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[1] A K-nearest neighbor (K-nn) resampling scheme is presented that simulates daily
weather variables, and consequently seasonal climate and spatial and temporal
dependencies, at multiple stations in a given region. A strategy is introduced that uses the
K-nn algorithm to produce alternative climate data sets conditioned upon hypothetical
climate scenarios, e.g., warmer-drier springs, warmer-wetter winters, and so on. This
technique allows for the creation of ensembles of climate scenarios that can be used in
integrated assessment and water resource management models for addressing the potential
impacts of climate change and climate variability. This K-nn algorithm makes use of the
Mahalanobis distance as the metric for neighbor selection, as opposed to a Euclidian
distance. The advantage of the Mahalanobis distance is that the variables do not have to be
standardized nor is there a requirement to preassign weights to variables. The model is
applied to two sets of station data in climatologically diverse areas of the United States,
including the Rocky Mountains and the north central United States and is shown to
reproduce synthetic series that largely preserve important cross correlations and
autocorrelations. Likewise, the adapted K-nn algorithm is used to generate alternative
climate scenarios based upon prescribed conditioning criteria. INDEX TERMS: 1854

Hydrology: Precipitation (3354); 1869 Hydrology: Stochastic processes; 1899 Hydrology: General or

miscellaneous; 1630 Global Change: Impact phenomena; KEYWORDS: bootstrap, resampling, climate data,
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1. Introduction

[2] Integrated assessment (IA) studies link biophysical and
socioeconomic models for studying the effects of climate
change and other anthropogenic stressors on both natural and
human systems [Cohen, 1986; Dowlatabadi and Morgan,
1993; Mearns et al., 1996]. They do this by predicting, for
example, local patterns of spatial change in agroecosystem
boundaries, soil carbon storage, changes in soil moisture, and
water resource availability, and then, in conjunction with
various development policies, simultaneously address the
implications of these local impacts at broader regional and
national scales [Rosenzweig and Parry, 1994; Smit et al.,
1996; Yates and Strzepek, 1996, 1998a].
[3] Because of their detailed characterization of bio-

physical processes, many of these IA models require
high-resolution climate data (e.g., precipitation, tempera-
ture, wind, solar radiation, and so on) at relatively fine
spatial and temporal (at least daily) scales to drive these

process models. To calibrate these models and evaluate their
performance, observed meteorological data sets are used as
forcing variables [Yates and Strzepek, 1998a, 1998b; Yates et
al., 2000; Kenny, 2000]. To study the likely effects of climate
change for IA analysis, climate scenarios are generated
through downscaling techniques that involve developing
statistical relationships between historic meteorological
observations and outputs from regional and/or global climate
models [Wilks, 1992; Robock et al., 1993; Easterling, 1999;
Hewitson and Crane, 1996; Semenov, 1997; Wilby et al.,
1998; Sailor and Li, 1999a, 1999b; Mearns et al., 1999].
While these approaches for simulating climate scenarios
for IA analysis are useful, they do have limitations. For
example, a climate change scenario based on output from a
general circulation model (GCM) simulation is a single
realization of many possible climatic futures, while an
ensemble of climate scenarios that could rigorously explore
the decision space of IA models would be more useful. Also,
in many cases GCMs do not adequately replicate the historic
climate of a region, so there is a great deal of uncertainty
regarding the regional GCM output under future scenarios of
increasing CO2 and aerosol changes.
[4] Stochastic weather generators address the issue with

their ability to simulate plausible climate scenarios and have
themselves been used as downscaling techniques in global
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change studies [Wilks, 1992]. Typically, a stochastic weather
generator is developed based on the historically observed
data at a location, and it can then be used to simulate climate
scenarios consistent with the global change scenarios.
Furthermore, this technique can be used to investigate the
sensitivity of IA models and their individual components to
climate variability and climate change, an issue that has not
received its due attention [Morgan and Dowlatabadi, 1996;
Kunkel et al., 1998; Mearns et al., 1996, 1997; Adams,
1999; Mingkui and Woodward, 1998; Risbey and Stone,
1996; Smith and Pitts, 1997; Mitchell et al., 1999].
[5] In this paper we develop and demonstrate the utility of

a modified version of the K-nearest-neighbor (K-nn) based
nonparametric stochastic weather generator [Buishand and
Brandsma, 2001; Rajagopalan and Lall, 1999] to simulate
climate scenarios on a regional scale. The paper first gives
a brief background on stochastic weather generators.
Section 3 describes the methodology of the K-nn regional
weather generator, including the methodology to adapt it to
simulate daily weather sequences conditioned upon alterna-
tive climate scenarios. Section 4 then applies the algorithm
to data from two regions of the United States, generating
synthetic series that preserve historic statistics and series
with alternative statistical attributes compared with historic.
A summary of the techniques and results concludes the
paper.

