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Abstract.

A nonparametric method for resampling scalar or vector-valued time series is

introduced. Multivariate nearest neighbor probability density estimation provides the basis
for the resampling scheme developed. The motivation for this work comes from a desire
to preserve the dependence structure of the time series while bootstrapping (resampling it
with replacement). The method is data driven and is preferred where the investigator is
uncomfortable with prior assumptions as to the form (e.g., linear or nonlinear) of
dependence and the form of the probability density function (e.g., Gaussian). Such prior
assumptions are often made in an ad hoc manner for analyzing hydrologic data.
Connections of the nearest neighbor bootstrap to Markov processes as well as its utility in
a general Monte Carlo setting are discussed. Applications to resampling monthly
streamflow and some synthetic data are presented. The method is shown to be effective
with time series generated by linear and nonlinear autoregressive models. The utility of
the method for resampling monthly streamflow sequences with asymmetric and bimodal

marginal probability densities is also demonstrated.

Introduction

Autoregressive moving average (ARMA) models for time
series analysis are often used by hydrologists to generate syn-
thetic streamflow and weather sequences to aid in the analysis
of reservoir and drought management. Hydrologic time series
can exhibit the following behaviors, which can be a problem for
commonly used linear ARMA models: (1) asymmetric and/or
multimodal conditional and marginal probability distributions;
(2) persistent large amplitude variations at irregular time in-
tervals; (3) amplitude-frequency dependence (e.g., the ampli-
tude of the oscillations increases as the oscillation period in-
creases); (4) apparent long memory (this could be related to
(2) and/or (3)); (5) nonlinear dependence between x, versus
x,_, for some lag 7; and (6) time irreversibility (i.e., the time
series plotted in reverse time is “different” from the time series
in forward time). The physics of most geophysical processes is
time irreversible. Streamflow hydrographs often rise rapidly
and attenuate slowly, leading to time irreversibility.

Kendall and Dracup [1991] have argued for simple resam-
pling schemes, such as the index sequential method, for
streamflow simulation in place of ARMA models, suggesting
that the ARMA streamflow sequences usually do not “look”
like real streamflow sequences. An alternative is presented in
the work of Yakowitz [Yakowitz, 1973, 1979; Schuster and Ya-
kowitz, 1979; Yakowitz, 1985, 1993; Karisson and Yakowitz,
1987a, b], Smith et al. [1992], Smith [1991), and Tarboton et al.
[1993] who consider the time series as the outcome of a
Markov process and estimate the requisite probability densities
using nonparametric methods. A resampling technique or
bootstrap for scalar or vector-valued, stationary, ergodic time
series data that recognizes the serial dependence structure of
the time series is presented here. The technique is nonpara-
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metric; that is, no prior assumptions as to the distributional
form of the underlying stochastic process are made.

The bootstrap [Efron, 1979; Efron and Tibishirani, 1993] is a
technique that prescribes a data resampling strategy using the
random mechanism that generated the data. Its applications
for estimating confidence intervals and parameter uncertainty
are well known [see Hirdle and Bowman, 1988; Tasker, 1987,
Woo, 1989; Zucchini and Adamson, 1989]. Usually the boot-
strap resamples with replacement from the empirical distribu-
tion function of independent, identically distributed data. The
contribution of this paper is the development of a bootstrap for
dependent data that preserves the dependence in a probabi-
listic sense. This method should be useful for the Monte Carlo
analysis of a variety of hydrologic design and operation prob-
lems where time series data on one or more interacting vari-
ables are available.

The underlying concept of the methodology is introduced
through Figure 1. Consider that the serial dependence is lim-
ited to the two previous lags; that is, x, depends on the two
prior values x,_, and x,_,. Denote this ordered pair, or
bituple, at a time ¢; by D;. Let the corresponding succeeding
value be denoted by S. Consider the k nearest neighbors of D;
as the k bituples in the time series that are closest in terms of
Euclidean distance to D,. The first three nearest neighbors are
marked as D,, D,, and D5. The expected value of the forecast
S can be estimated as an appropriate weighted average of the
successors x, (marked as 1, 2, and 3, respectively) to these three
nearest neighbors. The weights may depend inversely on the
distance between D, and its k nearest neighbors D;, D,, ---,
D,.. A conditional probability density f(x|D,) may be evaluated
empirically using a nearest neighbor density estimator [see
Silverman, 1986, p. 96] with the successors x,, ---, x,. For
simulation the x; can be drawn randomly from one of the k
successors to the D, D,, -+, D, using this estimated condi-
tional density. Here, this operation will be done by resampling
the original data with replacement. Hence the procedure de-
veloped is termed a nearest neighbor time series bootstrap. In
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Figure 1. A time series from the modelx, ,; = (1 — 4(x, —

0.5)%). This is a deterministic, nonlinear model with a time
series that looks random. A forecast of the successor to the
bituple D;, marked as S in the figure, is of interest. The “pat-
terns” or bituples of interest are the filled circles, near the
three nearest neighbors D,, D,, and D5 to the pattern D,. The
successors to these bituples are marked as 1, 2, and 3, respec-
tively. Note how the successor (1) to the closest nearest neigh-
bor (D,) is closest to the successor (S) of D;. A sense of the
marginal probability distribution of x, is obtained by looking at
the values of x, shown on the right side of the figure. As the
sample size » increases, the sample space of x gets filled in
between 0 and 1, such that the sample values are arbitrarily
close to each other, but no value is ever repeated exactly.

summary, one finds k patterns in the data that are “similar” to
the current pattern and then operates on their respective suc-
cessors to define a local regression, conditional density, or
resampling.

