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ABSTRACT

Some time ago, the continuous ranked probability score (CRPS) was proposed as a new verification tool for
(probabilistic) forecast systems. Its focus is on the entire permissible range of a certain (weather) parameter.
The CRPS can be seen as a ranked probability score with an infinite number of classes, each of zero width.
Alternatively, it can be interpreted as the integral of the Brier score over all possible threshold values for the
parameter under consideration. For a deterministic forecast system the CRPS reduces to the mean absolute error.

In this paper it is shown that for an ensemble prediction system the CRPS can be decomposed into a reliability
part and a resolution/uncertainty part, in a way that is similar to the decomposition of the Brier score. The
reliability part of the CRPS is closely connected to the rank histogram of the ensemble, while the resolution/
uncertainty part can be related to the average spread within the ensemble and the behavior of its outliers. The
usefulness of such a decomposition is illustrated for the ensemble prediction system running at the European
Centre for Medium-Range Weather Forecasts. The evaluation of the CRPS and its decomposition proposed in
this paper can be extended to systems issuing continuous probability forecasts, by realizing that these can be
interpreted as the limit of ensemble forecasts with an infinite number of members.

1. Introduction

Appropriate verification tools are essential in under-
standing the abilities and weaknesses of (probabilistic)
forecast systems.

Verification is often focused on specific (weather)
events. Such a binary event either occurs, or does not
occur, and is forecast to occur or not to occur, with
certain probabilities p and 1 2 p respectively. Examples
of such events are more than 10-mm precipitation in 24
h or an anomaly (from a climatological mean) of more
than 50 m of the geopotential at 500 hPa. Several well-
established tools exist that test how accurately the fore-
cast system is able to describe the occurrence and non-
occurrence of the event under consideration, that is, how
good the agreement is between the forecasted proba-
bilities and observed states. Examples of scores, which
are commonly used by operational centers such as the
European Centre for Medium-Range Weather Forecasts
(ECMWF) and the National Centers for Environmental
Prediction are Brier scores (Brier 1950), the Relative
Operating Characteristics (ROC) curves (Mason 1982;
Stanski et al. 1989), and economic cost–loss analyses
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(see, e.g., Katz and Murphy 1997; or Richardson 1998,
2000).

The (half ) Brier score is one of the oldest verification
tools in use. From its numerical value alone the quality
of a forecast system is difficult to assess. An attractive
property of the Brier score, however, is that it can be
decomposed into a reliability, a resolution, and an un-
certainty part (Murphy 1973). The reliability tests
whether the forecast system has the correct statistical
properties. It can be presented in a graphical way by
the so-called reliability diagram. The uncertainty is the
Brier score one would obtain when only the climato-
logical frequency for the occurrence of the event is
available. The resolution shows the impact obtained by
issuing case-dependent probability forecasts (which do
not always equal the probability based on climatology).
Therefore, the decomposition of the Brier score gives
a detailed insight into the performance of the forecast
system with respect to the event under consideration.

Binary events only highlight one aspect of the fore-
cast. Such a single aspect may be quite relevant. For
instance, certain extreme events can lead to economic
losses, which could be avoided with the help of an ac-
curate forecast system. This kind of issue is addresses
by the ROC curve and economic cost–loss analyses.
However, it may be desirable to obtain a broader overall
view of performance. Several tools in this direction ex-
ist. It should however be mentioned that the term overall
is often still restricted to the behavior of one forecast
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parameter only, such as precipitation or the geopotential
at 500 hPa.

An example is the Talagrand diagram (Talagrand and
Vautard 1997), also known as the rank histogram (Ham-
ill and Collucci 1997) or the binned probability ensem-
ble (Anderson 1996). This tool is tailor made for an
ensemble system, that is, in case the probability density
function (PDF) is represented by an ensemble of fore-
casts. Given such an ensemble, its N members divide
the permissible range of the parameter of interest into
N 1 1 bins. The verifying analysis will be found to be
in one of these bins. If all members are assumed to be
equally weighted and representative, it is expected that,
on average, each bin should be equally populated by
the verifying analyses. Deviations from such a flat rank
histogram indicate a violation of the above-made as-
sumptions. For instance, a too high frequency of outliers
is an indication that the average spread within the en-
semble system is too low.

Another example is the ranked probability score
(RPS) (see Epstein 1969; Murphy 1969, 1971). It is a
generalization of the (half ) Brier score. Instead of two
options (event occurs or does not occur), the range of
the parameter of interest is divided into more classes.
In addition, the RPS contains a sense of distance of how
far the forecast was found from reality. For a deter-
ministic forecast for instance, the RPS is proportional
to the number of classes by which the forecast missed
the verifying analysis. Although the choice and number
of classes may be prescribed by the specific application,
the exact value of RPS will depend on this choice. It is
possible to take the limit of an infinite number of classes,
each with zero width. This leads to the concept of the
continuous ranked probability score (CRPS) (Brown
1974; Matheson and Winkler 1976; Unger 1985; Bout-
tier 1994). This CRPS has several appealing properties.
First of all, it is sensitive to the entire permissible range
of the parameter of interest. Second, its definition does
not require, such as for the RPS, the introduction of a
number of predefined classes, on which results may de-
pend. In addition, it can be interpreted as an integral
over all possible Brier scores. Finally, for a deterministic
forecast, the CRPS is equal to the mean absolute error
(MAE) and, therefore, has a clear interpretation.