2. Background

[6] Stochastic weather generators are routinely used
in water, agricultural, and erosion control management
[Skidmore and Tatarko, 1990; Wilks, 1997; Dubrovsky
et al., 2000]. Weather generators based on parametric
statistical techniques typically use precipitation as the
driving variable in a number of models [see Jones et al.,
1972; Nicks and Harp, 1980; Richardson, 1981], where
precipitation occurrence and amount are generated indepen-
dently, and the other variables are then generated based on
the stochastically generated precipitation. For example, a
precipitation occurrence and amount model (e.g., a two-
state Markov model, with exponentially distributed rainfall
amount) can be used to generate the sequence of dry and
wet days and precipitation amount. The other variables are
simulated using a lag 1 multivariate autoregressive model
with exogenous precipitation input (MAR-1). Furthermore,
a model is fit to each month (or season) separately to
capture the nonstationarity (i.e., seasonality). There are
several drawbacks to the parametric approach, including
the following: (1) The MAR implicitly assumes a normal
distribution of the variables, which is difficult to satisfy;
consequently, nonnormal features in the data such as
bimodality cannot be captured; (2) only linear relationships
between the variables can be reproduced; (3) a large number
of parameters are separately fit to each season. If the
simulations are to be conditioned, e.g., conditioned upon
the state of the El Niño-Southern Oscillation Index (ENSO),
then separate models have to be fit for each ENSO state,
which further increases the number of parameters; (4) by
simulating other variables conditioned on precipitation, only
that part of the dependency that is related to precipitation
is captured. Furthermore, Katz [1996] points out
that modifying the parameters of a stochastic model can
lead to unanticipated effects. For example, modifying the

probability of daily precipitation occurrence using a sto-
chastic weather generator [Richardson, 1981] changed not
only the mean of daily temperature, but its variance and
autocorrelation as well.
[7] Nonparametric methods based on simulating from

kernel-based multivariate probability density estimators
[Rajagopalan et al., 1997] and K-nearest-neighbor (K-nn)
bootstrap methods [Young, 1994; Rajagopalan and Lall,
1999; Buishand and Brandsma, 2001] can improve upon
the parametric models. The nearest neighbor methods are
based on the classic bootstrapping techniques [Efron, 1979;
Härdle and Bowman, 1988; Zucchini and Adamson, 1989;
Yakowitz, 1993]. Young [1994] employed a multiple dis-
criminant function to identify K-nn (or K unique days,
where K was 3–5 days) of the current day’s weather, and
one of these was then randomly selected and used as the
next day’s weather. Young’s model mostly preserves the
cross correlation between the variables, but biases were also
noticed (e.g., reduced persistence and underestimation of
the fraction of dry months) in the generated series. Raja-
gopalan and Lall [1999] adapted the K-nn bootstrap method
for time series resampling to multivariate data (i.e., daily
weather). Rajagopalan and Lall’s algorithm is very similar
to Young’s method but with two main differences: (1) The
discriminant function is not used, and (2) K-nearest neigh-
bors are obtained to current day’s weather and one of the
neighbors is selected based on a probability metric that
depends on the closeness of the neighbor. This approach
preserved the persistence (i.e., lag-1 correlations) and also
seasonal statistics. Buishand and Brandsma [2001] extended
this approach to simulate weather scenarios at multiple
locations preserving the dependencies across the locations.
These nonparametric methods provide a flexible frame-
work, are parsimonious, make no assumptions of the
underlying marginal or joint probability distribution of the
variables, have the ability to reproduce any arbitrary func-
tional relationship, and can easily be modified to do
conditional simulation (e.g., conditioned upon ENSO).
[8] In this paper we use a modification of the K-nn

method of Lall and Sharma [1996], Rajagopalan and Lall
[1999], and Buishand and Brandsma [2001] to generate
synthetic climate data and generate alternative climate
scenarios at several sites. The general algorithm used for
these purposes is described in the next section.

3. Methodology

[9] The K-nn algorithm employed here uses the
Mahalanobis distance metric [Davis, 1986], which has an
operational advantage over a Euclidean distance approach
by not requiring the explicit weighting of variables and
does not require the variables to be standardized. A
strategy is introduced that gives priority to certain years
from which to resample, which can be used to derive
alternative scenarios with differing statistical attributes.

3.1. The K-nn Algorithm

[10] Suppose that historic daily weather data are available
at m stations for N years and for p variables (here p = 3
including precipitation (PPT), maximum temperature
(TMX), and minimum temperature (TMN)), and that
generation begins on day t corresponding to 1 January.
The algorithm proceeds according to the following steps:
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[11] 1. Regional means of the p variables across the
stations corresponding to day t are given as

xt ¼

PPTt

TMNt

TMX t

2
66664

3
77775

ð1Þ

where

PPTt ¼
1

m

Xm
j¼1

PPTj;t ð2Þ

TMNt ¼
1

m

Xm
j¼1

TMNj;t ð3Þ

TMX t ¼
1

m

Xm
j¼1

TMXj;t ð4Þ

where PPTt, TMNt, and TMX t are the regional means
of precipitation, minimum temperature, and maximum
temperature computed for day t from all m stations,
respectively.
[12] 2. All days within the temporal window of width

w centered on day t are selected as potential candidates for
day t + 1. For example, if a 14-day temporal window is
chosen, and t is 1 January (of a randomly selected year from
set N ), then the window of days consists of all days
between 25 December and 8 January, including 1 January
for all N years but excluding day t. Thus there are [(w + 1) *
N ] � 1 days that are potential neighbors to day t. A fixed
length, 14-day moving window (w = 14) was used in this
study.
[13] 3. Mean vectors �xi are computed for each day i,

where i = 1 to [(w + 1) � N ] � 1. These mean vectors are
computed using the equations from step 1.
[14] 4. A pxp covariance matrix St is computed for day t

using the data block ([(w + 1) � N ] � 1) � p described in
step 2.
[15] 5. The weather on the first day t (e.g., 1 January)

comprising all p variables at m stations is randomly chosen
from the set of all days of the historic record of N years
(e.g., all 1 January are candidate days with equal probability
of selection) and includes all p variables. This is the feature
vector Ft