The nearest neighbor probability density estimator and its
use with Markov processes is reviewed in the next section. The
resampling algorithm is described after that. Applications to
synthetic and streamflow data are then presented.

Background

It is natural to pursue nonparametric estimation of proba-
bility densities and regression functions through weighted local
averages of the target function. This is the foundation for
nearest neighbor methods. The recognition of the nonlinearity
of the underlying dynamics of geophysical processes, gains in
computational ability, and the availability of large data sets
have spurred the growth of the nonparametric literature. The
reader is referred to work by Silverman [1986], Eubank [1988],
Hairdle [1989, 1990], and Scorr [1992] for accessible mono-
graphs. Gyorfi et al. [1989] provide a theoretical account that is
relevant for time series analysis. Lall [1995] surveys hydrologic
applications. For time series analysis a moving block bootstrap
(MBB) was presented by Kunsch [1989]. Here a block of m
observations is resampled with replacement, as opposed to a
single observation in the bootstrap. Serial dependance is pre-
served within, but not across, a block. The block length m
determines the order of the serial dependence that can be
preserved. Objective procedures for the selection of the block
length m are evolving. Strategies for conditioning the MBB on
other processes (e.g., runoff on rainfall) are not obvious. Our
investigations indicated that the MBB may not be able to
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reproduce the sample statistics as well as nearest neighbor
bootstrap presented here.

The k nearest neighbor (k-nn) density estimator is defined
as [Silverman, 1986, p. 96]

kin kin

fan(®) = 705 = Tt (1)
where k is the number of nearest neighbors considered, d is the
dimension of the space, c, is the volume of a unit sphere in d
dimensions (¢, = 2, ¢, = m, ¢y = 47/3, -+, ¢, =
[743T(d/2 + 1)]), rx(x) is the Euclidean distance to the
kth-nearest data point, and V,(x) is the volume of a d-
dimensional sphere of radius r.(x).

This estimator is readily understood by observing that for a
sample of size n, we expect approximately {nf(x)V,(x)} ob-
servations to lie in the volume V,(x). Equating this to the
number observed, that is, k, completes the definition.

A generalized nearest neighbor density estimator [Silver-
man, 1986, p. 97], defined in (2), can improve the tail behavior
of the nearest neighbor density estimator by using a monoton-
ically and possibly rapidly decreasing smooth kernel function.

12 X — X
fGNN(X) = ’W z K( m) (2)

The “smoothing” parameter is the number of neighbors
used, k, and the tail behavior is determined by the kernel K(t).
The kernel has the role of a weight function (data vectors x;
closer to the point of estimate x are weighted more), and can
be chosen to be any valid probability density function. Asymp-
totically, under optimal mean square error (MSE) arguments,
k should be chosen proportional to n*/¢?**) for a probability
density that is twice differentiable. However, given a single
sample from an unknown density, such a rule is of little prac-
tical utility. The sensitivity to the choice of k is somewhat lower
as a kernel that is monotonically decreasing with r,(x) is used.
A new kernel function that weights the jth neighbor of x; using
a kernel that depends on the distance between x; and its jth
neighbor is developed in the resampling methodology section.

Yakowitz (references cited earlier) developed a theoretical
basis for using nearest neighbor and kernel methods for time
series forecasting and applied them in a hydrologic context. In
those papers Yakowitz considers a finite order, continuous
parameter Markov chain as an appropriate model for hydro-
logic time series. He observes that discretization of the state
space can quickly lead to either an unmanageable number of
parameters (the curse of dimensionality) or poor approxima-
tion of the transition functions, while the ARMA approxima-
tions to such a process call for restrictive distributional and
structural assumptions. Strategies for the simulation of daily
flow sequences, one-step-ahead prediction, and the conditional
probability of flooding (flow crossing a threshold) are exem-
plified with river flows and shown to be superior to ARMA
models. Seasonality is accommodated by including the calen-
dar date as one of the predictors. Yakowitz claims that this
continuous parameter Markov chain approach is capable of
reproducing any possible Hurst coefficient. Classical ARMA
models are optimal only under squared error loss and only for
linear operations on the observables. The loss/risk functions
associated with hydrologic decisions (e.g., whether to declare a
flood warning or not) are usually asymmetric. The nonpara-
metric framework allows attention to be focused directly on
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calculating these loss functions and evaluating the conse-
quences.

The example of Figure 1 is now extended to show how the
nearest neighbor method is used in the Markov framework.
One step Markov transition functions are considered. The
relationship between x, ., and x, is shown in Figure 2. The
correlation between x, and x,,, is 0, even though there is
clear-cut dependence between the two variables.