Despite these advantages, the CRPS is a single quan-
tity, from which it is difficult to disentangle the detailed
behavior of a forecast system. It would be desirable to
be able to decompose the CRPS like it is possible for
the Brier score. In this paper it is shown how for an
ensemble prediction system this indeed can be achieved.
In a similar way to the Brier score, the CRPS is shown
to be decomposable into a reliability part, an uncertainty
part, and a resolution part. The reliability part tests
whether for each bin i on average the verifying analysis
was found to be with a fraction i/N below this bin. It
has a close relation to the rank histogram. The uncer-
tainty part is equal to the CRPS one would receive, in
case only a PDF-based on climatology would be avail-

able. The resolution finally expresses the improvement
gained by issuing probability forecasts that are case de-
pendent. It is shown that the resolution is sensitive to
the average ensemble spread and the frequency and
magnitude of the outliers. Finally, it is illustrated how
the various contributions to the CRPS can be presented
in a graphical way, like the reliability diagram of the
Brier score.

The paper is organized as follows. In section 2 the
CRPS is defined, and some characteristics are men-
tioned. The uncertainty part of the CRPS is highlighted
in section 3. In section 4, the full decomposition for an
ensemble system is derived. As an example, the decom-
position of the CRPS for total precipitation in the en-
semble prediction system (EPS) running at ECMWF is
presented in section 5. A summary and some concluding
remarks are made in section 6.

2. The continuous ranked probability score

Let the parameter of interest be denoted by x. For
instance, x could be the 2-m temperature or 10-m wind
speed. Suppose that the PDF forecast by an ensemble
system is given by r(x) and that xa is the value that
actually occurred. Then the continuous ranked proba-
bility score (Brown 1974; Matheson and Winkler 1976;
Unger 1985; Bouttier 1994), expressing some kind of
distance between the probabilistic forecast r and truth
xa, is defined as

`

2CRPS 5 CRPS(P, x ) 5 [P(x) 2 P (x)] dx. (1)a E a

2`

Here, P and Pa are cumulative distributions:

x

P(x) 5 r(y) dy and (2)E
2`

P (x) 5 H(x 2 x ), (3)a a

where

0 for x , 0
H(x) 5 (4)51 for x $ 0

is the well-known Heaviside function. So, P(x) is the
forecasted probability that xa will be smaller than x.
Obviously, for any cumulative distribution, P(x) ∈
[0, 1], P(2`) 5 0, and P(`) 5 1. This is also true for
parameters that are only defined on a subdomain of R.
In that case r(x) 5 0 and P constant outside the domain
of definition. The CRPS measures the difference be-
tween the predicted and occurred cumulative distribu-
tions. Its minimal value of zero is only achieved for P
5 Pa, that is, in the case of a perfect deterministic
forecast. Note that the CRPS has the dimension of the
parameter x (which enters via the integration over dx).

In practice the CRPS is averaged over an area and a
number of cases:
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k kCRPS 5 w CRPS(P , x ), (5)O k a
k

where k labels the considered grid points and cases. The
weights wk may depend on k (for instance proportional
to the cosine of latitude).

The CRPS can be seen as the limit of a ranked prob-
ability score with an infinite number of classes, each
with zero width.

There is a direct relation between the CRPS and the
Brier score (Brier 1950). The Brier score (BS) is a ver-
ification tool for the prediction of the occurrence of a
specific event. Usually, such an event is characterized
by a threshold value xt. The event is said to have hap-
pened (O 5 1) if xa # xt and not happened (O 5 0) if
xa . xt. If p is the forecast probability that the event
will occur, the Brier score is defined as

k k 2BS(x ) 5 w (p 2 O ) . (6)Ot k
k

It is not difficult to see that pk 5 Pk(xt) and Ok 5 (xt)kPa

and therefore
`

CRPS 5 BS(x ) dx . (7)E t t

2`

For a deterministic forecast, that is, x 5 xd without any
specified uncertainty, P(x) 5 H(x 2 xd). In that case,
the integrand of Eq. (1) is either zero or one. The non-
zero contributions are found in the region where P(x)
and Pa(x) differ, which is the interval between xd and
xa. As a result,

k kCRPS 5 w |x 2 x |, (8)O k d a
k

which is the MAE.