i and represents the stochastically generated
weather for day t of year i given for each station. The
algorithm continues with the objective of selecting the next
day, t + 1.
[16] 6. Mahalanobis distances di are computed between

the mean vector of the current day’s weather, �xt and the
mean vectors �xi as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xt � xið ÞTS�1

t xt � �xið Þ
q

ð5Þ

for all i = 1 to [(w + 1) * N ] � 1, where T is the transpose of
the vector.
[17] 7. The distances di are sorted and the first K-nearest

neighbors are retained. Lall and Sharma [1996] provide an

objective method to choosing K, but the heuristic choice,
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1ð Þ � N½ 	 � 1

p
, generally performs well as seen

by them and also by Rajagopalan and Lall [1999]. Thus if
58 years of data are used with a 14-day window, then
K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
14þ 1ð Þ � 58½ 	 � 1

p

 29.

[18] 8. A probability metric with a weight function given
as

pj ¼
1=j

XK
i¼1

1=i

ð6Þ

for all j = 1 to K is constructed. The weight function assigns
weights to each of the K-nearest neighbors. The neighbor
with the shortest distance gets a high weight, while the
neighbor with the smallest distance (i.e., the Kth nearest
neighbor) gets the least weight. Lall and Sharma [1996]
argue the efficacy and simplicity of the weight function in
equation (6). Furthermore, the probability metric does not
depend on the di distances so it need not be computed at
each time step.
[19] 9. The t + 1 day is selected as one of the K neighbors

using the probability metric pj, leading to a new feature
vector, Ft+1

i . A random number, u � U(0,1) is first
generated, and if u � p1, then the t + 1 day corresponding to
distance d1 is selected. If u 
 pK, then the t + 1 day
corresponding to dK is selected. For p1 < u < pK, the day
t + 1 corresponding to dj is selected for which u is closer
to pj. For example, with 29 nearest neighbors, then from
equation (6), p1 = 0.2524; p2 = 0.1262;. . .; p29 = 0.0087.
Now, if u = 0.1250, which is closest to p2, then the day
corresponding to d2 is selected.
[20] 10. Steps 6 through 9 are repeated for as many days

of required simulation as are necessary. If multiple years of
independent simulation are desired, then the algorithm starts
at step 5, randomly selecting the first day from the N years
of data.
[21] Since the daily weather at the stations within a region

is sampled simultaneously, dependence between the stations
and among variables at each station should be largely
preserved. Further, this being a bootstrap of the historical
data, non-Gaussian features in the probability density func-
tions of the variables are retained [Lall and Sharma, 1996;
Rajagopalan and Lall, 1999]. Finally, the algorithm can be
used to perform strategic simulation to derive new daily
weather series with altered attributes as compared with
historically observed attributes (such as shifts in the mean or
changes in variability), as will be seen in the next section.

3.2. Strategic Resampling

[22] When all K days constitute the candidate days for
selection with the K-nn algorithm, the goal of the simulation
is to produce synthetic series that reproduce the statistics of
the historic data. However, many decision models (e.g.,
watershed models and reservoir operation models) require
weather sequences to be conditioned upon some large-scale
climate signal such as the ENSO so that the sensitivity of
the system to alternative climate scenarios can be tested.
Likewise, it would be advantageous to test IA models with
climate data that consists of divergent patterns relative to
historically observed climate, such as warmer and wetter
springs or a gradual warming trend over a certain period of
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time and region. This would allow for an improved
understanding of the complex interactions and system
response of these models. Strategies to adapt the K-nn
algorithm for developing such alternative climate scenarios
are described below.
[23] Strategic resampling simply implies that a subset of

years, n 2 N will be used in the K-nn algorithm based on
some conditioning criteria. The simplest criteria would be
some large-scale climate signal such as the annual ENSO
index, which influences regional climate. Thus, to generate
daily weather with similar ENSO characteristics, only those
years with a particular ENSO index would comprise the n 2
N subset, and the K-nn algorithm would be constrained to
only resample from the [(w + 1) � n] � 1 days of daily data.
This approach would work fine for short weather sequences,
such as a year; but for longer sequences, it would be
desirable to dynamically select the n subset from the larger
population of N years so that longer weather sequence would
reflect different climate regimes. To do this, a temporal,
probabilistic resampling scheme is introduced that generates
subsets of years nw

t for each week w. The superscript T

represents the fact that the set of years from which to
resample is not fixed, but can change both interannually and
intra-annually according to year-to-year, weekly deviations
(or anomalies) observed in the historic record.

Figure 1. Plot of the index function given by equation (12).
A lw

i = 1.0 corresponds to the straight line (mean), while
a lw

i = 2.0 introduces curvature into equation (12),
biasing warm years and lw

i = 0.6 value will yield a cold
bias.

