasting framework. If we now compare the ability of ensem-
ble forecasts to distinguish the occurrence of dry (below the 33% seasonal streamflow percentile), normal

Figure 3. Correlation maps between the first PC of spring/summer flows and May–August large-scale climate variables: (a) geopotential height (1000 mbar), (b) zonal wind (1000 mb),
(c) meridional wind (1000 mbar), (d) air temperature (1000 mbar), and (e) precipitable water. Maps were generated from NOAA’s Climate Diagnostic Center Website, and the star indi-
cates the location of the study basins.
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(between the 33% and the 66% percentiles) and wet years (above the 66% seasonal streamflow percentile),
we do not find sharp differences among predictive pdf’s for dry and normal years, regardless of the number
of models included (Figure 5). On the other hand, discrimination between wet years and the rest is very
clear, especially when Nmod � 6. From the QQ plots presented in Figure 6, it is inferred that all multimodel
configurations preserve the ability to correctly represent the uncertainty in observations. Finally, probabilis-
tic verification through reliability diagrams revealed that, as expected, the sample size is not reliable (i.e.,
only 44 water years x 10 stations 5 440 site-years for verification) regardless of the number of models con-
sidered; therefore, these results do not provide relevant information to evaluate multimodel configurations
and are not shown here.

We also compare bias and linear correlation coefficients including observations and ensemble forecast
medians at all locations. For this analysis, we standardize the results using the total basin areas, transform-
ing streamflow values from m3/s to mm/d. The scatter plots presented in Figure 7 prove that good correla-
tion and bias results can be obtained by combining only three models. In other words, the inclusion of
additional models will not improve forecasting results substantially.

From the probabilistic verification and scatter plots described above, it can be summarized that for the
example examined here: (1) the inclusion of more than six models does not provide better skill and discrim-
ination results, (2) the framework provides good uncertainty representation regardless of the number of
models, and (3) only three models are needed to obtain adequate bias and correlation between ensemble
forecast medians and observations. Additionally, we also noted that the spread in forecast ensembles
decreased if more models were included, especially for very wet years (e.g., 1987). Over this region, El Ni~no
episodes explain an important part of long-term variability in rainfall and snow accumulation [Masiokas
et al., 2006], and many of the wettest years observed during the last 40 years correspond to positive ENSO
oscillations. With this in mind, it is important for any seasonal streamflow forecasting framework imple-
mented for this area to accurately represent variability observed during the strong positive ENSO episodes.

From the previous analysis, we conclude that, for this particular application, the minimum number of best
models that ensures a good performance for the verification measures included in this framework is six.

Table 2. Potential Predictors and Their Regions of Negative and Positive Correlation

Index Climate Variable Lead Time Season Negative Region (N) Positive Region (P)

GPH Geopotential height 1 Sep May–Aug 262, 255N:274,286E 222,-16N:217,228E
ZW1 Zonal winds 1 Sep May–Aug 218.5, 214.5N:210,219E 247,-44.2N:279.5,282.6E
ZW2 Zonal winds 1 Sep May–Aug 22,2N:192,208E 247,-44.2N:279.5,282.6E
MW Meridional winds 1 Sep May–Aug 25, 21N:152.5,156.5E 237,-34.5N:286.5,289.5E
SAT Surface air temperature 1 Sep May–Aug 24,2N:220,249E
PW Precipitable water 1 Sep May–Aug 230.5, 227N:290,293E

Table 3. Ranking of Models for September 1a

Ranking No. of Predictors (GPH-P)-(GPH-N) (MW-P)-(MW-N) (ZW1-P)-(ZW1-N) (ZW2-P)-(ZW2-N) SAT-N PW-N SWE GCV

1 2 0 1 0 0 0 0 1 0.931
2 3 0 0 1 0 0 1 1 0.966
3 3 1 0 0 0 0 1 1 0.971
4 4 1 1 0 0 0 1 1 1.021
5 3 0 0 0 1 0 1 1 1.038
6 4 0 0 1 0 1 1 1 1.048
7 3 0 1 0 0 0 1 1 1.052
8 2 0 0 1 0 0 0 1 1.068
9 2 0 0 0 0 0 1 1 1.078
10 3 0 0 1 0 1 0 1 1.101
11 3 1 1 0 0 0 0 1 1.152
12 2 0 0 0 1 0 0 1 1.172

aThe letter P (N) indicates that the variable of interest has been spatially averaged over the positively (negatively) correlated region,
following the notation introduced in Table 2. Presence and absence of predictors are indicated by ‘‘1’’ and ‘‘0,’’ respectively.
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4.3.2. Model Combination Approach
Skill score results as a function of the number of models included (using the GCV-based ranking described in
section 2.1.1) in the multimodel forecasting framework, using four different model combination approaches,
are presented in Figure 4. Ranked Probability Skill Scores are displayed for all basins, representing the north-
ern and southern basins with colored circles and triangles, respectively. The black continuous lines represent
a local polynomial smoother that helps to visualize how many models are required to stabilize RPSS values.
One can infer that very similar skill values and skill spread across basins are obtained when GCV, AIC, and
RMSE are used as weighting criteria. Additionally, better skill scores are obtained when BMA is used for com-
bining seven or less local polynomial models. No significant gain in skill is obtained if more than 6–7 models
are included. Furthermore, no relevant difference in skill between northern and southern basins was found.