3. The uncertainty of the CRPS

For an ensemble prediction system, the forecast PDF
will in general be case dependent. If instead, only cli-
matological information about the behavior of the quan-
tity x is available, the same probability forecast Pk 5
Pcli will be made for each situation. In that case,

`

k 2CRPS 5 w [P (x) 2 H(x 2 x )] dxO k E cli a
k 2`

`

2 k5 w P (x) 2 2P (x) w H(x 2 x )O OE k cli cli k a[ k k2`

2 k1 w H (x 2 x ) dx.O k a ]k

Note that Sk wk 5 1 by definition, and H 2 5 H. If one
defines

kP (x) 5 w H(x 2 x ), (9)Osam k a
k

the CRPS can be rewritten as

`

2CRPS 5 [P (x) 2 2P (x)P (x)E cli cli sam

2`

1 P (x)] dxsam

5 R 1 U, (10)

where

`

2R 5 [P (x) 2 P (x)] dx, and (11)E cli sam

2`

`

U 5 P (x)[1 2 P (x)] dx. (12)E sam sam

2`

The distribution Psam is the cumulative distribution based
on the sample used in the verification. If, for instance,
all M weights would be equal, so wk 5 1/M, then Psam(x)
is just the fraction of cases in which the verifying anal-
ysis was found to be smaller than x. The value of Psam(x)
also equals the sample frequency of occurrence o(xt)
for the Brier score with threshold xt 5 x.

From Eqs. (10)–(12) it is seen that the CRPS based
on climatology is minimal when Pcli is equal to Psam.
The impact on the CRPS due to a deviation from the
sample statistics is expressed by Eq. (11).

The lowest possible value of a CRPS based on cli-
matology is given by Eq. (12). It is solely determined
by the climatology within the sample and does not de-
pend on the performance of the forecast model. Ex-
pression (12) is equal to the integral of the uncertainty
U (Murphy 1973; or see, e.g., Wilks 1995) of the Brier
score over all possible thresholds:

`

U(x ) 5 o(x )[1 2 o(x )] ⇒ U 5 U(x ) dx . (13)t t t E t t

2`

Here

ko(x ) 5 w H(x 2 x ) 5 P (x ) (14)Ot k t a sam t
k

is the observed frequency that the event x , xt occurred.
Therefore, it is very natural to define U as the uncer-
tainty of the CRPS. It is the CRPS based on the sample
climatology. It is proportional to the standard deviation
of the sample distribution rsam 5 dPsam/dx, because the
main contribution to the integral in Eq. (12) comes from
the region in x where Psam is significantly different from
0 and 1. An illustration is given in Fig. 1. To be more
exact, the sample distribution rsam can always be written
as

1 x x
r (x) 5 r ⇒ P (x) 5 P , (15)sam 0 sam 01 2 1 2s s s

where r0 is a distribution with s 5 1 (for instance
similar to a standardized Gaussian) and P0 [see Eq. (2)]
its cumulative distribution. From the uncertainty
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FIG. 1. Sample distribution Psam, as defined in Eq. (9), for two samples of eight cases, all with equal weight. The
shaded area represents the corresponding uncertainty U [see Eq. (12)]. It is proportional to the standard deviation s of
the distribution.

`

U [ P (y)[1 2 P (y)] dy (16)0 E 0 0

2`

of this distribution, it follows that

` x x
U 5 P 1 2 P dx 5 sU , (17)E 0 0 01 2 1 2[ ]s s

2`

so indeed proportional to s.
It should be noted that the term climatology depends

on the degree of desired sophistication. The most crude
level would be to assume the same climatological dis-
tribution at all grid points and cases. The mean cli-
matological value of x, however, may be quite location
and seasonal dependent. The mean 2-m temperature of
Norway in January, for instance, is much lower than
that of Spain in March. This would result in a very
broad sample distribution and, therefore, to a large un-
certainty. In order to correct for this, as a first step, the
variable x can be redefined as being the anomaly with
respect to the local climatology. The definition of the
CRPS is invariant for such a shift in the variable x, as
is easily seen from Eq. (1). As a consequence, the dis-
tribution Psam will change, because for each k in Eq. (9)
a different shift may have been applied. This should
result in a distribution that is much sharper, so the un-
certainty U in Eq. (12) should be smaller. For a param-
eter in which the permissible range is limited, like pre-
cipitation or 10-m wind speed, such an approach may
not be profitable. The reason for this is that the sample
distribution obtained in this way (based on anomalies)
will for part of the locations lead to nonvanishing prob-
abilities outside the permissible range.

Finally, the entire climatological distribution (so not
just its mean) could be chosen to depend on the location
and/or season, so Pk 5 Pcli,location,season. For this, the best
achievable distribution would be a location/seasonal-
dependent sample distribution, also given by Eq. (9) but
in which the sum (and the normalization of the weights)
is restricted to all points k that belong to the same lo-
cation and or season. Again, the resulting uncertainty

is expected to become lower. For parameters like pre-
cipitation this will also lead to a lower uncertainty.