Figure 2. Map depicting the 21-state area of interest in this study (top right graph), and the two focus
areas (regions 4 and 7) and their corresponding stations (bottom graphs). The numbers indicate stations
grouped by region. The two stations of focus (114198 in region 4 and 52281 in region 7) are highlighted.
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[24] The weekly anomalies are computed from the his-
toric daily data for each variable (e.g., Yjt

i is PPTjt
i , TMNjt

i ,
or TMXjt

i , where i is the year, j is the station, and t is the day
in the week) first by computing the regional weekly means.
For simplification, assume the year can be broken into w,
d(w) day periods (e.g., weeks); thus the regional weekly
means of the entire record are given as

�Yw ¼ 1

Nmd

XN
i¼1

Xm
j¼1

Xd
t¼1

Yi
j;t ð7Þ

while the regional weekly means for each year are given as

Yi
w ¼ 1

md

Xm
j¼1

Xd
t¼1

Yi
j;t ð8Þ

Regional, weekly anomalies are computed as diw ¼
Yi

w � �Yw, which are then ranked by week according to
their relative magnitude. For example, regional minimum
temperature anomalies could be ranked from lowest to
highest for all weeks w and N years such as R = {d1

1,N: (1945

�7.8, 1962 �7.2, . . ., 1967 +0.5, 1957 +4.5, 1987 +8.0);
d2
1,N: (1946 �6.8, 1945 �5.0,. . ., 1896 +4.0, 1937 +6.8);..
dw1,N.. (,): d52

1,N (1956 �6.8, 1945 �6.1, . . ., 1978 +6.8)}.
Here the coldest first week of January was 1945 (�7.8�C
below the week 1 mean), while the warmest first week of
January was 1987 (+8.0�C above the week 1 mean). The
sorted list for each week is then assigned a rank index
where the first index I1

1, corresponding to d1
1, is given a

value of 1; I1
2 = 2; I1

3 = 3; and the last index I1
N = N, which

corresponds to d1
N in the ranked list. To generate the subset

of years, nw
t for each of the 52 weeks, u � U(0,1) random

numbers are used to compute index values between 1 and N
according to

I1;Nw ¼ INT N 1� uð Þ½ 	 þ 1; ð9Þ

which directly correspond to certain years in the ranked list,
R. With this technique, if N, U(0,1) random numbers are
selected, there is equal probability that any year is part of the
nw
t subset. Likewise, there is the probability that years could

be repeatedly selected and appear multiple times in the nw
t

subset and are thus more likely to contribute to the daily

Figure 3. Box plots of precipitation statistics for station 114198 in region 7, with constant lw
i = 1.0. Top

left graph is total monthly precipitation, top right graph is the standard deviation of daily precipitation,
bottom left graph is the skewness of daily precipitation, and the bottom right graph is the average number
of days between precipitation events for the month. The solid line and marks are the same statistics
derived from the historical data for the period 1938 to 1997.
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weather simulations. This is the main difference from when
resampling is done where nw

t is prescribed to be all N years.

3.3. Paired Ranking

[25] The above applies for single variables, while paired
ranking is slightly more involved. Departures from the
weekly mean for a pair of climate variables might
include minimum temperature and precipitation, maximum
temperature and precipitation, or minimum and maximum
temperature. A relative distance to the mean for each paired
combination is computed which is then used to determine
the year of the most extreme pair (e.g., the warmest and
wettest, the warmest and driest, the coldest and wettest)
relative to ‘‘normal’’ conditions. This is done by first
generating standardized weekly anomalies of each variable,

Zi
w ¼ Yi

w � �Yw

� �
= E Yi

w � �Yw

� �2h in o1=2
ð10Þ

for all years i = 1 to N and weeks w = 1, 52. The anomalies
for each climate variable are simply summed to give

diw ¼ Z 1ð ÞiwþZ 2ð Þiw ð11Þ

where Z(1) and Z(2) indicate the appropriate variable (e.g.,
PPT, TMN, TMX). By means of example, if the normalized
precipitation anomaly is negative (e.g., a dry year) and

the temperature anomaly is negative (a warm year), then the
dw
i = Z(PPT )w

i + Z(TMN )w
i would be a large negative

number, and would be ranked toward the bottom of the list.
Once the rank list is generated from the paired variables, the
subset of years nw

t can be generated in a manner similar to
the single variable case.

3.4. Biasing the Ranked List

[26] If the ranked lists are sampled with a uniform
random number to generate the Iw

i index, then each year
has an equal probability of making up the nw

t subset.
However, it would be advantageous to select the index in
such a way as to bias certain years over others. The integer
function of equation (9) becomes

I1;Nw ¼ INT N 1� ul
i
w

� �h i
þ 1 ð12Þ

where lw
i is a shape parameter of the function. A value of

lw
i = 1.0 gives equal probability that any year could be

selected for the given week w. Different values of the shape
parameter bias certain index values above or below the mean
when queried with a u � U(0,1) random number. If years are
ranked from coldest (with an index value of 1) to warmest
(with an index value of N ), then shape parameter values
greater than 1.0 tend to bias the selection of warm years,
while shape parameter values less than 1.0 tend to bias the

Figure 4. Same as Figure 3, but for station 52281 in region 4.
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selection of cold years. Figure 1 describes an example using a
50-year record of average temperatures ranked from coldest
(with an index value of 1) to warmest (with an index value of
50). If a lw

i value of 2.0 is used, then the expected value of
the function described in equation (12) is approximately 33
when repeatedly queried with U(0,1) random numbers,
suggesting a bias toward the selection of warm years.
Likewise, a value of 0.66 would bias cold years with an
expected value of approximately 17 (Figure 1).