Consider an approximation of the model in Figure 1 by a
multistate, first-order Markov chain, where transitions from,
say, state 1 for x, (0 to 0.25 in Figure 2) to states 1, 2, 3, or 4
for x,, are of interest. The state i to state j transition prob-
ability p,; is evaluated by counting the relative fraction of
transitions from state { to state j. The estimated transition
probabilities depend on the number of states chosen as well as
their actual demarcation (e.g., one may need a nonuniform
grid that recognizes variations in data density). For the non-
linear model used in our example, a fine discretization would
be needed. Given a finite data set, estimates of the multistate
transition probabilities may be unreliable. Clearly, this situa-
tion is exacerbated if one considers higher dimensions for the
predictor space. Further, a reviewer has observed that a dis-
cretization of a continuous space Markov process is not nec-
essarily Markov.

Now consider the nearest neighbor approach. Consider two
conditioning points x% and x’;. The k nearest neighbors of
these points are in the dashed windows 4 and B, respectively.
The neighborhoods are seen to adapt to variations in the sam-
pling density of x,. Since such neighborhoods represent moving
windows (as opposed to fixed windows for the multistate
Markov chain) at each point of estimate, we can expect re-
duced bias in the recovery of the target transition functions.
The one step transition probabilities at x} can be obtained
through an application of the nearest neighbor density estima-
tor to the x,,, values that fall in windows like A and B. A
conditional bootstrap of the data can be obtained by resam-
pling from this set of x, | ; values. Since each transition prob-
ability estimate is based on k points, the problem faced in a
multistate Markov chain model of sometimes not having an
adequate number of events or state transitions to develop an
estimate is circumvented.

The Nearest Neighbor Resampling Algorithm

In this section a new algorithm for generating synthetic time
series samples by bootstrapping (i.e., resampling the original
time series with replacement) is presented. Denote the time
seriesbyx,, t = 1, -+-, n, and assume a known dependence
structure, that is, which and how many lags the future flow will
depend on. This conditioning set is termed a “feature vector,”
and the simulated or forecasted value, the “successor.” The
strategy is to find the historical nearest neighbors of the cur-
rent feature vector and resample from their successors. Rather
than resampling uniformly from the k successors, a discrete
resampling kernel is introduced to weight the resamples to
reflect the similarity of the neighbor to the conditioning point.
This kernel decreases monotonically with distance and adapts
to the local sampling density, to the dimension of the feature
vector, and to boundaries of the sample space. An attractive
probabilistic interpretation of this kernel consistent with the
nearest neighbor density estimator is also offered. The resam-
pling strategy is presented through the following flowchart:
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Figure 2. A plot of x, ., versus x, for the time series gener-
ated from the model x, ., = (1 — 4(x, — 0.5)?). The state
space for x is discretized into four states, as shown. Also shown
are windows 4 and B with “whiskers” located over two points
x* and x%. These windows represent a k nearest neighbor-
hood of the corresponding x,. In general, these windows will
not be symmetric about the x, of interest. One can think of
state transition probabilities using these windows in much the
same way as with the multistate Markov chain. A value ofx,, ;
conditional to point 4 or B can be bootstrapped by appropri-
ately sampling with replacement one of the values of x, , ; that
fall in the corresponding window.

1. Define the composition of the “feature vector” D, of
dimension d, e.g.,

Case 1 D,:(x,_y, x,5); d=2
Case 2 DX, Xemarts * > Xemprints Ximro X202 ** * s Xemanea)
d=M1+M2

Case3 Di(x1, ., 0, xlan; X240 X220, 00, X2, 4m0);

d=M1+M2+1

where 71 (e.g., 1 month) and 2 (e.g., 12 months) are lag
intervals, and M1, M2 = 0 are the number of such lags
considered in the model.

Case 1 represents dependence on two prior values. Case 2
permits direct dependence on multiple time scales, allowing
one to incorporate monthly and interannual dependence. For
case 3, x1 and x2 may refer to rainfall and runoff or to two
different streamflow stations.

2. Denote the current feature vector as D; and determine
its k nearest neighbors among the D,, using the weighted
Euclidean distance

d 1/2

ry = 2 wi(vy; —

j=1

vt/') z

(3)

where v,; is the jth component of D,, and w; are scaling weights
(e.g., 1 or 1/s;, where s; is some measure of scale such as the
standard deviation or range of v;).

The weights w; may be specified a priori, as indicated above,
or may be chosen to provide the best forecast for a particular
successor in a least squares sense [see Yakowiiz and Karlsson,
1987].

Denote the ordered set of nearest neighbor indices by J, ,.
An element j(i) of this set records the time ¢ associated with
the jth closest D, to D,. Denote x;;, as the successor to D; ;).
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Figure 3. Illustration of resampling weights, K(j(i)), at selected conditioning points x;, using k = 10 with
a sample of size 100 from an exponential distribution with parameter of 1. The original sampled values are
shown at the top of the figure. Note how the bandwidth and kernel shape vary with sampling density.