This section will be concluded by showing how the
uncertainty can be evaluated in practice. The most
straightforward method is to substitute definition (9)
into Eq. (12):

`

k lU 5 w w H(x 2 x )[1 2 H(x 2 x )] dx. (18)O k l E a a
k, l 2`

The integrand will only be nonzero when both H(x 2
) 5 1 and H(x 2 ) 5 0. This condition can onlyk lx xa a

be met when , , in which case the integral isk l lx x xa a a

2 . As a result,kxa

k lU 5 w w |x 2 x |. (19)O k l a a
k, l,k

Another way to calculate U is to realize that Eq. (9) is
based on a finite number of verifying analyses. There-
fore Psam will be piecewise constant (see, e.g., Fig. 1).
It is zero for x 5 2` and each time an is passed, itkxa

makes a jump of wk. Beyond the largest verifying anal-
ysis in the set, Psam 5 1. Now if the are ordered fromkxa

small to large, then

N21

sort(k11) sort(k)U 5 p (1 2 p )[x 2 x ], (20)O k k a a
k51

where

pk 5 pk21 1 wsort(k) and p0 5 0.

Evaluation (19) is of order M 2, where M is the size of
the sample set. If M becomes on the order of a few
thousand, this evaluation becomes time consuming. In
addition, roundoff errors are expected to become non-
negligible. Method (20) only involves a sum of order
M. The price to be paid is that the should be sortedaxk

first. However, efficient sorting algorithms, such as
quicksort or heapsort (see Press et al. 1989), are of order
M log(M). Therefore, this latter method is still quite
feasible and accurate for very large samples.
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FIG. 2. Cumulative distribution for an ensemble {x1, . . . , x5} of five members (thick solid line) and for the verifying
analysis xa (thin solid line). The CRPS is represented by the shaded area. The ai and bi are defined in Eq. (26).

4. The CRPS for an ensemble system

a. The cumulative distribution of an ensemble

For an ensemble system, such as EPS, an equal weight
is given to each of its members. Therefore, the proba-
bility assigned to the occurrence of a certain event is
given by the fraction of members that predict the event.
Effectively, for the variable x this means that the cu-
mulative distribution forecasted by the ensemble system
is given by

N1
P(x) 5 H(x 2 x ), (21)O iN i51

where x1, . . . , xN are the outcomes of the N ensemble
members. From now on it is assumed that the members
are ordered, that is,

xi # xj, for i , j. (22)

The cumulative distribution P is a piecewise constant
function. Transitions occur at the values xi:

i
P(x) 5 p [ , for x , x , x , (23)i i i11N

in which x0 5 2` and xN11 5 ` are introduced for
convenience. An example of the cumulative distribution
for an ensemble of five members is given (thick solid
curve) in Fig. 2.

b. Decomposition for a single case

The CRPS, as defined in Eq. (1), can be evaluated as
follows:

x Ni11

2c 5 [p 2 H(x 2 x )] dx ⇒ CRPS 5 c . (24)Oi E i a i
i50xi

Depending on the position of the verifying analysis xa,
H(x 2 xa) will be either 0, or 1, or partly 0, partly 1,
in the interval [xi, xi11]. For each of these three possible
situations, ci can be written as

ci 5 ai 1 b i(1 2 pi)2,2pi (25)

where

0 , i , N ai bi

x . xa i11

x . x . xi11 a i

x , xa i

x 2 xi11 i

x 2 xa i

0

0

x 2 xi11 a

x 2 xi11 i

. (26)

Note that the ai and bi have the dimension of the pa-
rameter x.

For the example given in Fig. 2, the verifying analysis
is in between x3 and x4. Therefore, for this case b 5 0
for i 5 1 and 2, and a 5 0 for i 5 4. Only for i 5 3
both a and b are nonzero.

Some care should be taken for i 5 0 and i 5 N. These
concern the intervals (2`, x1] and [xN, `), respectively,
and for which pi 5 0 and pi 5 1, respectively. These
two intervals will only contribute to the CRPS in cases
when the verifying analysis is an outlier, that is, when
it is outside the range of the ensemble. In this situation
Eq. (25) can also be used, but with

Outlier ai bi

x , xa 1

x , xN a

0

x 2 xa N

x 2 x1 a

0
. (27)

In Fig. 3 an example is given in which the verifying
analysis is found to be below the ensemble (left panel)
and above the ensemble (right panel). For the first case,
there will be a contribution from b0, being the difference
between xa and the smallest ensemble member. In the
second case, aN is nonzero and equal to the distance of
xa from the largest ensemble member. Outliers can con-
tribute significantly to the CRPS, because nonzero val-
ues of b0 and aN are weighted stronger than other a’s
and b’s (see, e.g., the shaded areas in Fig. 3).

c. The average over a set of cases

For M cases and/or grid points, each with a weight
wk, the average CRPS [Eq. (5)] can be found as
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FIG. 3. The same as in Fig. 2 but now for the case that the verifying analysis is outside the ensemble (outlier). Only
when xa is below the ensemble (left panel) is b0 [see Eq. (27)] nonzero. And only when case xa is above the ensemble
(right panel) is aN nonzero. The CRPS is given by the shaded area. Note that b0 and aN are weighted stronger than
other a’s and b’s.