3.5. Introducing Interannual and
Intra-annual Variability

[27] The shape of the curve corresponding to equation (12)
can be modified through a manipulation of the lw

i parameter
according to the week in the year (intra-annual change) and
along years (interannual change). The shape parameter can
be altered according to

li
w ¼ li�1

w�1 1þ rið Þ 1þ bwð Þ ð13Þ

where bw is the intra-annual trend parameter and ri is the
interannual trend parameter, which are adjusted for each

week and for each year, respectively. Choosing different
values of bw and ri for certain weeks and years produces
values of lw

i yielding changes in the shape of the response
curve, and when the integer function (equation (12)) is
queried, its index values are used to select particular years
from the ranked list. In the case of the three variables used
here, the various ranked lists (e.g., TMN, TMX, PPT, PPT-
TMN, PPT-TMX, and TMN-TMX) can be assigned to
specific weeks in the year. If a scenario of warmer-wetter
winters for weeks 1 through 8 and 50 through 52
(corresponding to 10 December to 25 February) were to
be generated, then these weeks would be resampled from
the warmer-wetter ranked list. Because values of lw

i can be
uniquely defined for each week, then the middle weeks
(weeks 3 and 4, or mid-January) could have higher values of
lw
i relative to the other winter months, which would likely

produce warmer and wetter days in mid-January relative to
the other winter weeks.
[28] Of course, this depends on the attributes of the

underlying data. It is likely that a region’s climate is such
that there is greater variability during certain times of the
year, which is reflected in the historic climate data. If the

Figure 5. Box plots of daily average temperature for station 114198 (top left graph) and station 52281
(bottom left graph), and the standard deviation of the daily average temperature for the same two stations
(right graphs), given constant lw

i = 1.0. The solid line and marks are the same statistics derived from the
historical data for the period 1938 to 1997.
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standard deviation of temperature is greater in January than
it is in December and February, then a conditioned set
generated with the same scenario function (or the same
values of rj and bk, for the weeks of December, January, and
February) would likely yield greater temperature changes
for January when compared with December and February.
[29] With this technique, different weeks in the year can

be assigned to the different ranked list types, leading to any
of number of climate change scenarios with particular
attributes. One arguable drawback of this climate scenario
generating technique is that because all variables are
grouped, the choice to select, for example, higher minimum
temperatures will likely produce trends in the other vari-
ables. For when a particular site experiences above average
minimum temperatures, this likely corresponds to increases
or decreases in precipitation, which will then be a charac-
teristic of a ‘‘higher minimum temperature’’ scenario. Thus
true partial derivative experiments (e.g., generating climate
scenarios with higher minimum temperatures but that hold
the other climate variables constant) are not possible;

however, the derived scenarios will be realistically consis-
tent with the observed climate relationships. Along the same
lines, if there is a positive correlation between maximum
temperature and precipitation in the observed data during
winter, it may be difficult to produce scenarios with an
increase in maximum temperature and a decrease in precipi-
tation for that season.

4. Generating Precipitation and
Temperature Fields

[30] The K-nn algorithm described above was used to
simulate daily minimum and maximum temperature and
precipitation at several stations in the central Midwest and
Rocky Mountain region of the United States. These two
regions are shown as regions 4 and 7, respectively, based on
the data requirements of another research project focused on
the Central Great Plains region of the United States
(Figure 2). Region 4 had 34 stations, while region 7 had
seven. These two regions were chosen for the diversity of

Figure 6. Box plots of lag-0 correlation between precipitation and the daily average maximum
temperature at station 114198 and 52281 (left graphs); and the lag-1 auto correlation of precipitation for
the same two stations (right graphs), given constant lw

i = 1.0. The solid line and marks are the same
statistics derived from the historical data for the period 1938 to 1997.
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their climate. Daily observational data for a 58-year period
spanning 1930 to 1987 were taken from the VEMAP
archive [Kittel et al., 1997], consisting of quality-controlled
meteorological data corresponding to the stations indicated
in Figure 2.
[31] A total of 900 independent years of weather data

(PPT, TMN, TMX) were generated and a set of statistics
computed for each month of the year based on this
synthetic daily data. The statistics include means, standard
deviations, skewness coefficients, cross correlations be-
tween the variables, and cross correlations between stations,
and are summarized with box plots. Although the weather
simulations were made on a daily timescale, the statistics
from the daily data have been aggregated to the monthly
timescale. In all the box plot figures shown below, the
following holds: The box in the box plots (e.g., Figure 3)
indicates the interquartile range of the simulations, and the
whiskers show the 5th and 95th percentile of the simula-
tions, while the dots indicate values outside this range. The
horizontal lines within the box indicate the median value,
and the solid lines join the values of the statistic from the
observed data. Typically, if the statistics of the observed
data fall within the box, it indicates that the simulations
adequately reproduced the statistics of the historical data.
For illustrative purpose, the results at station 114198 in

region 4 and station 52281 in region 7 are highlighted
(Figure 2).

4.1. The Special Case of Lw
i = 1: Series Yielding

Statistics of the Historic Data

[32] The first experiment was to reproduce the statistics
of the historic data, and to do this, fixed values of
bw and ri for all weeks and years were prescribed, resulting
in lw

i = 1.0 for all w and i. Thus all [(w + 1) � N ] � 1 days
are likely to be part of the pool of neighbor candidates.
The upper left graph of Figure 3 is the box plot of total
monthly precipitation for station 114198 in region 4, while
the upper left graph of Figure 4 is the same for station
52281 in region 7. It can be seen that the simulations
adequately reproduced the historical monthly precipitation,
also suggesting that the annual cycle in the precipitation
was captured. There was a slight underestimation of
precipitation at station 114198, particularly for April and
September, but overall the performance was good. Note the
two peaks of precipitation in the spring and late summer at
station 52281, with a spring snow-regime maxima and a
later summer rainfall maxima associated with the North
American monsoon. It should be noted that the algorithm
was not designed to explicitly model monthly statistics,
unlike the parametric models that are fitted separately