[f the data are highly quantized, it is possible that a number of
observations may be the same distance from the conditioning
point. The resampling kernel defined in step 3 (below) is based
on the order of elements in J; .. Where a number of observa-
tions are the same distance away, the original ordering of the
data can impact the ordering in J; .. To avoid such artifacts,
the time indices ¢ are copied into a temporary array that is
randomly permuted prior to distance calculations and creation
of the list J; ;.
3. Define a discrete kernel K(j(i)) for resampling one of
the x;;, as follows:
i
K(jin =

: (4)
IRV
j=1

where K(j(i)) is the probability with which x;,, is resampled.

This resampling kernel is the same for any i and can be
computed and stored prior to the start of the simulation.

4. Using the discrete probability mass function (p.m.f.)
K(j(i)), resample an x;,,, update the current feature vector,
and return to step 2 if additional simulated values are needed.

A similar strategy for time series forecasting is possible. An
m-step-ahead forecast is obtained by using the corresponding
generalized nearest neighbor regression estimator:

k
Jonn(Xim) = 2 K(j(i))xj(i),m

j=1

(5)

where x, ,, and x,(,, ,,, denote the mth successor to i and j(i),
respectively.

Parameters of the Nearest Neighbor Resampling
Method

Choosing the Weight Function K(v)

The goals for designing a resampling kernel are to (1) re-
duce the sensitivity of the procedure to the actual choice of k,
(2) keep the estimator local, (3) have k sufficiently large to
avoid simulating nearly identical traces, and (4) develop a
weight function that adapts automatically to boundaries of the
domain and to the dimension d of the feature vector D,. These
criteria suggest a resampling kernel that decreases monotoni-
cally as r;; increases.

Consider a d-dimensional ball of volume V(r) centered at
D,. The observation D, falls in this ball when the ball is

exactly of volume V (7, ;). Assuming that the observations
are independent (which they may not be), the likelihood with
which the j(i)th observation should be resampled as represen-
tative of D, is proportional to 1/V(r;;))-

Now, consider that in a small locale of D;, the local density
can be approximated as a Poisson process, with constant rate A.
Under this assumption the expected value of 1/V(r;;(;)) is

The kernel K(j(i)) is obtained by normalizing these weights
over the k nearest neighborhood.

Alj 1/j
K(j(@) = = =
RV

=1

(7N

k

2 cAlj

j=t

where ¢ is a constant of proportionality.

These weights do not explicitly depend on the dimension d
of the feature vector D,. The dependence of the resampling
scheme on d is implicit through the behavior of the distance
calculations used to find nearest neighbors as d varies. Initially,
we avoided making the assumption of a local Poisson distribu-
tion and defined K(j(i)) through a normalization of
1/V(r; ) This approach gave satisfactory results as well but
was computationally more demanding. The results obtained
using (7) were comparable for a given k.

The behavior of this kernel in the boundary region, the
interior, and the tails is seen in Figures 3 and 4. From Figure
3, observe that the nearest neighbor method allows consider-
able variation in the “bandwidth” (in terms of a range of values
of x) as a function of position and underlying density. The
bandwidth becomes automatically larger as the density be-
comes sparser and flatter. In regions of high data density (left
tail or interior) the kernel is nearly symmetric (the slight asym-
metry follows the asymmetry in the underlying distribution).
Along the sparse right tail the kernels are quite asymmetric, as
expected. Some attributes of these kernels relative to a uni-
form kernel (with the same k), used by the ordinary nearest
neighbor method, are shown in Figure 4.

For bounded data (e.g., streamflow that is constrained to be
greater than 0), simulation of values across the boundary is
often a concern. This problem is avoided in the method pre-
sented since the resampling weights are defined only for the
sample points. A second problem with bounded data is that
bias in estimating the target function using local averages in-
creascs near the boundaries. This bias can be recognized by
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Figure 4.

THustration of weights K(j(i)) versus weights from the uniform kernel applied at three points

selected from Figure 3. The uniform kernel weights are 1/k for each jeJ(i, k). The effective centroid
corresponding to each kernel for each conditioning point i (in each case with the highest value of K(j(i))) is
shown. For i in the interior of the data (Figure 4b) the centroids of both the uniform kernel and K(j(i))
coincide with i. Toward the edges of the data (Figures 4a and 4c) the centroid corresponding to K(j(i)) is
closer to i than that for the uniform kernel. The K(j(i)) are thus less biased than the uniform kernel for a
given k. The kernel K(j(i)) also has a lower variance than the uniform kernel for a given value of .

observing that the centroid of the data in the window does not
lie at the point of estimate. From Figure 4 note that while the
kernel is biased toward the edges of the data, that is, the
centroid of the kernel does not match the conditioning point,
the bias is much smaller than for the uniform kernel. If one
insists on kernels that are strictly positive with monotonically
decreasing weights with distance, it may not be possible to
devise kernels that are substantially better in terms of bias in
the boundary region.