N

2 2CPRS 5 [a p 1 b (1 2 p ) ], (28)O i i i i
i50

where
k ka 5 w a and b 5 w b (29)O Oi k i i k i

k k

are the weighted average values of ai and bi.
The quantities a i and b i can be expressed into two

quantities g i and o i, which both have a physical inter-
pretation. First the case 0 , i , N is considered. Let

g 5 a 1 b and (30)i i i

b io 5 . (31)i a 1 bi i

It can be seen from Eq. (26) that g i is the average width
of bin number i:

g 5 x 2 x , for 0 , i , N. (32)i i11 i

For the moment concentrate on a specific value of i.
Then, for most cases, the verifying analysis will not lie
in the interval [xi, xi11]. Therefore, usually, ai will be
zero and bi is equal to the width of bin number i, or
vice versa. The first case applies to the situation in which
the verifying analysis was found to be smaller than the
ensemble member i, as can be seen from Eq. (26), the
second case to which it was found to be larger than
member i 1 1. Taking this in mind, o i can be seen to
be closely related to the average frequency that the ver-
ifying analysis was found to be below (xi 1 xi11).1

2

Ideally these observed frequencies should match with
the forecasted probability that the verifying analysis is
to be found below the ith interval. Such a consistency
is closely related to the flatness of the rank histogram
[also known as Talagrand diagram or binned probability
ensemble; see, e.g., Anderson (1996), Talagrand and
Vautard (1997), or Hamill and Collucci (1997)].

For the outliers, o 0 and o N is defined as the (weighted)
frequency that xa was found to be smaller than x1 and

xN, respectively. Here, g 0,N is defined as the average
length of the outlier, given that it occurred:

k ko 5 w H(x 2 x ) g 5 b /o andO0 k 1 a 0 0 0
k

k ko 5 w H(x 2 x ) g 5 a /(1 2 o ). (33)ON k N a N N N
k

The user may verify that for all i 5 0, . . . , N, so in-
cluding the outliers

2 2a p 5 g (1 2 o )p andi i i i i

2 2b (1 2 p ) 5 g o (1 2 p ) . (34)i i i i i

The average CRPS [see Eq. (5)] can now be decomposed
as

N

2 2CRPS 5 g [(1 2 o )p 1 o (1 2 p ) ]O i i i i i
i50

5 Reli 1 CRPS , (35)pot

where
N i

2Reli 5 g (o 2 p ) , p 5 and (36)O i i i i Ni50

N

CRPS 5 g o (1 2 o ). (37)Opot i i i
i50

This decomposition looks similar to the decomposition
of the Brier score as it was introduced by Murphy (Mur-
phy 1973; or see, e.g., Wilks 1995). The interpretation,
however, is somewhat different.

The quantity Reli is identified as the reliability part
of the CRPS. For a Brier score the reliability tests wheth-
er for all cases in which a certain probability p was
forecast, on average, the event occurred with that frac-
tion p. Here, it is tested whether, on average, the fre-
quency o i that the verifying analysis was found to be
below the middle of interval number i is proportional
to i/n. Therefore, it is tested here whether the ensemble
is capable of generating cumulative distributions that
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have, on average, this desired statistical property. The
reliability (36) is closely connected to the rank histo-
gram, which shows whether the frequency that the ver-
ifying analysis was found in bin number i is equal for
all bins. The rank histogram does not take care of the
width of the ensemble. It only counts how often the
verifying analysis was located in a bin, regardless of
the width of the bins. The reliability Reli does take this
into account, because the larger a bin width (and there-
fore the larger the spread) the more weight it has in a i

and b i and therefore o i. Note that Reli has a dimension
(of x), while the reliability of the Brier score is dimen-
sionless. The term CRPSpot given in Eq. (37) is called
the potential CRPS (in analogy with Murphy and Ep-
stein 1989), because it is the CRPS one would obtain
after the probabilities pi would have been retuned, such
that the system would become perfectly reliable, that
is, for which Reli 5 0. It is sensitive to the average
spread of the ensemble. The narrower the ensemble sys-
tem, the smaller the gi and the smaller Eq. (37). The
potential CRPS is also sensitive to outliers. Too many
and too large outliers will result in large values of g 0o 0

and g N(1 2 o N) and therefore affect CRPSpot consid-
erably. Although the small average bin widths g 1, . . . ,
g N of an ensemble system with a too small spread may
have a positive impact on the potential CRPS, the too
high frequency of outliers and the large magnitudes of
such outliers will have a clear negative impact. Given
a certain degree of unpredictability, the optimal value
for CRPSpot will be achieved for an ensemble system in
which the spread and the statistics of outliers are in
balance.