Figure 7. Scatterplots of lag-0 cross correlations of precipitation for region 4 (upper left graph) and
region 7 (upper right graph) stratified by season; and the lag-1 cross correlations for region 4 (lower left
graph) and region 7 (lower right graph) also stratified by season. Simulations were for lw

i = 1.0 constant
values.
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for each month [Richardson, 1981]. Given this, the
performance was impressive.
[33] The upper right graphs of Figures 3 and 4 are the

standard deviations of daily precipitation for each month,
and the simulations adequately reproduced this statistic,
which was greatest in the spring at station 114198 and in
the spring and late summer at station 52281. Skewness, an

important attribute of daily precipitation that describes the
symmetry of the distribution of rainfall, is plotted in the
lower left graphs of Figures 3 and 4 for these two stations.
Typically precipitation data are positively skewed. The
simulations generally capture the historical skew, although
there is a slight overestimation for a couple of months at
both stations. Note those months where the model over-
predicted the magnitude of the skew (particularly for station
52281: January, April, May, June, September, December;
Figure 4) generally corresponded to months where the
model had a tendency to over-select dry days leading to
less precipitation (station 52281: January, April, June,
September, and December; Figure 4).
[34] To illustrate a measure of persistence, the average

number of days between precipitation events (e.g., days in
the historic record where precipitation is greater than zero)
for each month is illustrated in the lower right graphs of
Figures 3 and 4. This statistic gives insight into the ability of
the K-nn technique to reproduce dry and wet spell lengths.
This statistic is significant in several decision models,
especially in agricultural yield models and also in watershed
and reservoir operation models. There is significant
seasonal variability in the average number of days between
rain events at both stations. Station 52281 in region 7 shows

Table 1. The Region 4 Annual Mean of TMN, TMX, and PPT

Computed From the 34 Stations From the 900 Independent Series,

and for Different Values of lw
i , Using an Average Temperature

Ranked List Developed From Region 4 Historic Dataa

lk, j TMN, �C TMX, �C PPT, mm

Historic 5.2 16.6 941
0.6 4.2; ��1.0 15.6; ��1.0 882; �6%
1.0 5.3; +�0.1 16.7; +�0.1 921; �2%
2.0 6.9; +�1.7 18.4; +�1.8 1007; +7%
3.0 7.8; +�2.6 19.3; +�2.7 1058; 12%

aAlso included are the region 4 historic averages for these same variables.
For the scenario rows, the first numbers are the absolute values, and the
second numbers are the deviations from the historic (precipitation is the
percent difference).

Figure 8. Box plots of total monthly precipitation (top left graph) and daily average temperature
(bottom left graph) for station 114198, given lw

i = 1.0 constant values. Right graphs are the same
statistics, but for constant values of lw

i = 3.0. The solid line and marks are the same statistics derived
from the historical data for the period 1938 to 1997.
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complex seasonal variability composed of an early spring
minima in March and a summer minima in July and August
corresponding to the North American monsoon in the
southwestern United States. Station 114198 in region 4
exhibits increased occurrence of wet days, given as fewer
days between precipitation events in the spring.
[35] Figure 5 shows the box plots of daily average

temperature (TAV = 0.6TMAX + 0.4TMN) for each
month (left column) for stations 114198 and 52281, derived
as a weighted average of the minimum and maximum
temperatures. Figure 5 also includes the standard deviation
of the daily temperature for each month of both stations
(right column). The simulations reproduce both of these
statistics very well. Both stations exhibit higher temperature
variability in the winter months, and the derived series were
able to capture these historic observations.
[36] To investigate how well the spatial and temporal

dependence is captured in our model, we present lag-0 and
lag-1 correlations between the variables at a station and
spatial correlations between the variables at different sta-
tions (cross correlations). For the correlation box plots, the
y-axis has been kept constant (�0.4 to 0.4) to better
compare the relative strength of the correlation statistics to
one another.
4.1.1. Correlation Among Variables at a Station
[37] Since the same day’s weather is selected for all

stations, we would expect strong lag-0 correlations among

variables at a station. The lag-0 correlations (e.g., PPT-
TMN, PPT-TMX, TMN-TMX, and TAV-PPT) were well
preserved by the model, with only the correlations between
precipitation and maximum temperature presented. One
might expect some degree of negative correlation between
precipitation and temperature, as precipitation likely occurs
with lower temperatures. This seems to be true for the PPT
and TMX correlations at station 52281, particularly for the
summer months (Figure 6, bottom left graph). Interestingly,
station 114198 shows a positive correlation between
maximum temperature and precipitation in the winter,
which transitions and becomes negative in the summer
(Figure 6, upper left graph). In the Central Great Plains
cold season, maximum temperatures are often observed to be
higher on rainy days, while during the warm season just the
opposite is true. Figure 6 also includes lag-1 autocorrelation
for precipitation (right column). Somewhat surprisingly,
there is little lag-1 correlation in precipitation at both
stations; the simulations adequately capture this trend.
Lag-1 autocorrelations of temperature at a station were well
preserved (not shown).
4.1.2. Station Cross Correlations
[38] To investigate how well the spatial dependencies

of precipitation were captured by the model, the station
cross correlations are summarized with scatterplots in
Figure 7 [Wilks, 1998]. Both lag-0 (corr[Dt

k, Dt
l; k 6¼ l])

and lag-1 (corr[Dt
k, Dt+1

l ; k 6¼ l]), for the collection of

Figure 9. Scatterplots lag-0 (upper left graph) and lag-1 (lower left graph) cross correlations of
precipitation for region 4 with constant lw