The primary advantages of the kernel introduced here are
that (1) it adapts automatically to the dimension of the data,
(2) the resampling weights need to be computed just once for
a given k, (there is no need to recompute the weights or their
normalization to 1), and (3) bad effects of data quantization or
clustering (this could lead to near zero values of 7; ;(;, at some
points) on the resampling strategy, that arise if one were to
resample using a kernel that depends directly on distance (e.g.,
proportional to 1/V(r; ;;)), are avoided. These factors trans-
late into considerable savings in computational time that can
be important for large data sets and high dimensional settings,
and into improved stability of the resampling algorithm.

Choosing the Number of Neighbors k& and Model Order d

The order of ARMA models is often picked [Loucks et al.,
1981] using the Akaike information criteria (AIC). Such crite-
ria estimate the variance of the residual to time series forecasts
from a model, appropriately penalized for the effective degrees
of freedom in the model. A similar perspective based on cross
validation is advocated here. Cross validation involves “fitting”
the model by leaving out one value at a time from the data and
forecasting it using the remainder. The model that yields the
least-predictive sum of squares of errors across all such fore-
casts is picked. One can approximate the average effect of such
an exercise on the sum of squares of errors without going
through the process.

Here, the forecast is formed (equation (5)) as a weighted
average of the successors. When using the full sample, define
the weight used with the successor to the current point as w;.
This weight recognizes the influence of that point on the esti-
mate at the same location. Hence the influence of the rest of
the points on the fit at that point is (1 — w;;). This suggests
that if estimated full sample forecast error e; is divided by (1 —



684

Table 1. Statistical Comparison of k-nn and AR1 Model
Simulations Applied to an AR1 Sample

Simulations
95%

5% Quantile Median Quantile

ARI1 Sample k-nn ARl k-nn AR1 k-nn ARl

Mean 0.04 —-0.14 -0.12 002 0.04 024 020

Standard 1.11 1.02 103 110 111 118 1.20
deviation

Skew -0.17 —-0.32 —-0.25 —-0.18 0.00 —0.03 0.21

Lag 1 0.63 056 057 0.62 0.63 0.68 0.69
correlation

w,;), a measure of what the error may be if the data point (D;,
x;) was not used in developing the estimate is provided. Note
that the degrees of freedom (e.g., 0 forak = 1 and 4/3 for a
k = 3 using a uniform kernel) of estimate are implicit in this
idea. Craven and Wahba [1979] present a generalized cross
validation (GCV) score function that considers the average
influence of excluded observations for estimation at each sam-
ple point and approximates the predictive squared error of
estimate. The GCV score is given as

n

> eXn

i=1

GCV = 5
Z - w]-]-)/n
j=1

(8)
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The GCV score function can be used to choose both k and
d. For the kernel suggested in this paper, w;; is a constant for
a given k, and the GCV can be written as

n

2 eXin

i=1

(1 - 1/% 1/1)

j=1

GCV = €

A prescriptive choice of & = n'/? from experience is also
suggested. This is a good choice for 1 = d = 6, and n = 100.
Sensitivity to the choice of k in this neighborhood is small, and
where computational resources are limited this choice can be
recommended. Typically, with a sample size n of 50 to 200, this
corresponds to a choice of k ranging from 7 to 14. When using
the GCV criteria with the same sample size, it is our experi-
ence that varying k& within 5 to 10 units of the optimal selected
value does not appreciably change the GCV score.

Criteria such as the GCV and the AIC are known to overfit
or over parameterize time series relationships. With the near-
est neighbor resampler, a model with order higher than nec-
essary will have increased variability for a given k. The extra or
superfluous coordinates serve to degrade rather than enhance
identification of the patterns that describe the system. Like-
wise, a smaller-than-optimal choice of d would lead to traces
that lack the appropriate memory. Comparison of the at-
tributes of the series generated by models with different values
of k and d is consequently desirable. These comparisons can be
based on how well attributes of direct interest to the investi-
gator such as run lengths or the frequencies of threshold cross-
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Time
B
o
o
<
o
¥
@
0 50 100 150 200
Time
Figure 5. (a) A time series trace from the SETAR model described by (11) and (b) a time series trace from

a k-nn resample of the original SETAR sample.
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Xt
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Xt-1

Figure 6. (a) An ASH estimate of the bivariate probability density f(x,, x,_,) for the SETAR sample, the
thick curve denoting a LOWESS smooth, and (b) an average of the ASH estimates of the bivariate probability
density f(x,, x,_,) across 100 k-nn resamples from the SETAR sample.

ings are reproduced. One can try various combinations of k
and d and visually compare resampling attributes with histor-
ical sample attributes (sample moments and marginal or joint
probability densities).

Applications

Two synthetic examples, one from a linear and one from a
nonlinear model, are presented first. These are followed by an
application to monthly flows from Weber River near Oakley,
Utabh. In all cases a lag 1 model with k chosen as n'/? was used.