The uncertainty U as defined in (12) can be seen as
the potential reliability for a forecast system based on
the sample climatology. Such a system is by definition,
perfectly reliable. To see the relation between Eqs. (12)
and (37), the integral over x in Eq. (12) is to be ap-
proximated by a sum over intervals Dxi, each repre-
senting an equal part of 1/N of integrated probability.
The Dxi may be identified with the widths gi and the
Psam(xi) with the observed frequencies oi. As a result,
these approximations lead to Eq. (37). It may be clear
that it is desirable for an ensemble system that CRPSpot

is smaller than the potential CRPS based on climatology.
Therefore, the potential CRPS may, although perhaps
somewhat artificially, be further decomposed into

CRPS 5 U 2 Resol. (38)pot

This gives the following decomposition:

CRPS 5 Reli 2 Resol 1 U. (39)

The resolution Resol is nothing else than the difference
between the potential CRPS and the climatological un-
certainty. The ensemble system has positive resolution
if it performs better than the climatological probabilistic
forecast. In the previous section it was discussed that
the uncertainty (12) depends on the level of sophisti-
cation. Therefore, the same is true for the resolution.

Unlike the resolution of the Brier score, the resolution
part of the CRPS need not be positive definite.

d. Relation to the decomposition of the Brier score

In section 2 it was shown that the CRPS can be seen
as an integral of the Brier score over all possible thresh-
olds [see Eq. (7)]. The question may emerge whether
the terms in decomposition (39) are also equal to the
reliability, resolution, and uncertainty of the Brier score
integrated over all possible thresholds.

The Brier score defined by Eq. (6) (with thresholds
x) may be stratified with respect to the set of allowable
probabilities pi 5 0, 1/N, . . . , 1:

N

2 2BS(x) 5 g (x){o (x)(1 2 p ) 1 [1 2 o (x)]p }. (40)O i i i i i
i50

Here gi is the (weighted) fraction of cases in which a
probability p 5 pi was issued, while oi is the fraction
of such cases in which indeed the event was observed.
Note that both quantities depend on the value of the
threshold x.

After some algebra, it follows that the Brier score can
be decomposed into

N

2BS(x) 5 g (x)[o (x) 2 p ]O i i i
i50

N

22 g (x)[o (x) 2 o(x)] 1 o(x)[1 2 o(x)]O i i
i50

5 Reli(x) 2 Resol(x) 1 U(x), (41)

where
N

o(x) 5 g (x)o (x) (42)O i i
i50

is the (weighted) frequency that the event occurred with-
in the sample. In the appendix, Eq. (42) is shown to be
equal to definition (14). There it is also shown [see Eqs.
(A8)–(A11)] that the integral of gi(x) and gi(x)oi(x) over
x is equal to the gi and g io i, respectively, defined by
Eqs. (30)–(33). When integral (7) is performed, the re-
lation between decompositions (39) and (41) can be
established:

CRPS 5 ^Reli& 2 ^Resol& 1 ^U&, (43)

where
`

^Reli& [ Reli(x) dx 5 Reli 1 D, (44)E
2`

`

^Resol& [ Resol(x) dx 5 Resol 1 D, and (45)E
2`

`

^U& [ U(x) dx 5 U. (46)E
2`

Here
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TABLE 1. Continuous ranked probability score and its decompo-
sition into reliability, resolution, and uncertainty [see Eq. (39)] of
total precipitation accumulated in the 24 h prior to the displayed
forecast day for seven cases in the summer of 1999 for the ECMWF
ensemble prediction system. The dimension of these quantities is mm
(24h)21.

Day CRPS Reli Resol U

2
3
4
5
6
7
8
9

10

0.98
1.13
1.04
1.17
1.17
1.18
1.29
1.21
1.31

0.060
0.031
0.027
0.024
0.020
0.026
0.015
0.019
0.016

0.322
0.317
0.229
0.209
0.179
0.110
0.123
0.073
0.086

1.24
1.42
1.25
1.36
1.33
1.26
1.40
1.26
1.38

N21

2 2 2 2D 5 g (o 2 o ) 1 g 3(1 2 o ) 2 (1 2 o ) ],O i i i N N N
i50

(47)

where for zi 5 o0, o1, . . . , (1 2 oN)
`1

2 2z [ g (x)z (x) dx. (48)i E i ig i 2`

In general, D will be nonzero. Therefore, the integration
of the resolution and reliability of the Brier score over
all possible thresholds, in general, differs from the re-
liability and resolution, respectively, of the CRPS. Only
the integral over all uncertainties U(x) is equal to the
uncertainty of the CRPS. Using Eqs. (A8) and (A9), it
is not difficult to see that for 1 , i , N,

`

2 2 2g (o 2 o ) 5 g (x)[o (x) 2 o ] dx, (49)i i i E i i i

2`

from which it follows that these terms in D are positive
definite. Only when oi(x) does not depend on x, they
are zero. Therefore this part of ^Reli& is stricter than the
corresponding part of Reli , because ^Reli& insists on a
perfect reliability for all possible events, while Reli con-
centrates on the more overall reliability of the system.
For the outliers the integral over gi(x) is infinite, and
therefore Eq. (49) is not valid for i 5 0, N.