i = 1.0 values stratified by season; and similar scatterplots of
lag-0 (upper right graph) and lag-1 (lower right graph) cross correlations of precipitation for region 4 with
constant lw

i = 3.0.
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stations (k, l = 1 to m) are presented and are stratified by the
winter (October, November, December, January, February,
March) and summer seasons (April, May, June, July, August,
September), where Dt

m is the day’s weather at each station.
There are m = 35 stations in region 4 and m = 7 stations in
region 7, yielding (m(m � 1)/2) � 2 � 12 combinations of
station pairs, each both leading and lagging for all months
(e.g., region 4: 13464; region 7: 504). Not surprising, since
the K-nn algorithm chooses the same t + 1 day for all
stations, the lag-0 cross correlations were strongly preserved
for both regions (top two graphs, Figure 7).
[39] The region 4 domain spans a larger east-west

transect, and there is a tendency for synoptic-scale precipi-
tation systems to move from west to east across the region,
which is reflected in the slightly higher lagged cross
correlations, particularly for the winter months
(bottom left graph, Figure 7). The summer months are
characterized by more localized, convective events
reflected in lower station cross correlations. Note the
model bias, which tended to overestimate those stations
with low cross correlations, while underestimating those

stations with higher lag-1 cross correlations in both
regions. The region 7 domain spans a smaller geographic
region, and there is little difference in the seasonal lag-1
cross correlations (bottom right graph, Figure 7), and the
model adequately produced these lag-1 cross correlations
with the above noted biases.
[40] In summary, the use of Mahalanobis distance proved

to be an adequate methodological approach within this K-nn
resampling framework, as the algorithm led to new
realizations of multistation meteorological data that largely
reproduced the spatial and temporal statistics of the historic
data, given values of lw

i = 1.0 for all weeks and years.

4.2. Cases of Lw
i 6¼6¼6¼6¼6¼ 1: Generating Alternative Scenarios

[41] To test the ability of the algorithm to generate
alternative climate scenarios using different values of lw

i ,
region 4 (Figure 2) was selected and a simple increasing
average temperature (TAV) scenario was contrived. Weekly
average temperatures were computed as a weighted average
of daily minimum and maximum temperatures to generate
the ranked list. For all stations in region 4, the average
weekly temperature means and anomalies were computed
for each year, which were then ranked from coldest (index
of 1) to warmest (index of 58) according to the method of
section 3.2.
[42] Again, 900 independent years of synthetic data were

generated for each lwi = 0.6, 2.0, and 3.0 for all w, i
scenarios. Recall that the p = 3 variables used in the K-nn
algorithm are PPT, TMN, and TMX, while TAV was only
used to rank the list of years from which to resample.
Synthetic series corresponding to lw

i = 0.6 should result in
cooler regional temperatures, while synthetic series gener-
ated using values of lw

i = 2.0 and 3.0 should yield warmer
regional temperatures.
[43] Table 1 includes the annual historic average

temperature and total precipitation, and the annual aver-
age regional temperature and precipitation from all
scenarios (lw

i = 0.6, 1.0, 2.0, and 3.0) and shows that the
sets with lw

i 6¼ 1.0 did lead to changes in the average
regional temperature. Although the biasing was only based
on the regional average temperature, this also led to changes
in regional precipitation. Recall from Figure 6 that
maximum temperature and precipitation are slightly nega-
tively correlated for the summer months and positively
correlated for the winter months; thus this result was not
surprising. Resampling from the TAV ranked list with lw

i =
2.0 and 3.0 resulted in regional TMN and TMX increases,
while the synthetic series corresponding to lw

i = 0.6 resulted
in TMN and TMX regional temperature decreases (see
Table 1). Regional average precipitation decreased by 6
percent for the lw

i = 0.6 case, while it increased by 7 percent
for the lw

i = 2.0 case and by 12 percent for the lw
i = 3.0

case.
[44] Box plots similar to those presented for the lw

i =
1.0 case are presented for both the lw

i = 1.0 and lw
i = 3.0

scenarios for station 114198, which includes both total
monthly precipitation (top row) and average maximum
daily temperature (bottom row) based on all 900 series
(Figure 8). These plots clearly show that the strategic
resampling can produce alternative scenarios with different
statistical attributes. Maximum temperature has increased
for all months (Figure 8, bottom graphs), while precipita-

Figure 10. Plot of the temporally varying (by year i and
month w) lw

i surface for the ‘‘warmer-drier’’ spring
scenario.
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tion has increased most notably for the winter months
(Figure 8, top graphs). In the summer months, where
precipitation has a slight negative correlation with max-
imum temperature (Figure 6, top left graph), precipitation
decreases for May and August for the lw

i = 3.0 case relative
to the lw

i = 1.0 case. Surprisingly, precipitation in the
months of June, July, and September did not decline,
despite the historic observation of negative correlation with
temperature. Recall that the ranked list and thus this biasing
is only based on average temperature. The negative
correlation between precipitation and maximum tempera-
ture is not strong, so there are likely years in which this
negative correlation did not occur, from which the
neighbors were selected.
[45] For these same scenarios, the station cross correlations

are summarized with scatterplots (Figure 9) similar to those
presented in Figure 7 but only for region 4, and includes both
the lw

i = 1.0 scenario (left column) and the lw
i = 3.0

scenario (right column). There was some difference in the
lag-0 cross correlations between the lw

i = 1.0 and lw
i = 3.0

cases, implying some change in the lag-0 cross correlation
of the new scenario, although slight. Likewise, there was
some shift in the lag-1 cross correlation for the lw

i = 3.0
scenarios.