Is it appropriate to limit the evaluation of methodological choices (in this case, model combination
approach) to a single criterion? In the past subsection, we could see that the ‘‘best’’ number of models varies

Figure 4. Ranked Probability Skill Score (RPSS) as a function of the number of models included in the multimodel forecasting framework
for different model combination approaches: (a) Generalized Cross Validation (GCV) score, (b) Bayesian Model Averaging (BMA), (c) Akaike’s
Information Criterion (AIC), and (d) Root Mean Square Error (RMSE). The skill score reported for each basin corresponds to the median from
all years. All forecasts are issued on September 1 and include SWE in the set of predictors.
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depending on the verification method, and the selection of multimodel combination technique also fol-
lows this rule. Indeed, when comparing the time series with cross-validated ensemble seasonal stream-
flow forecasts at a specific location and number of models Nmod 5 6 (Figure 8), we found that the gain
in skill obtained with BMA does not necessarily bring a better match between ensemble median and
observations (e.g., years 1987 and 1997). Even more, the ability of BMA-based forecasts to discriminate
among dry, normal, and wet years is not superior to that obtained using the GCV-weighting approach,
for which better defined and sharper pdf’s are obtained (see Figure 9 for a comparison among the four
model blending techniques). These results reaffirm the idea that finding the ‘‘best’’ methodological
choice is not a trivial problem, as it will depend on the forecasts properties sought by modelers and
decision makers.

Figure 5. Discrimination diagrams for leave-one-out cross validation spring/summer forecasts generated with different multimodel configurations. The red (circles), gray (diamonds),
and blue (triangles) lines represent the pdf of forecasts probabilities for dry years (below the 33% observed quantile), normal years (between the 33% and 66% observed quantiles), and
wet years (above the 66% observed quantile), respectively.
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4.3.3. Lead Time
Ranked probability skill scores as a function of the number of models for all basins are presented in Figure
10 for the following cases: (a) forecasts issued on September 1, including SWE in the predictor set, (b) fore-
casts issued in September 1, excluding SWE, (c) forecasts issued on August 1, and (d) forecasts issued on
July 1. GCV-based weighting approach was used to combine models in all cases. From these results, it is
clear that SWE contributes considerably to obtain skillful predictions at all station locations, independently

Figure 6. QQ plots for leave-one-out cross validation spring/summer forecasts generated with different numbers of models.
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of the number of models included in the multimodel framework. However, even if SWE data is not available
due September 1, skill is still positive in most of the basins (Figure 10b). For the generation of seasonal fore-
casts on August 1 and July 1, because of the lack of antecedent snowpack information only large-scale vari-
ables are included as averages over May–July and May–June, respectively (Figures 10c and 10d). The low
skill obtained in both cases demonstrate that hydrometeorological information associated with July and
August, when still considerable precipitation amounts may fall over the Central Andes Cordillera, cannot be

Figure 7. Scatter plots between the 50% seasonal streamflow predictions (ensemble median) issued on September 1 and observed spring/summer flows at all locations obtained with
different multimodel configurations.
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Figure 8. Leave-one-out cross validation ensemble spring/summer forecasts for Array�an en La Montosa issued on September 1 for differ-
ent weighting approaches: (a) Generalized Cross Validation (GCV) score, (b) Bayesian Model Averaging (BMA), (c) Akaike’s Information Cri-
teria (AIC), and (d) Root Mean Square Error (RMSE). The best six models from Table 3 are combined in all cases.
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disregarded in order to get good streamflow predictions during the melting season. In view of this,
and although positive skill was obtained at some locations, we infer that the system tested here has
limited predictability on July 1 and August 1, and therefore the use of ensemble forecasts issued for
these lead times should be made with caution. Nevertheless, additional sources of information (i.e.,
predictors) could be explored in the future with the aim to improve streamflow predictability in this
region.