The quantities ^Reli& and ^Resol&, as well as D, in-
volve integrals over gi . These integrals are, in contrast2oi

to integrals over gi and gioi (see the appendix), difficult
to perform analytically. Therefore, in practice, it is a
tedious procedure to evaluate ^Reli& and ^Resol&. Be-
sides, ^Reli& does not have the same clear relation to
the rank histogram as Reli has. For these reasons, de-
composition (39) is to be preferred above decomposition
(43).

5. Decomposition for the EPS at ECMWF

The ideas developed in the previous sections will be
illustrated by the performance of the ensemble predic-
tion system running at ECMWF. This ensemble fore-
casting system (see Molteni et al. 1996; Buizza and
Palmer 1998; Buizza et al. 1999) consists of 50 per-
turbed forecasts plus a control forecast integrated with
the ECMWF TL159L31 primative equation (PE) model
up to day 10. For seven cases in the summer of 1999,
the CRPS of total precipitation has been evaluated for
the European area (30.08–72.58N, 22.58W–42.58E) us-
ing a grid spacing of 2.58 in both the latitudinal and the
longitudinal direction (486 grid points). The weights wk

[see Eq. (5)] were chosen to be proportional to the cosine
of latitude. As verifying analysis the precipitation ac-
cumulated within the first 24 h of the ECMWF opera-
tional TL319L50 PE model forecasts was taken [for a
discussion on this choice, see the appendix of Buizza
et al. (1999)].

Table 1 shows the CRPS and its decomposition (39)

between forecast day 2 and 10. It is seen that the con-
tinuous ranked probability score gradually grows (al-
though not monotonously) from 0.98 mm (24 h21) at
day 2 to 1.31 mm (24 h21) at day 10, expressing a
decreasing predictability as a function of forecast time.
The reliability only forms a small part of the CRPS.
There is a trend that it decreases. Apparently reliability
is less optimal for the first forecast days. The uncertainty
shown in Table 1 is based on sample distributions in
which no corrections for anomalies or location were
applied. It fluctuates somewhat from day to day, ex-
pressing differences in the sample distributions (each
consisting of 3402 verifying analyses) obtained for the
various forecast days. The resolution strongly decreases
from 0.322 mm (24 h)21 at day 2, to 0.086 mm (24 h)21

at day 10. Therefore, the first days, EPS significantly
outperforms a forecast based on climatology, while for
longer forecast periods there is an onset of convergence
to climatology.

In order to be able to understand these trends in more
detail, in Figs. 4, 5, and 6 a graphical representation of
the reliability, uncertainty, and resolution is displayed
for forecast days 3, 6, and 9, respectively. In the top
panels the observed frequencies oi as defined in Eqs.
(31) and (33) are plotted as a function of the fraction
of members pi. Any deviation from the diagonal will
contribute to the reliability Reli defined in Eq. (36). The
lower panels of Figs. 4–6 show (staircase curve) the
accumulation of the average bin widths gi, as defined
in Eq. (30). The leftmost and rightmost bins show the
average magnitude g0 and gN, respectively, of the out-
liers [see Eq. (33)]. The width of this curve determines
the potential CRPS, because CRPSpot can be seen as the
integral over this curve with the weight function oi(1
2 oi). The narrower the staircase curve, the smaller the
region for which the weight function is significantly
different from zero, and as a result, the smaller CRPSpot

is. In addition, the lower panels show the cumulative
distribution (‘‘smooth’’ curve) of the sample climatol-
ogy, as defined in Eq. (9). As is illustrated by Fig. 1,
for example, the uncertainty U is proportional to the
width of Psam. In addition (see discussion at the end of
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FIG. 4. Decomposition of continuous ranked probability score for
total precipitation accumulated between day 2 and day 3 for seven
summer cases in 1999 and averaged over the European area.

FIG. 5. The same as Fig. 4 but for day 6.

section 4c) it can be seen as the expected CRPS of a
forecast system based on the climatology of the sample.
The difference in widths between the staircase curve
and the cumulative distribution, therefore, is a measure
for the resolution (38).

The discrepancy from perfect reliability for the first
forecast days is mainly due to the lower bins of the
ensembles, as can be seen in Fig. 4 for day 3. The
frequency that the verifying analysis is found to be be-
low these bins is too high. It occurs too often that all

members predict at least some precipitation, while it
remained dry (based on climatology as can be seen from
Psam in the lower panel of Fig. 4, the probability that it
remains dry is about 50%). However, for these cases,
the amount of precipitation of the member with the
smallest amount of rain is on average quite small
(around 0.3 mm; see g0 in bottom panel of Fig. 4).
Therefore this mild overestimation of precipitation will
not contribute very strongly to Reli. Such a delicate
analysis would not be visible from the rank histogram.
It would only show a too high frequency of outliers.