Comparative performance of the simulations is judged using
sample moments and sample p.d.f.’s estimated using adaptive
shifted histograms (ASH; Scott [1992, chap. 5]). In all applica-

tions using the univariate ASH, a bin width of (x ., — x i)/
9.1, where x,,,, and x are the respective maximum and
minimum values of the data, and five shifted histograms were
used. For bivariate densities a bin width of (x,,,, — x,,,;,)/3.6
and five shifted histograms in each coordinate direction were
used. These are the default settings for the computer code dis-
tributed by D. Scott. Conditional expectations, E(x/x,_,), are es-
timated using LOWESS [Cleveland, 1979]. LOWESS is a popular
robust, locally weighted linear regression technique that allows a
flexible curve to be fit between two variables. We used default
parameter choices (three iterations for computing the robust es-
timates based on two thirds of the data) with the “lowess” func-
tion available on S-Plus [Statistical Sciences, Inc., 1991].

min
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Example E1

The first data set considered is a sample of size 500 from a
linear autoregressive model of order 1, AR1, defined as

x, = 0.6x,_, + 0.8¢, (10)

where e, is a mean zero, variance 1, Gaussian random variable.

One hundred realizations, each of length 500, were then
generated from an AR1 model fitted to the sample and from
the nearest neighbor (k-nn) bootstrap. Selected statistics from
these simulations are compared in Table 1. The sample statis-
tics considered are reproduced by the k-nn method, while only
the sample statistics used in fitting the parametric AR1 model
are reproduced. The AR1 simulations instead reproduce pop-
ulation or model statistics (e.g., skew = 0) for parameters that
are not explicitly fitted to the sample. With repeated applica-
tions to a number of samples from the same distribution, the
k-nn procedure reproduces the population statistics as well.
On the other hand, a parametric model only reproduces fitted
statistics. The ASH estimated median p.d.f. of x,, from the
k-nn resamples, matches the sample p.d.f., and the scatter of
the estimated p.d.f.’s across resamples is comparable to the
scatter from the AR1 samples. In order to save space, these
results are not reproduced here.

Example E2

A sample of size 200 was generated from a self-exciting
threshold autoregressive (SETAR) model described by Tong
[1990, pp. 99-101]. The general structure of such models is
similar to that of a linear autoregressive model, with the dif-

ference being that the parameters of the model change upon
crossing one or more thresholds. Such a model may be appro-
priate for daily streamflow, since crossing a flow threshold
(defined on a single past flow or collectively on a set of past
flows) with flow increasing may signal runoff response to rain-
fall or snow melt, and crossing the threshold with flow decreas-
ing may signal return to base flow or recession behavior. Here
a lag 1 SETAR model was used:

x,=0.4+08x,_, +e ifx,=0.0

x, = —1.5—-0.5%,_, + e, otherwise

(11)

where ¢, is a Gaussian random variable with mean 0 and
variance 1.

The time scries generated from the SETAR model and a
time series simulated by the nearest neighbor method are
shown in Figure 5. The bivariate probability densities f(x,,
x,_,) for the original SETAR sample and for 100 nearest-
neighbor samples, each of length 200, were computed using
ASH. The estimated f(x,, x,_,) from the original sample
along with a LOWESS fit of E(x,|x,..,) and an average of the
f(x,, x,_,) estimates taken across the nearest neighbor real-
izations are illustrated in Figure 6. We see that the bivariate
density of the data is reproduced quite well by the simulations.

Example E3
The 1905-1988 monthly flow record from U.S. Geological

Survey (USGS) station 10128500, Weber River, near Oakley,
Utah, located at 40°44'10"N and 111°14’45"W, at an elevation
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of 6600 feet (2012 m) above mean sea level was extracted from  River at this location is a snow melt-fed, perennial, mountain
the USGS Hydro Climate Data Network (HCDN) CD-ROM  stream, with a drainage area of 162 square miles (420 km?).
[Slack et al., 1992]. This data set is presumed to be free of the The mean annual flow is 223 cubic feet per second (cfs) (6.24
effects of regulation, diversion, and similar factors. The Weber — m?/s). June is the month with the highest flow, subsequent to
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Figure 10. (a) An ASH estimate of the bivariate probability
density f(x,, x,_,) for the October/November historical flows,
the thick curve denoting a LOWESS smooth; (b) an average of
the ASH estimates of f(x,, x, _,) across 100 simulations from
an AR1 model; and (c) an average of the ASH estimates of
f(x,, x,_,) across 100 k-nn resamples. Values are given in
cubic feet per second (1 cfs equals 0.028 m?/s).

snow melt. January is typically the month with the lowest flow.
The 1905-1988 monthly time series and flows for two specific
years are presented in Figure 7.

A monthly AR1 mode] was fitted to logarithmically trans-
formed monthly flows, with monthly varying parameters esti-
mated as described by Loucks et al. [1981, p. 285] to preserve
moments in real space. This entails sequentially simulating
monthly flow moving through the calendar year, using (for
example) only the 83 monthly values for January and February
over the 83-year record to simulate February flows given Jan-
uary flows. One hundred simulations of 83 years were gener-
ated in each case. The k-nn bootstrap is applied in a similar
manner using (for example) January flows to find neighbors for
a given January flow and the corresponding February succes-
sor. The flow data are not logarithmically transformed for the
k-nn bootstrap.