4.3. Case of Lw
i 6¼6¼6¼6¼6¼ 1: Varying Bw and Ri by

Week and Year

[46] The second test of the scenario-generating algorithm
was to produce an increasing trend of warmer-drier springs
throughout region 4 for a single realization of a 100-year

time series. This is the kind of scenario whose data could be
directly used in an IA model. To generate such a scenario, a
colder-wetter/warmer-drier ranked list was generated
according to the method of section 3.2, where higher
index values corresponded to warmer-drier years. Average
temperature (TAV) was used as the temperature variable,
and thus the paired variables TAV- PPT were used to
generate the ranked list. This ranked list was then strategi-
cally sampled to produce nw

t subsets from which to apply
the K-nn algorithm.
[47] In this case, the bw and ri were varied by week and

by year, resulting in different values for lw
i according to

equation (13). Thus when equation (12) was randomly
sampled with these different lw

i values, different indices
Iw
i were generated that biased the selection of springtime,
warm-dry years. Figure 10 is a plot of the resulting lw

i surface
for this scenario and shows the increasing values of lw

i for
the spring months, with late April and early May corre-
sponding to the peak of the lw

i values in an attempt to
produce a scenario with the maximum increases in
temperature and decreases in precipitation to occur during
this period. Recall that precipitation shows a spring
transition from being positively correlated with temperature
in the winter to being negatively correlated with temperature
in the summer (Figure 6, top left graph). Thus it should be
fairly straightforward to generate a ‘‘warmer-drier’’ spring
scenario. Also, a long-term trend of increasing values of
lw
i was imposed by adjusting the interannual trend parameter

ri in an attempt to mimic a gradual increase of warmer-drier
springs throughout the region.

Figure 11. The 100-year times series of total monthly precipitation (left graph) for the ‘‘warmer-drier’’
spring scenario for select months. The shaded lines are the regionally averaged time series, while the solid
lines are the 10-year moving averages, and the straight lines are the linear trends for January, April, May,
and June. The right graph shows the daily average temperature per month and includes the regionally
averaged time series (shaded lines) and the linear trend of this series for the 100 years.
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[48] The 100-year precipitation series are given in
Figure 11 (left graph) for select months that include the
late winter, spring, and early summer periods, computed as
the average of the 34 stations in region 4 using the above
scenario. The changes in the April and May precipitation
total over the 100-year series was the greatest, with a long-
term decline in average precipitation (first decade average
monthly total, 90 mm and 103 mm; last decade average
monthly total, 53 mm and 66 mm, respectively). The June
decline was more modest, with a first decade average total
of 100 mm and a last decade average total of 95 mm. Note
that although the scenario did not bias the selection of any
particular year in January, there was a modest decline
in January precipitation over the 100 year simulation
(Figure 11, left graph).
[49] Figure 11 includes plots of the 100-year time series

of daily average temperature as a weighted average of
minimum and maximum temperature (right graph). The
long-term trend of increasing temperatures for April and
May is highlighted in this figure, with a last decade increase
of approximately +2.7�C and +3.0�C for April and May
over the 100-year time period. There was little to no trend
observed in the January and June temperatures.

5. Summary and Conclusions

[50] A modified K-nn resampling technique was de-
scribed that simulates regional daily weather, thus largely
preserving important spatial and temporal dependencies of
the observed climate. This method has an operational
advantage over traditional resampling models that make use
of the Euclidan distance. In the Euclidian distance approach
the variables have to be standardized (i.e., mean removed
and divided by the standard deviation) before the distances
are computed. This is because variables with higher
magnitudes disproportionately influence the neighbor
selection. The use of Mahalanobis distance obviates the
standardizing of the variables. Likewise, the use the
covariance matrix in the Mahalanobis distance computation
(equation (5)) weights the variables as per their covariance
(or correlation), i.e., strongly correlated variables get less
weight.
[51] The K-nn algorithm was demonstrated by simulating

weather sequences at multiple sites over two regions in the
United States. The performance of this technique in
reproducing the temporal and spatial statistics was good.
Capturing the spatial and temporal dependencies is very
important when using simulated weather sequences in IA
models. Strategies to adapt this K-nn technique for strategic
resampling that could be conditioned upon a large-scale
climate signal (e.g., ENSO) or some contrived climate
change scenarios that could be used in IA models were also
developed. These strategies were used to successfully
generate several climate change scenarios, e.g., regional
temperature increases and increasingly warmer-drier springs
for a large geographic region. The nearest-neighbor
methodology developed here for simulating regional
climate provides a flexible framework with no assumptions
of the underlying functional form of the dependencies or the
probability density functions of the variables. It is very easy
to understand and implement.
[52] A common shortcoming of this and other bootstrap

methods is that they do not produce values not seen in

the historical record. However, they produce a rich
variety of sequences of daily weather. The variety is
important for a majority of decision models and IA
models. Rajagopalan and Lall [1999] describe a strategy
that allows nearest-neighbor resampling with perturbations
of the historical data in the spirit of the traditional
autoregressive models, i.e., conditional expectation with
an added random innovation. Their suggested scheme
perturbs the historic data points in the series with
innovations that are representative of the neighborhood,
and will ‘‘fill in’’ between historic values as well as
extrapolate beyond the sample. We plan to implement this
scheme in a later version of this model.
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