4.4. Performance in Dry Years
In this example application area, evidence of a positive trend in temperature [Carrasco et al., 2005; Fal-
vey and Garreaud, 2009] and negative trends in precipitation [Quintana and Aceituno, 2012] suggest
that the frequency and intensity of drought events may increase during the next years, highlighting
the importance of getting skillful flow predictions under very dry conditions. Therefore, we decide to
test the multimodel configuration found via objective criteria for those years where the observed val-
ues are less than the observed 25th percentile, which was computed separately for each station. Fig-
ure 11 contains the time series with ensemble spring/summer streamflow forecasts issued on
September 1 including SWE information, six models, and GCV-based multimodel combination. RPSS
values reported here are the median from only those years included in each panel (dry years). The
inspection of these plots reveals that performance in terms of skill is still good, although it decreases

Figure 9. Discrimination diagrams for leave-one-out cross validation spring/summer forecasts generated for different model combination
approaches: (a) Generalized Cross Validation (GCV) score, (b) Bayesian Model Averaging (BMA), (c) Akaike’s Information Criterion (AIC), and
(d) Root Mean Square Error (RMSE). The red (circles), gray (diamonds), and blue (triangles) lines represent the pdf of forecasts probabilities
for dry years (below the 33% observed quantile), normal years (between the 33% and 66% observed quantiles), and wet years (above the
66% observed quantile), respectively.
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when compared to the entire time series (1963–2006), spanning from 0.265 (Mostazal en Cuestecita)
to 0.678 (Aconcagua en Chacabuquito).

5. Discussion and Conclusions

Over the last decade, several studies have reported the benefits of using multimodel methods in hydrocli-
mate forecasting applications. However, a common deficiency that can be found in the literature is the lack
of detailed evaluation of key methodological choices involved in the development of multimodel seasonal
forecasting systems. Therefore, we propose a framework for the assessment of relevant decisions via objec-
tive criteria, focusing on: (i) number of models, (ii) multimodel combination approach, and (iii) lead time for
prediction. Our methodology is based on three elements: a multimodel ensemble forecasting algorithm
based on nonparametric regression, a set of options for the modeling decisions previously listed, and a suite
of probabilistic verification techniques for the evaluation of ensemble forecasts. We also provide an exam-
ple application in order to illustrate the utility of our methodology. The case study presented here is aimed

Figure 10. Ranked Probability Skill Score (RPSS) as a function of the number of models included in the multimodel forecasting framework
for different cases: (a) forecast issued on September 1, with SWE, (b) forecast issued on September 1, no SWE, (c) forecast issued on August
1, no SWE and (d) forecast issued on July 1, no SWE.
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to generate seasonal forecasts of spring/summer streamflow at 10 basins located in the Chilean semiarid
Andean region between 30o and 34o S.

The comparison of the best single model with other multimodel configurations (i.e., number of models)
showed that while the best single model is enough for streamflow uncertainty representation, three models
are needed to obtain a good correlation and bias among the median of ensemble seasonal forecasts and
observations, and six models assure a good skill and a sharper discrimination among dry, normal, and wet
years. Regarding the choice of the multimodel combination method, it was obtained that although Bayesian
model averaging provided better skill scores than the rest of the methods, especially when six or less mod-
els were included, a worse performance was obtained in terms of discrimination when compared with GCV-
based model weighting technique. These results demonstrate that the two multimodel decisions included
in this framework (number of models and multimodel combination) are strongly dependent on the forecast
evaluation criteria.

Figure 11. Leave-one-out cross validated ensemble spring/summer forecasts at all sites for very dry years (i.e., observed spring/summer flow has a probability of exceedance larger than
75%). Forecasts are issued on September 1 using the best six models, GCV-weighting approach, and including SWE information.
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A comparison of different forecast lead times revealed that the availability of SWE data is critical to
correctly reproduce interannual streamflow variability and extremes, even in a region with a very
limited monitoring network. Furthermore, hydroclimatological information contained in large-scale
predictors for July and August is critical to obtain skillful forecasts for the melting season, as consid-
erable precipitation amounts can still fall during these months. Hence, from the objective assess-
ment of methodological choices, it was obtained that, in the example application examined here,
the use of six models with GCV-based model weighting and lead time of 1 month can provide sea-
sonal predictions with good probabilistic properties at all sites. The multimodel seasonal forecasting
configuration obtained also proved its usefulness for providing skillful predictions under very dry
conditions.

It is noteworthy that since the proposed methodology is based on data-driven models, multidecade time
series are ideally required in order to develop robust statistical relationships. Moreover, despite the exten-
sion of the datasets used in our example application (44 years) was long enough to construct forecasts with
good probabilistic properties, longer datasets—and therefore longer training periods—would certainly help
to build more reliable forecasting systems.