Selected results are presented. A comparison of means,
standard deviations, skew, and lag 1 correlations are presented
for the 12 months in Figure 8. Both the k-nn and the AR1
model seem to be comparable in reproducing the mean
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monthly flow and its variation across simulations. The standard
deviations of monthly flows are somewhat more variable in
k-nn simulations than those from the AR1 model. Some
months (low flows) have a slight downward bias in the simu-
lated standard deviation, while others (March and July, the
months following a minimum and maximum in monthly flow,
respectively) show a larger spread in standard deviation than in
the AR1 case. While both models seem to do well in repro-
ducing the historical lag 1 correlation, the k-nn statistics ap-
pear to be more variable across realizations. A difference be-
tween the two simulators is apparent in Figure 8c, where the
AR1 model fails to reproduce the monthly and the annual
skews as well as the k-nn model does. Recall that the ad hoc
prescriptive choice of k = n'/? was used here, with no attempt
at fine tuning the k-nn simulator.

The marginal probability density functions were estimated
by ASH for flow in each month. Selected results for simula-
tions from the k-nn and for the AR1 model applied to loga-
rithmically transformed flows for 3 months are illustrated in
Figure 9. We see from Figure 9 that the k-nn samples are
indeed a bootstrap; that is, the simulated marginal probability
densities behave much like the empirical sample probability
density. The usual shortcoming of the bootstrap in reproducing
only historical sample values is also apparent. We see that
while the lognormal density used by the AR1 model is plausi-
ble in a number of months (e.g., October), the lognormal
model seems to be inappropriate in other months, for example,
March, where the skew is too extreme for the AR1, and June,
which exhibits a distinct bimodality that may be related to the
timing or amount of snow melt. The latter is interesting, since
the 100 simulations from the AR1 model fail to bracket the two
prominent modes of the ASH density estimate, lending sup-
port to the idea of bimodality under a pseudohypothesis test
obtained from this Monte Carlo experiment.

The bivariate probability density functions for fiows in each
consecutive pair of months (e.g., May and June) were also
computed by ASH. Results for selected months are presented
in Figures 10 through 12. Other month pairs were found to
exhibit features similar to those in Figures 10 through 12. In
each case we present a scatterplot of the flows (in cfs) in the 2
months, with a LOWESS [Cleveland, 1979] smooth of the con-
ditional expectation E(x,|x, ;). An examination of the Octo-
ber/November density in Figure 10 reveals that the AR1 model
may be quite appropriate for this pair of months. The ASH
estimated density from the sample and the averages of the
ASH estimated densities from the AR1 and the k-nn samples
are all very similar. The LOWESS estimate of the conditional
expectation of the November flow, given the October flow, is
very nearly a straight line.

Figures 11 and 12 refer to the months of April/May and
May/June, where runoff from snow melt becomes important.
The timing of the start and of the peak rate of snow melt vary
over this period. Consequently, one can expect some hetero-
geneity in the sampling distributions of flows in these months.
From Figure 11a we see that the LOWESS estimate of
E(x,]x,_,), exhibits some degree of nonlinearity for April/
May. The slope of E(x,lx,_;) forx,_; < 150 cfs (4.2 m%s) is
quite different from the slope for x, ; > 150 cfs. This is
reminiscent of the SETAR model examined earlier. We could
belabor this point through formal tests of significance for dif-
ference in slope. Our purpose here is to show that the k-nn
approach can adapt to such sample features, while the AR1
model may not. The average bivariate densities of the simula-
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(a) An ASH estimate of the bivariate probability density f(x,, x,_ ;) for the April/May historical

flows, the thick curve denoting a LOWESS smooth, (b) an average of the ASH estimates of f(x,, x,_,) across
100 simulations from an AR1 model, and (c) an average of the ASH estimates of f(x,, x,_,) across 100 k-nn
resamples. Values are given in cubic feet per second (1 cfs equals 0.028 m?/s).

tions based on ASH once again reinforce this difference be-
tween the k-nn and the AR1 models and their attributes. Note
also that the AR1 simulations do not reproduce the sample
skews for this period either.

The May/June analysis, shown in Figure 12, is marked by
considerably increased variability in stream flow as the snow
melt runoff develops. Once again, LOWESS shows some de-
gree of nonlinearity in E(x,|x,_,), with the slope of the rela-
tionship smaller for high flows than for low flows. A compar-
ison of the ASH bivariate density contours in Figures 12a and
12c reveals that the AR1 density is oriented quite differently
from the ASH estimate for the raw sample and is unable to
reproduce the degree of heterogeneity in the sample density.
Recall that the marginal density of June flows was bimodal,
with an antimode around 1000 cfs (28 m?/s). The antimode
suggests that the data is clustered into two classes of events:
those with flow below 1000 cfs (mode at 700 cfs (19.6 m*/s))
and those with flow above 1000 cfs (mode at 1300 cfs (36.4
m?/s)). The LOWESS fit suggests that the June flows have an
expectation close to 1000 cfs for May flows greater than about
700 cfs. It appears that the conditional expectation averages
across the two modes for June flows and that the conditional
density (Figure 12b) of June flows, given May flow, may be
bimodal, as seen in the marginal density plot for June fiows.