The high resolution of the EPS for day 3 can clearly
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FIG. 6. The same as Fig. 4 but for day 9.

be seen from the bottom panel of Fig. 4. The average
bin widths of the ensemble, including the outliers, is,
compared to Psam, considerably small. The climatolog-
ical distribution has a large tail for high amounts of
precipitation. Apparently, for such cases, the EPS was
capable of generating sharp ensembles with fair amounts
of precipitation. This is the reason why the size of the
outlier gN is reasonably small. The reduction of reso-
lution with increasing forecast time is well illustrated
by comparing the lower panels of Figs. 4–6. At day 3,
the ensemble is much sharper than Psam, while at day

9, it is quite similar to the sample distribution, leaving
only a low value of resolution.

6. Concluding remarks

In this paper it was shown how for an ensemble pre-
diction system, the continuous ranked probability score
can be decomposed into three parts. This decomposition
is very similar to that of the Brier score. The first part,
reliability, is closely related to the rank histogram. An
important difference, however, is that the reliability of
the CRPS is sensitive to the width of the ensemble bins,
while the rank histogram gives each forecast the same
weight. The reliability should be zero for an ensemble
system with the correct statistical properties. The second
part, uncertainty, is the best achievable value of the
continuous ranked probability score, in case only cli-
matological information is available. It was discussed
that in contrast to the uncertainty of the Brier score, the
value of uncertainty depends on the degree of sophis-
tication. The third term, the resolution, expresses the
superiority of a forecast system with respect to a forecast
system based on climatology. The uncertainty/reliability
part was found to be both sensitive to the average spread
within the ensemble, and to the behavior of the outliers.
It was shown that the proposed decomposition is not
equal to the integral over the decomposition of the Brier
score.

It was illustrated how the reliability part could be
presented in a graphical way. In addition, it was shown
how the resolution part of the CRPS can be visualized
by looking at the difference between the sample climate
distribution and the accumulated average bin widths of
the ensemble system. As an example the decomposition
for total precipitation for seven summer cases in 1999
of the ECMWF ensemble prediction system was con-
sidered.

In this paper attention was focused on ensemble fore-
casts, for which the allowable set of forecasted proba-
bilities is finite. However, in general, a forecast system
could issue any probability between 0 and 1. Such sys-
tems could be regarded as the limit of N → `, of an
N-member ensemble, in which the ith member is po-
sitioned at the location where the cumulative distribu-
tion has the value P(xi) 5 pi 5 i/N. Therefore, the
decomposition of the CRPS, given in section 4, can be
extended to any continuous forecast system. As a result,
the summations over probabilities pi in the definitions
of reliability, resolution, and uncertainty will transform
into integrals (from 0 to 1) over probabilities. In order
to evaluate such integrals for continuous systems, it is
more sensible to discretize the allowable set of proba-
bilities, than to discretize the variable x. Therefore, in
practice, the evaluation of the CRPS and its decom-
position for continuous forecast systems exactly reduces
to the method proposed in section 4.

The continuous ranked probability score is a verifi-
cation tool that is sensitive to the overall (with respect
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to a certain parameter) performance of a forecast system.
By using the decomposition proposed in this paper, it
was argued how for an ensemble prediction system, a
detailed picture of this overall behavior can be obtained.
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APPENDIX

Some Technical Details

In this appendix the relation between the various
terms of the Brier score defined in Eq. (40) and the
terms of the continuous ranked probability score given
in Eq. (39) will be determined.

Let the function I(x, a, b) be defined by

1 if a # x # b
I(x, a, b) 5 (A1)50 elsewhere,

then the densities gi(x) and frequencies oi(x) introduced
in Eq. (40) can be written as

k kg (x) 5 w I(x, x , x ) and (A2)Oi k i i11
k

k k kg (x)o (x) 5 w H(x 2 x )I(x, x , x ). (A3)Oi i k a i i11
k

By using the property

N

k kI(x, x , x ) 5 1, (A4)O i i11
i50

it is evident that

N

g (x) 5 w 5 1, (A5)O Oi k
i50 k

N

ko(x) [ g (x)o (x) 5 w H(x 2 x )O Oi i k a
i50 k

5 P (x). (A6)sam

So the gi are normalized and o(x) is related to the cu-
mulative distribution of the sample. From the expres-
sions

`

k k k kI(x, x , x ) dx 5 x 2 xE i i11 i11 i

2`

`

k k k kH(x 2 x )I(x, x , x ) dx 5 b , (A7)E a i i11 i

2`

1 , i , N, where is defined by Eq. (26), it followskbi

that

`

k kg (x) dx 5 w (x 2 x ) 5 g (A8)OE i k i11 i i
k2`

`

kg (x)o (x) dx 5 w b 5 g o , (A9)OE i i k i i i
k2`

where g i and g io i are defined in Eq. (32).
For the outliers one has to keep in mind that g0(2`)

5 1 and gN(`) 5 1, and therefore Eq. (A8) would
become infinite. With the help of definitions (27) and
(33), the reader may verify that

`

g (x)o (x) dx 5 g o (A10)E 0 0 0 0

2`

`

g (x)[1 2 o (x)] dx 5 g (1 2 o ). (A11)E N N N N

2`
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