Although limited number of forecasting options have been tested in this paper for each methodological
choice, the forecaster could naturally explore other alternatives (e.g., different model-weighting techniques,
additional lead time forecasts, etc.), keeping in mind that the choice of verification criteria may impact
decision-making. Furthermore, ensemble forecasts obtained using a framework like this could be wisely
combined with predictions from existing deterministic models. One option could be the ‘‘enlargement’’ of
the best multimodel ensemble found by adding the best deterministic forecast as a new individual member
[Rodwell, 2006]. The weight of the deterministic forecast in the new ensemble may be computed using a
cross-validation strategy, i.e., defining a training period to calibrate the weights via a statistical post process-
ing technique (e.g., Bayesian model averaging), and then apply these weights for the year of interest. Alter-
natively, the spread of the best multimodel ensemble can be used to derive a probability distribution
around the best deterministic forecast. For instance, Blanc [2009] found that a simple statistical model can
be used to predict the uncertainty of a deterministic 2 m temperature forecast, using the spread of ensem-
ble temperature forecasts as the only predictor.

The results obtained in this study demonstrate the impact that decision-making may have on the quality of
hydroclimatic ensemble forecasts. Consequently, the selection of one or more probabilistic verification
methods should be properly justified, because the ‘‘best’’ configuration option is closely tied to the evalua-
tion metrics used. In view of this, we strongly encourage forecasters to perform a careful analysis of the con-
figuration choices adopted in order to develop more robust forecasting systems.

Appendix A: Probabilistic Verification Methods

A1. Ranked Probability Skill Score

The Ranked Probability Skill Score (RPSS) measures the accuracy of multicategory probability forecasts
relative to a climatological forecast. If k is the number of mutually exclusive categories for seasonal flow,
p5ðp1; p2; . . . ; pkÞ is the probabilistic forecast (obtained as the number of ensemble members within
each category divided by the ensemble size) and d5ðd1; d2; . . . ; dkÞ is the observation vector, such that
dj equals 1 if the observation falls in the j-th category and 0 otherwise, the Ranked Probability Score is
defined as:

RPSf 5
Xk

i51

Xi

j51

pj2
Xi

j51

dj

 !2" #
(A1)

In this study, we use k 5 3, with the categories defined by the tercile boundaries at each observation loca-
tion (i.e., 33% and 66% percentiles obtained from the historical record). The climatological forecast for each
category is 1/3. If one wants to compare with other sites or data sets, it is recommended to use the Ranked
Probability Skill Score (RPSS):
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RPSS512
RPSf

RPSclim
(A2)

RPSS values range from positive 1 (perfect forecast) to negative infinity. Negative RPSS values indicate that
the forecast is less skillful than mean climatology, positive values indicate the opposite, and null values indi-
cate that forecasts are equally skillful when compared with climatology.

A2. Discrimination Diagram

The discrimination diagram [Wilks, 2011] shows the ability of the forecast system to clearly distinguish situa-
tions leading to the occurrence of an event of interest from those leading to the nonoccurrence of the
event. Thus, given a polychotomous predictand (J 5 3), the discrimination diagram consists on the superim-
posed plots of the three conditional distributions pðyijojÞ; j51; 2; 3 as functions of forecast probabilities yi. A
perfect discrimination between the three events will be given by no overlap between their likelihoods.
Finally, a good discrimination will depend on the separation of means of conditional distributions, and on
the variance within conditional distributions.

A3. Predictive QQ Plot

In order to assess how well ensemble forecasts represent the uncertainty in observations, we use the pre-
dictive QQ plot [Laio and Tamea, 2007; Thyer et al., 2009]. Let yt be the variable representing runoff at an
instant t, Ft the cumulative distribution function for that variable, and ~y t the corresponding observation
[Thyer et al., 2009]. A probabilistic forecast of yt will be correct if the observed probability density function pt

ð~y tÞ coincides with the true distribution of yt, ftðytÞ. Even if ftðytÞ is not known (the distribution changes
with t and there is only one observed value available), it is possible to construct a simple test of hypothesis
[Laio and Tamea, 2007]:

H0 : ptðytÞ5ftð~y tÞ (A3)

This test is based on the evaluation of the cumulative distribution function (built from the set of forecasts at
every time step) for the observation, i.e., find zt5Ptð~y tÞ [Laio and Tamea, 2007]. Under the hypothesis H0,
the quantile found above should be, like Ftð~y tÞ, a realization from a uniform distribution on U[0,1] [Thyer
et al., 2009]. Once zt quantiles are computed, these values must be ranked from lowest to highest, getting
the positions Rt of these quantiles within that system. Finally, the predictive QQ plot is obtained by plotting
the values of zt in terms of Rt=N (theoretical quantile U[0,1]) where N is the number of events or time steps
analyzed. If the curve obtained matches the 1:1 line, the observation is equally likely to be any ensemble
member. The reader is referred to Thyer et al. [2009] for further details in the interpretation of QQ plots.
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