The significance of the findings reported above is that the
nearest neighbor bootstrap provides a rather flexible and adap-
tive method for reproducing the historical frequency distribu-
tion of streamflow. The possibly tenuous issue of choosing
between a variety of candidate parametric models month by
month is avoided. Matching the historical frequency distribu-

tion of flows properly is important for properly estimating
storage requirements for a reservoir and analyzing reservoir
release options. For snowmelt-driven streams in arid regions
the timing and amount of melt is important in determining
reservoir operation. The bimodality in the probability density
of monthly streamflow during the melt months may be con-
nected to structured low-frequency (interannual and interdec-
adal) climatic fluctuations in this area [see Lall and Mann,
1995]. This would be a significant factor for reservoir opera-
tion, since the timing and amount of snowmelt may correspond
to a circulation pattern that corresponds to specific flow pat-
terns in subsequent months as well. The nearest neighbor boot-
strap would be an appropriate technique for simulating se-
quences conditioned on such factors. Work in this direction is
in progress.

Summary and Discussion

A nearest neighbor method for a conditional bootstrap of
time series was presented and exemplified. A corresponding
forecasting strategy was indicated. Our contributions here lie
primarily in the development of a new kernel, suggestion of a
parameter selection strategy, application to a conditional boot-
strap, and demonstration of the methodology. It was shown
that sample attributes are reproduced quite well by this non-
parametric method for both synthetic and real data sets. Given
the flexibility of these techniques, we consider them to have
tremendous practical potential.

The parametric versus nonparametric statistical method de-
bate often veers toward sample size requirements and statisti-
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cal efficiency arguments. In the context of a resampling strat-
egy, as espoused here, these arguments take a somewhat
different complexion. For some processes, such as daily
streamflow, identification or even definition of an appropriate
parametric model is problematic. In these cases, data are rel-
atively plentiful. For such cases, methods such as those pre-
sented here are enticing. For monthly and annual flows, there
is progressively less structure, and sample sizes are smaller. In
these situations, parametric methods may indeed be statisti-
cally more efficient provided the correct model is identifiable
and parsimonious. In our view, particularly for the snow-fed
rivers of the western United States, this may not always be the
case. Indeed, for the application presented here at the monthly
timescale it is hard to justify choosing the parametric approach
over the nearest neighbor method. The consideration of pa-
rameter uncertainty is justifiably considered a good idea in
parametric time series resampling of streamflow [Grygier and
Stedinger, 1990]. Likewise it may be useful to think about
model uncertainty when developing parametric models. The
latter consideration is implicit in the nonparametric approach,
since a rather broad class of models is approximated. The
impact of varying the “parameters” k and the model order on
specific attributes of the resamples bears further investigation.
Our preliminary analyses suggest that the sensitivity of the
scheme is limited over a range of k values near the “optimal”
with the kernel used here. Formal investigations of this issue
are being pursued.

One can devise a strategy that allows nearest neighbor re-
sampling with perturbation of the historical data in the spirit of
traditional autoregressive models, that is, conditional expecta-
tion with an added random innovation. First, one evaluates the
conditional expectation using the generalized nearest neighbor
regression estimator for each vector D, in the historical record.
A residual e; can be computed as the difference between the
successor x; of D; and the nearest neighbor regression forecast.
The simulation proceeds by estimating the nearest neighbor
regression forecast relative to a conditioning vector D, and
then adding to this one of the e; corresponding to a data point
j that lie in the k nearest neighborhood J; ,. The innovation e;
is chosen using the resampling kernel K(j(i)). This scheme
will perturb the historical data points in the series, with inno-
vations that are representative of the neighborhood, and will
thus “fill in” between the historical data values as well as
extrapolating beyond the sample. The computational burden is
increased and there is a possibility that the bounds on the
variables will be violated during simulation. However, there
may be situations where the investigator may wish to adopt this
strategy. Further exploration of this strategy is planned.

Issues such as disaggregation of streamflows bear further
investigation. One strategy is trivial: resample the flow vector
that aggregates to the aggregate flow simulated. A question
that arises is whether there is even any need to work with
models that disaggregate (especially in time) using these meth-
ods. One may wish to work directly with, say, the daily flows,
conditioned on a sequence of past daily flows and weekly or
monthly flows.

The real utility of the method presented here may lie in
exploiting a dependence structure (e.g., in daily flows) that is
difficult to treat by traditional methods, as well as complex
relationships between variables, and in estimating confidence
limits or risk in problems that have a time series structure. The
traditional time series analysis framework directs the research-
er’s attention toward an efficient estimation of model param-
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eters under some metric (e.g., least squares or maximum like-
lihood). The performance metric of interest to the hydrologist
may not be the one optimal for the estimation of a certain set
of parameters and selected model form. There is reason to
directly explore other aspects of the problem that may be of
direct interest for reservoir operation and flood control, using
flexible, adaptive, data exploratory methods. Such investiga-
tions using the k-nn bootstrap are in progress.
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